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ABSTRACT

Plant phenomics (PP) has been recognized as a bottleneck in studying the interactions of genomics and

environment on plants, limiting the progress of smart breeding and precise cultivation. High-throughput

plant phenotyping is challenging owing to the spatio-temporal dynamics of traits. Proximal and remote

sensing (PRS) techniques are increasingly used for plant phenotyping because of their advantages in

multi-dimensional data acquisition and analysis. Substantial progress of PRS applications in PP has

been observed over the last two decades and is analyzed here from an interdisciplinary perspective based

on 2972 publications. This progress covers most aspects of PRS application in PP, including patterns of

global spatial distribution and temporal dynamics, specific PRS technologies, phenotypic research fields,

working environments, species, and traits. Subsequently, we demonstrate how to link PRS to multi-omics

studies, including how to achieve multi-dimensional PRS data acquisition and processing, how to system-

atically integrate all kinds of phenotypic information and derive phenotypic knowledge with biological sig-

nificance, and how to link PP to multi-omics association analysis. Finally, we identify three future perspec-

tives for PRS-based PP: (1) strengthening the spatial and temporal consistency of PRS data, (2) exploring

novel phenotypic traits, and (3) facilitating multi-omics communication.

Keywords: plant phenomics, remote sensing, phenotyping, phenotypic traits, multi-omics, breeding, precision

cultivation
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INTRODUCTION

Improving crop yield production is a serious global challenge

caused by increasing population, limited resources, and deterio-

rating climate (Rosegrant and Cline, 2003). Breeding ideal

varieties and realizing precision cultivation are fundamental

ways to meet this challenge (Moreira et al., 2020). High-

throughput genomics, transcriptomics, and proteomics have
Plant Commun
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been achieved in the last two decades, enabling the large-scale

dissection of the genetic basis of important traits (Varshney

et al., 2009; Roitsch et al., 2019). However, high-throughput,
ications 3, 100344, November 14 2022 ª 2022 The Author(s).
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. The spectral, spatial, and tempo-
ral dimensions of PRS (sensors and plat-
forms) in PP under the background of ge-
netic diversity and environmental gradients.
The three axes of the cube represent spectral,

temporal, and spatial dimensional data from

different PRS platforms, including proximal plat-

forms (such as tripods, gantries, and vehicles) and

remote platforms (such as drones, airplanes, and

satellites). The spectral dimension refers to phe-

notyping plants with an electromagnetic spectrum

that ranges from gamma rays to microwaves. The

temporal dimension is the time interval for plant

observation, including single, diurnal, seasonal,

and inter-annual observations. The spatial

dimension includes phenotyping from the cell/

tissue level to the global level.
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high-precision, and multi-dimensional phenotypic data acquisi-

tion and analysis are seriously lagging and have become bottle-

necks hindering high-throughput genetic-improvement breeding

and precision cultivation management (Montes et al., 2007;

Grosskinsky et al., 2015).

Plantphenomics (PP), anemerging interdisciplinary subject, iswell

recognized as an accelerator for breeding and an optimizer for the

cultivationofplants (Watt et al., 2020), includingagricultural, forest,

horticultural, and grassland plants. The history of phenomics can

be traced back to 1911 when the concept of phenotype was

proposed to represent ‘‘all types of organisms, distinguishable

by direct inspection or by finer methods of measuring or

description’’ (Johannsen, 1911). Phenomics is a much wider

concept that refers to the acquisition of high-dimensional pheno-

type data on an organism-wide scale (Soule, 1967). The

concepts of phenotype and phenomics are both proposed by

geneticists to decipher the relationship between genes and

target traits (e.g., cancer). When the connotation of these

concepts was adopted by plant scientists, plant phenotype

and PP were formed to study plant growth, performance, and

composition (Furbank, 2011). In addition, the methods and

protocols in the process from plant phenotype to PP have been

defined as plant phenotyping (Schurr, 2013).

Traditional phenotyping has been implementedmainly bymanual

measurement or scoring, which is tedious, time-consuming, and

labor-intensive (Dhondt et al., 2013). The development of rapid

breeding and precision cultivation has placed new demands

on the throughput, accuracy, repeatability, and novelty of

phenotyping. First, high-throughput, highly accurate, and high-

precision phenotyping is the basis. Second, there is an increasing

demand for non-destructive, timely, and repeatable phenotyping

such as senescence dynamics (Anderegg et al., 2020). Third,

novel, high-dimensional, and invisible phenotypes, such as the

leaf to panicle ratio (LPR) (Xiao et al., 2021a) and canopy
2 Plant Communications 3, 100344, November 14 2022 ª 2022 The Author(s).
occupation volume (COV) (Liu et al.,

2021a), are difficult to measure with

traditional methods.

Remote sensing technology is the acquisi-

tion of information without contact
(Navalgund et al., 2007). It has been widely used in geoscience

and engineering and sheds new light on plant phenotyping (Jin

et al., 2021b). Since the first aerial photo was taken from a hot-

air balloon in 1858, remote sensing technology has experienced

two stages from qualitative to quantitative analysis benefiting

from the development of sensors (e.g., RGB, hyperspectral, ther-

mal, light, and ranging detection/light detection and ranging

[LiDAR]), platforms (e.g., robot, drone, and satellite), and informa-

tion technologies (e.g., computer vision) (Horning, 2008). With the

development of platform techniques and their widespread

application to PP, the definition of remote sensing techniques

has taken on a more precise distinction in the modern context,

i.e., proximal and remote sensing (PRS) (Jin et al., 2021b; Li

et al., 2021; Pineda et al., 2021). The use of sensors close to

plants is defined as proximal sensing (PS) and includes

approaches such as computed tomography (CT) and magnetic

resonance imaging (MRI). By contrast, the use of sensors at a

distance from plants is defined as remote sensing (RS) and

includes airborne and space-borne imaging (Figure 1). The

quality of PRS data consists of its temporal, spatial, and

spectral resolutions, which determine its advantages for

quantitative plant phenotyping (Navalgund et al., 2007; Toth

and Jó�zków, 2016). The noncontact working mechanism makes

it a suitable tool for non-destructive and repeatable measure-

ments. Various temporal, spatial, and spectral resolutions have

boosted the acquisition of time-series, multi-scale, and multi-

dimensional phenotyping data.

Unprecedented progress of PRS in PP has been witnessed in the

last two decades. PRS has provided observations of plants from

the cell (Piovesan et al., 2021) to the population (Inostroza et al.,

2016), from above ground (Maesano et al., 2020) to underground

(Shi et al., 2013), and from indoor (controlled) environments to

field conditions on multiple spatial (Pallottino et al., 2019; Jin

et al., 2020d; Xie and Yang, 2020) and temporal scales (Din

et al., 2017; Chivasa et al., 2019; Weksler et al., 2020).
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Meanwhile, image analysis methods enable the transformation of

multiple spatio-temporal and spectral data into phenotypic

knowledge, including plant structural, physiological, and

performance-related traits (e.g., biomass and yield) (Feng et al.,

2008; Koppe et al., 2010; Dhondt et al., 2013; Din et al., 2017).

More importantly, multi-dimensional PRS data mining and inter-

pretation have brought about a renaissance for PP (Yang et al.,

2013; Li et al., 2014).

Combining PP and PRS can accelerate breeding and cultivation

management (Xiao et al., 2022). Breeders are concerned about

the stability of inheritance and the expression of genes in

the natural environment, which often takes a long time.

Over the past years, PRS technology has helped breeders

rapidly characterize the performance of genotypes in multiple

environments, enabling early seedling assessment (Yu et al.,

2013), key growth period monitoring (Song et al., 2021b), and

yield prediction (Zhuo et al., 2022) and thereby improving and

accelerating the trait selection process. In addition, the

existence of pleiotropism and multigenic effects contributes

substantial uncertainty to breeding (Jin et al., 2020d). Multiple

spatial and temporal analyses of PRS technology have

increased the interpretability of genomic 3 environment (G 3 E)

interactions and have established an effective feedback

mechanism between breeding and cultivation (Jung et al., 2021).

The increasing interdisciplinary applications of PRS in PP

have spawned some important review articles during the

last decade. These efforts have mainly concerned the applica-

tions of specific PRS sensors (e.g., laser scanner, Jin et al.,

2021b; optical imager, Li et al., 2014), platforms (e.g.,

unmanned aerial vehicle [UAV]; Feng et al., 2021), and

phenotypic methods (Jiang and Li, 2020) and have

emphasized how to link PP to breeding by plant scientists

(Araus and Cairns, 2014; Araus et al., 2018; Yang et al., 2020a;

Moreira et al., 2020). However, the PP community lacks a

systematic review from the PRS perspective, covering

phenotypic observation, data interpretation, and phenomics

analysis. Therefore, this paper aims to make the following

contributions: (1) reviewing the overall applications of PRS

to PP during the last two decades rather than focusing on

only one class of sensor or platform; (2) summarizing

the data acquisition, processing, modeling, and analysis

techniques that help link PRS to PP and multi-omics analysis;

and (3) highlighting interdisciplinary challenges and prospects

from PRS insight.
PROGRESS OF PRS IN PP

Overview of PRS

PRS is the noncontact acquisition of information on objects or

phenomena. The history of PRS can be traced back to the picture

of Paris taken from a hot-air balloon in 1858. After that, the

balloon platformwas replaced bymore advanced planes and sat-

ellites, enabling PRS to be used in military reconnaissance

(Hudson and Hudson, 1975), land surveying (Sheng-qing,

2002), topography mapping (Schuler et al., 1998), and so forth.

Meanwhile, sensors have undergone development from simple

RGB cameras to various passive and active sensors. Passive

PRS and active PRS methods were developed depending on
Plant Commun
the received electromagnetic radiation of the target illuminated

by sunlight or sensor-emitted light (Toth and Jó�zków, 2016).

Passive PRS sensors commonly include visible light cameras

(RGB), multi/hyperspectral imagers (MS/HS), chlorophyll fluores-

cence imagers, and thermal imagers. Active PRS sensors mainly

include LiDAR, laser-induced chlorophyll fluorescence (LIF), syn-

thetic aperture radar (SAR), and CT. Active and passive sensors

provide a wealth of data sources for phenotypic observations un-

der different working conditions, and they are inseparable from

the development of multiple platforms.

PRS platforms can be either stationary or mobile, indoor or out-

door, proximal or remote (Toth and Jó�zków, 2016; Guo et al.,

2020b) and include tripods, gantries, vehicles, drones,

airplanes, and satellites (Figure 1). These platforms have

undergone development from RS (e.g., satellites) to PS (e.g.,

drones) in PP. Satellite platforms usually have the advantage of

global accessibility. Although most satellite platforms have

a relatively low spatial-temporal resolution, some low-orbit

satellite platforms show promising sub-meter resolution (e.g.,

WorldView-4, GeoEye-1, and GF-2) and/or near-daily temporal

resolution (e.g., AVHRR/MODIS, WorldView-4, and SuperView-

1). Airborne platforms (e.g., helicopters) have the advantage of

mobilization flexibility, and they can mount various types of sen-

sors and respond quickly under proper conditions. The emer-

gence of drones has further improved the flexibility of low-

altitude observations and greatly reduced data costs. However,

the endurance and load capacity of drones is far inferior to that

of ground platforms such as fixed tripods, mobile gantries, and

ground vehicles. As the technology matures and costs decrease,

portable and affordable personal PS devices (e.g., smartphones

and handheld LiDAR) (Balenovi�c et al., 2021) are becoming

powerful tools for exploring plant phenotypes (Lane et al., 2010;

Fan et al., 2018).

The development and popularity of PRS sensors and platforms

have promoted the formation of highly automated plant phenom-

ics facilities (PPFs) for phenotype acquisition and data transmis-

sion in indoor and field environments (Pratap et al., 2015).

The indoor platform has the advantage of high stability and

can enable the mutual feedback adjustment of phenotypic

observation and environmental control. However, most indoor

PPFs have limited space and controllable environments, and

plant samples are therefore transported to the facilities, which

are described as ‘‘plant to sensor’’ facilities. Famous plant to

sensor facilities include CropDesign (BASF, Germany) (Sinclair,

2006), PHENOPSIS (INRAE, France) (Granier et al., 2006), the

PlantScreen system (NPEC, Holland) (https://plantphenotyping.

com/), and HRPF (HZAU, China) (Yang et al., 2014). By

contrast, most outdoor PPFs measure phenotypes under

natural environmental conditions where plants are fixed but

sensors are equipped on moveable facilities, which are

described as ‘‘sensor to plant’’ facilities. Representative sensor

to plant facilities include Field Scanalyzer (Rothamsted

Research, UK) (Virlet et al., 2017), Crop 3D (CAS, China) (Guo

et al., 2016), and NU-Spidercam (University of Nebraska, USA)

(Bai et al., 2019). These indoor and outdoor PPFs combine an

automatic control system and multi-sensors, enabling high-

throughput and high-precision observations of multi-scale (from

cell to population level), time-series (single time, diurnal, sea-

sonal, and inter-annual), andmulti-dimensional plant phenotypes
ications 3, 100344, November 14 2022 ª 2022 The Author(s). 3
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Figure 2. The global spatial distribution and temporal dynamics of the number of phenotypic applications using PRS during 2000–
2020.
(A–D) (A) The number of yearly publications by continent, (B) total number of publications by country, (C) yearly publications with different phenotypic

sensors, and (D) yearly publications with different phenotypic platforms.
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(Figure 1). These PRS-based observations further enable the ver-

satile applications of PRS in PP.

Overview of PRS applications in PP

To analyze the advances, challenges, and perspectives of PRS

in PP, we retrieved publications from the Web of Science data-

base (Clarivate Analytics, USA) between 2000 and 2020 using

the following keywords and criteria: (‘‘plant’’) AND ("remote

sensing" or "RGB" or "visible light" or "digital camera" or

"*spectral" or "lidar" or "light detection and ranging" or "laser

scanning" or "thermal" or "Chlorophyll Fluorescence" or "SIF"

or "CT" or "Computed Tomography" or "PET" or "Positron

Emission Tomography" or "NMR" or "Nuclear Magnetic Reso-

nance" or "MRI" or "Magnetic Resonance Imaging"). A total of

52 492 papers in English appeared after conference papers

were excluded. Subsequently, a large number of automatically

retrieved articles that did not match the review topic were

manually eliminated from the analysis based on their article ti-

tles, keywords, and abstracts. Finally, 2972 articles were

selected and classified into different categories in terms of

global spatial distribution and temporal dynamics patterns, spe-

cific PRS technologies, phenotypic research fields, working en-

vironments, species, traits, and so forth. Specific categorization
4 Plant Communications 3, 100344, November 14 2022 ª 2022 The
criteria and final classification results are provided in a

supplementary table that is available at https://github.com/

ShichaoJin/PRSinPP.

The global spatial distribution and temporal dynamics of numbers

of phenotypic applications using PRS show that (1) the total num-

ber of global PRS phenotyping applications has increased every

year, especially after 2014; (2) the major continents producing

publications over the past two decades have been America and

Europe. Asia developed slowly in the first decade but has devel-

oped rapidly in the last 10 years, even surpassing Europe and on

par with America (Figure 2A); (3) most countries in the Americas

but only a few countries in Africa are conducting PRS

phenotyping research. China, Germany, and Australia have

made major contributions in Asia, Europe, and Oceania,

respectively (Figure 2B).

To analyze the specific PRS technologies applied in phenotyping,

we analyzed temporal trends in phenotypic sensors and plat-

forms. RGB sensors appeared early and flourished owing to the

development of PS in the last 5 years (Figure 2C). Multi-/

hyperspectral sensors are the most popular sensors, exceeding

50% of the sensors used in almost all years. Some emerging
Author(s).
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Figure 3. The number of PRS in PP publications for multi-spatial and multi-temporal PP studies of different organ types in different
working environments.
(A–D) (A) Multi-spatial scales: from cell to global; (B) specific organ types; (C) working environments, including indoor, outdoor, and both; (D) multi-

temporal scales, including single, diurnal, seasonal, and inter-annual phenotyping.
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PS sensors have had fewer applications, but they show a growth

trend. For example, LiDAR is mainly used to measure structural

phenotypes, and CT is usually used to measure the fine internal

structures of plants (Lafond et al., 2015). Furthermore, the

simultaneous use of multiple sensors has gradually increased,

indicating an increasing demand for multiple phenotypes when

studying plant growth.

In terms of PRS platforms (Figure 2D), ground-based platforms

are the mainstream application choice, followed by space-borne

platforms and airborne platforms. Space-borne platforms have

grown steadily, whereas airborne platform applications have

increased more rapidly in the last 5 years, mainly owing to the

popularity of near-ground aircraft such as drones. Phenotyping

applications of multi-platform combinations have also emerged

in recent years, but their proportion is small.

The above PRS sensors and platforms have boosted multi-

spatial and multi-temporal PP studies of different organ types in

different working environments (Figure 3). Outdoor phenotyping

research far exceeds indoor phenotyping research, and there

are a few studies that span indoor and outdoor environments

(Figure 3C). In addition, phenotyping has been conducted at

multiple spatial scales, including the cell, organ, individual,

canopy, landscape, and global scales (Figure 3A). Canopy,

organ, and landscape are the top three scales, accounting for

nearly 90% of the surveyed publications. In terms of organ

phenotyping, these publications mainly focus on leaves and
Plant Commun
roots (Figure 3B). Meanwhile, analysis of multi-temporal studies

showed that the early application of PRS to PP consisted

mainly of one-off (single-time) observations and later changed

gradually to focus on growth cycle applications, including diurnal,

seasonal, and inter-annual phenotyping (Figure 3D). Among

different multi-temporal phenotyping applications, inter-annual

phenotyping was the most popular owing to the low requirement

for high-throughput phenotyping, whereas diurnal applications

were less common because of the challenges of high-

throughput, repeatable, and comparable phenotyping. On the

whole, there have been relatively few phenotypic studies across

multiple environments, organs, and spatiotemporal scales.

The multiple spatio-temporal applications of PRS in PP can be

further analyzed from the perspective of research fields

(Figure 4). The growing numbers of published papers show that

the main research fields are agriculture, forestry, horticulture,

and grasslands (Figure 4A). Because PRS has always been

most widely used in agriculture, we next analyzed specific

research species. The top 10 commonly studied agricultural

species are summarized in Figure 4B, which shows that cereal

crops, including wheat, maize, and rice, are the most

commonly studied species. Plant phenotypic traits in different

fields can be divided into three categories according to Dhondt

et al. (2013): physiological, structural, and performance-related;

physiological traits account for the largest proportion of studies

and performance-related traits the smallest (Figure 4C). In

addition, multiple phenotypic traits have only emerged in the
ications 3, 100344, November 14 2022 ª 2022 The Author(s). 5
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Figure 4. PRS applications in PP.
(A–D) PRS applications in PP in terms of (A) research field, (B) agricultural species, (C) trait class, and (D) interdisciplinary studies.
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last decade. The specific phenotypic traits in each category and

the technological readiness level (TRL) of applications using

different sensors are evaluated using the methods of Araus

et al. (2018) and Jin et al. (2021b) (Table 1). Although

phenotyping itself has achieved rapid growth, it has also

promoted interdisciplinary research on phenomics (P),

genomics (G), and the environment (E). In these interdisciplinary

studies, the P 3 E interaction has been most commonly

studied, whereas there have been relatively few studies of P 3

G and P 3 E 3 G interactions (Figure 4D).

This section summarizes progress in the application of PRS to PP

in terms of the technological and practical aspects of PRS. Pas-

sive sensors are themost frequently used sensor type (Figure 5A),

whereas active sensors (e.g., LiDAR) have gradually aroused the

interest of researchers because they have less reliance on the

environment. PS is becoming the dominant approach for plant

phenotyping (Figure 5B) owing to its high spatial, temporal, and

spectral resolution. The research targets (organs) are mainly

aboveground, but a considerable part of the work has been

focused on the underground or on a combination of across the

aboveground and underground phenotypes (Figure 5C). In
6 Plant Communications 3, 100344, November 14 2022 ª 2022 The
addition, although phenotypic research on abiotic/biotic stress,

interdisciplinary approaches, and deep learning are current

interests, they still represent only a small proportion of the

published literature (Figures 5D–5F). How to leverage PRS to

better address these research interests and contribute to multi-

omics studies is a question worth pursuing.

HOWTO LINK PRS TOG3 P3 E STUDIES

The development of PP is becoming increasingly important

for the promotion of multi-omics studies. Genomic and

phenomic association analysis methods have been successfully

used in crop improvement breeding, enabling researchers to

map chromosome regions that condition complex traits

(Carlson et al., 2019), screen drought-resistant germplasm (Wu

et al., 2021b), and predict crop yield or quality (Romero-Bravo

et al., 2019; Sun et al., 2019). Plant phenotypes are also

affected by the environment, showing different types of

phenotypic plasticity (Sultan, 2000). Stotz et al. (2021)

provided a good interpretation of the G 3 E interaction of

plant phenotyping by studying the differences in plant

phenotypic plasticity across biogeographic scales; they
Author(s).
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Traits PET CT RGB MS HS LIDAR LIF Thermal SAR MRI References

Global level structural LAI

          
Ganguly et al., 2012;

Xiao et al., 2017

canopy height

          
Hudak et al., 2002;

Simard et al., 2011;

Lucas et al., 2014; Tao

et al., 2016

canopy cover

          
Glenn et al., 2016;
Tang et al., 2019

physiological fAPAR

          
Li et al., 2017; Zhang

et al., 2018c; Dong et

al., 2020

Landscape level structural canopy height

          
Fieuzal and Baup

2016; Fagua et al.,

2019; Zhao and Qin
2020

LAI

          
Inoue and Sakaiya

2013; Inoue et al.,

2014; Yadav et al.,

2019

physiological canopy chlorophyll

          
Gevaert et al., 2015

Table 1. TRL of different phenotypic traits at different spatial scales using different sensors.
(Continued on next page)
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Traits PET CT RGB MS HS LIDAR LIF Thermal SAR MRI References

plant nitrogen

concentration           
Koppe et al., 2010

absorbed

photosynthetically

active radiation
          

Zhang et al., 2019d

stress-related traits

          
Wang et al., 2019a;

Merrick et al., 2019;

Stroppiana et al.,

2019; Shekhar et al.,
2020

Canopy level structural canopy gap/cover

          
Perry et al., 2012; Li et
al., 2019a

canopy height/width

          
Fieuzal and Baup

2016; French et al.,
2016; Guo et al., 2019;

Jimenez-Berni et al.,

2018; Jin et al., 2018;

Lopez-Granados et
al., 2019; Madec et al.,

2017; Maesano et al.,

2020; Qiu et al., 2019;

Su et al., 2019b; Sun
et al., 2017; ten Harkel

et al., 2020; Xie et al.,

2021b; Zhang and

Grift 2012

leaf/green/plant area

index           
Jiao et al., 2011;

Beriaux et al. 2013,
2015; Fontanelli et al.,

2013; Inoue and

Sakaiya 2013; Inoue

et al., 2014; Baghdadi
et al., 2015; Fieuzal

and Baup 2016; Liu et

al., 2017b; Su et al.,

2019b; Wang et al.,
2019d; Mandal et al.

2020a, 2020b, 2020c;

Zhang et al., 2020a;
Hussain et al., 2020;

Qi et al., 2020

Table 1. Continued (Continued on next page)
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Traits PET CT RGB MS HS LIDAR LIF Thermal SAR MRI References

crop emergence

          
Sankaran et al., 2015;
Li et al., 2019a

plant count (flower,

ear number, individual

number)/plant density
          

Wu et al., 2011; Jiang

et al., 2012; French et

al., 2016; Fernandez-

Gallego et al. 2018,
2019a, 2020; Lopez-

Granados et al., 2019;

Madec et al., 2019;
Blanquart et al., 2020;

Mandal et al., 2020d;

Fang et al., 2020; Lu

and Cao 2020;
Vergara-Diaz et al.,

2020

row spacing

          
Qiu et al., 2019

weed infestation

          
López-Granados

2011; Peña et al.
2013, 2015; López-

Granados et al., 2016;

Pérez-Ortiz et al.,

2016; Chen et al.,
2018

lodging

          
Yang et al., 2015;
Zhao et al., 2017;

Zhang et al., 2018a;

Hongzhong et al.,

2019; Ajadi et al.,
2020; Longfei et al.,

2020; Shu et al., 2020

canopy architecture

          
Yuan et al., 2019a
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Traits PET CT RGB MS HS LIDAR LIF Thermal SAR MRI References

physiological disease/infestation
detection           

Backoulou et al.,
2011; Mishra et al.,

2011; Rousseau et al.,

2013; Zhou et al.,
2015; Ortiz-Bustos et

al., 2016; Perez-

Bueno et al., 2016;

Sugiura et al., 2016;
Leucker et al., 2017;

Pineda et al., 2017; Su

et al., 2018; Thomas et

al., 2018; Yu et al.,
2018; Yuan et al.,

2019b; Jiang and Bai

2019; Polder et al.,

2019; Sancho-
Adamson et al., 2019;

Bendel et al., 2020;

Chivasa et al., 2020;
Husin et al., 2020;

Prabhakaran et al.,

2020

abiotic stress

detection (e.g., water

stress, nitrogen

stress, salt stress,
ozone stress, cold

stress, heat stress,

drought stress)

          
Smith et al., 2004;

Casadesus et al.,

2007; Delalieux et al.,

2007; Fumagalli et al.,
2009; Kim et al., 2011;

Zia et al., 2013; Virlet

et al. 2014a, 2014b;
Salvatori et al. 2014,

2016; Singh and

Sarkar 2014;

Jedmowski and
Bruggemann 2015;

Subramanian et al.,

2015; Zaman-Allah

2015; Gameiro et al.,
2016; Vescovo et al.,

2016; Zhou et al.,

2016; Savi et al., 2017;
Sytar et al., 2017;

Camino et al., 2018;

Moghimi et al., 2018;

Asaari et al., 2019; Su
et al., 2019b;

Buchaillot et al., 2019;
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Traits PET CT RGB MS HS LIDAR LIF Thermal SAR MRI References

Yang et al., 2019b;

Chen et al., 2019;
Wang et al., 2019c;

Zhang et al. 2019c,

2019d, 2020b; Jiao et

al., 2019; Poudyal et
al., 2019; Zibrat et al.,

2019; Cotrozzi et al.,

2020; Feng et al.,

2020; Helm et al.,
2020; Horgan et al.,

2020; Song et al.,

2020; Xian et al., 2020;
Secchi et al., 2021

water content

          
Bruning et al., 2019;

Rehman et al., 2020

nitrogen/phosphorus/

potassium/protein

content
          

Stroppiana et al.,

2009; Thoren and

Schmidhalter 2009; Li
et al. 2010, 2018a;

Eitel et al., 2011; Cao

et al., 2013; Xue et al.,

2014; Bruning et al.,
2019; Stavrakoudis et

al., 2019; Sun et al.,

2019; Jasim et al.,

2020; Jiang and Li
2020; Lee et al., 2020

chlorophyll content

          
Wu et al., 2008;
Tubuxin et al., 2015;

Zhu et al., 2020b

photosynthesis/light

use efficiency/
transpiration

          
Liu et al. 2013, 2019b;

Lu et al., 2018a; Fu et
al., 2019a; Du et al.,

2019; Keller et al.,

2019; Nichol et al.,

2019; Shan et al.,
2019; Chang et al.,

2020; Li et al., 2020

Table 1. Continued (Continued on next page)

P
la
n
t
C
o
m
m
u
n
ic
a
tio

n
s
3
,
1
0
0
3
4
4
,
N
o
v
e
m
b
e
r
1
4
2
0
2
2
ª

2
0
2
2
T
h
e
A
u
th
o
r(s

).
1
1

P
ro
x
im

a
l
a
n
d
re
m
o
te

s
e
n
s
in
g
in

p
la
n
t
p
h
e
n
o
m
ic
s

P
la
n
t
C
o
m
m
u
n
ic
a
tio

n
s



Traits PET CT RGB MS HS LIDAR LIF Thermal R MRI References

water/fertilizer use
efficiency           

Schmidt et al., 2011;
Cao et al., 2012; Lu et

al., 2018b

canopy temperature

          
Romero-Bravo et al.,

2019; Sagan et al.,
2019

fAPAR

          
Guillén-Climent et al.,

2013; Du et al., 2017b;

Zhou et al., 2017

Individual level structural 3D reconstruction

          
Jin et al., 2018

plant shape/size

          
Thapa et al., 2018;

Malambo et al., 2019

organ separation

          
Paulus et al., 2013; Jin

et al. 2019, 2020b

physiological nitrogen content

          
Bi et al. 2020a, 2021;
Liu et al., 2020a
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Traits PET CT RGB MS HS LIDAR LIF Thermal SAR MRI References

Organ level structural leaf angle/rolling/

orientation           
Li et al., 2018b; Thapa

et al., 2018; Su et al.,
2020

organ detection and

quantification           
Paquit et al., 2011;

Blunk et al., 2017;

Tracy et al., 2017; Wu

et al., 2021a

organ size

          
Metzner et al., 2014;
Mairhofer et al., 2016;

Pflugfelder et al.,

2017; Zhang et al.,

2018b; Maenhout et
al., 2019; Soltaninejad

et al., 2020

fruit/seed

identification           
Liu et al., 2014;

Shrestha et al., 2015;

Gutierrez et al., 2018;

Wendel et al., 2018

physiological water transfer

efficiency           
Koebernick et al.,

2015

leaf nitrogen content

          
Tian et al., 2011;

Yendrek et al., 2017;

Zheng et al., 2018; Liu
et al., 2020a

leaf wilting

          
Fumagalli et al., 2009

abiotic stress
(temperature stress)           

Zhou et al., 2018;
Shen et al., 2020a; Ma

et al., 2020b
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Traits PET CT RGB MS HS LIDAR LIF Thermal R MRI References

pigment

          
Gutierrez et al., 2019

respiration rate/

photoprotection           
Magney et al., 2014;

Coast et al., 2019

root water content

          
Bodner et al., 2017

radiation use

efficiency           
McAusland et al.,

2019; Lenk et al., 2020

Tissue/cell level structural porosity distribution

          
Nugraha et al., 2019

tissue structure/cell
structure/position           

Yamauchi et al., 2012;
Herremans et al.,

2015; Du et al., 2017a;

Zhang et al., 2021;
Yamauchi et al., 2012

deformation

recognition           
Wang et al., 2018

physiological stomatal

conductance           
Rischbeck et al.,

2017; Poudyal et al.,

2019; Vialet-
Chabrand and

Lawson 2019
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Traits PET CT RGB MS HS LIDAR LIF Thermal SAR MRI References

physiological
processes           

Converse et al. 2013,
2015; Partelová et al.,

2017

Multiple levels (i.e.,

involving traits from

more than one of the
levels above)

performance-

related

biomass estimation

          
Bankestad and Wik
2016; Castro et al.,

2020; Galan et al.,

2020; Ge et al., 2016;

Gnyp et al., 2014;
Jimenez-Berni et al.,

2018; Jin et al., 2020c;

Li et al., 2010; Ma et
al., 2020a; Maesano

et al., 2020;

Maimaitijiang et al.,

2019; Mandal et al.,
2020a; Perry et al.,

2012; ten Harkel et al.,

2020; Thoren and

Schmidhalter 2009;
Walter et al., 2019;

Wang et al., 2019b;

Wang et al., 2019d;

Xian et al., 2020; Yang
et al., 2019a; Yao et

al., 2018

yield prediction

          
Inman et al., 2007;

Dente et al., 2008;

Motomiya et al., 2012;

Rey et al., 2013; Bu et
al., 2016; Maki et al.,

2017; Zhuo et al.

2018, 2019;
Fernandez-Gallego et

al., 2019b; Poudyal et

al., 2019; Setiyono et

al., 2019; Halubok and
Yang 2020; Jasim et

al., 2020; Lenk et al.,

2020; Moghimi et al.,

2020; Peng et al.,
2020; Smith et al.,

2020; Vavlas et al.,

2020; Xian et al., 2020

Table 1. Continued (Continued on next page)

P
la
n
t
C
o
m
m
u
n
ic
a
tio

n
s
3
,
1
0
0
3
4
4
,
N
o
v
e
m
b
e
r
1
4
2
0
2
2
ª

2
0
2
2
T
h
e
A
u
th
o
r(s

).
1
5

P
ro
x
im

a
l
a
n
d
re
m
o
te

s
e
n
s
in
g
in

p
la
n
t
p
h
e
n
o
m
ic
s

P
la
n
t
C
o
m
m
u
n
ic
a
tio

n
s



T
ra
it
s

P
E
T

C
T

R
G
B

M
S

H
S

L
ID

A
R

L
IF

T
h
e
rm

a
l

S
A
R

M
R
I

R
e
fe
re
n
c
e
s

g
ra
in

q
u
a
lit
y

 
 

 
 

 
 

 
 

 
 

M
a
e
t
a
l.,

2
0
1
5
;
B
u
e
t

a
l.,

2
0
1
6
;
S
m
it
h
e
t
a
l.,

2
0
2
0

g
ro
ss

p
ri
m
a
ry

p
ro
d
u
c
ti
o
n

 
 

 
 

 
 

 
 

 
 

W
a
n
g
e
t
a
l.
2
0
1
6
,

2
0
2
0
c
;
L
iu

e
t
a
l.

2
0
1
7
a
,
2
0
2
0
b
;
W
e
ie

t
a
l.,

2
0
1
9
;
Z
h
a
n
g
e
t
a
l.,

2
0
2
0
c

T
a
b
le

1
.
C
o
n
ti
n
u
e
d

N
o
te
:
th
e
T
R
L
m
e
th
o
d
w
a
s
d
e
s
c
ri
b
e
d
b
y
A
ra
u
s
e
t
a
l.
(2
0
1
8
)
a
n
d
J
in

e
t
a
l.
(2
0
2
1
b
).

fA
P
A
R
,
fr
a
c
ti
o
n
o
f
a
b
s
o
rb
e
d
p
h
o
to
s
y
n
th
e
ti
c
a
lly

a
c
ti
v
e
ra
d
ia
ti
o
n
.

L
e
g
e
n
d
:

 
H
ig
h
T
R
L

 
M
e
d
iu
m

T
R
L

 
L
o
w

T
R
L

 
N
o
t
a
p
p
lic
a
b
le
.

16 Plant Communications 3, 100344, November 14 2022 ª 2022 The

Plant Communications Proximal and remote sensing in plant phenomics
emphasized the need to consider environmental factors in order

to improve the genetic potential of future plants to adapt to

climate change.

However, owing to the interactions between genes and the envi-

ronment (Dowell et al., 2010), plant phenotypes are

comprehensive and spatio-temporal, meaning that the same

genotype may correspond to different traits, and different traits

may have the same genotype. Similarly, it is important to note

that the same physical matter/material may have different

spectra and that similar spectra may correspond to different

physical matter/materials, as has been studied for several

decades in PRS. Methods that have been proposed for

determining the essential relationship between PRS signals and

intrinsic properties of matter include linear mixing models such

as the geometric method (Drumetz et al., 2020), nonnegative

matrix factorization (Fu et al., 2019b), Bayesian method (Shuai

et al., 2019), and sparse unmixing (Sun et al., 2020); non-linear

mixing models such as bilinear mixing models (Luo et al., 2019);

and multilinear mixing models (Li et al., 2019b). For example,

Zhou et al. (2019) used a spectral unmixing analysis method,

vertex component analysis (VCA), to identify and visualize

pathogen infection from hyperspectral images. The results

showed that abundance maps calculated by VCA could

perform high-throughput screening of plant disease infection at

the early stages. Yuan et al. (2021) distinguished and amplified

the spectral differences between rice and background

by integrating the abundance information of the mixed

components of rice fields calculated by the bilinear mixing

model (BMM) with the spectral index, which also improved the

accuracy of the rice yield estimation model. These PRS

theories and methods may provide a way to analyze the

complexity of phenotypes and multi-omics.
PRS for plant phenotyping

Data acquisition

PRS enablesmulti-spatial, multi-temporal, andmultispectral data

acquisition in a non-invasive and high-throughput manner (Song

et al., 2021a; Jangra et al., 2021) (Figure 6). Multispectral data can

be collected using various sensors. Graph, shape, and spectral

information can be ideally captured by high-resolution RGB cam-

eras, three-dimensional (3D) sensors (e.g., LiDAR), and hyper-

spectral imagers, respectively. RGB cameras provide fast access

to two-dimensional (2D) and plant canopy morphology informa-

tion (Poire et al., 2014; Yang and Han, 2020). In addition, time-

of-flight sensors, such as TOF cameras and LiDAR, can produce

finer 3D structural phenotypes of plants (Paulus, 2019; Li et al.,

2022). In addition to these morphological and structural traits,

physiological traits involved in plant biochemical processes can

be obtained using multispectral, hyperspectral (Guo et al.,

2017), chlorophyll fluorescence (Jiang and Bai, 2019), and

thermal imaging technologies (Rajsnerova and Klem, 2012).

These physiological traits can quickly and effectively indicate

plant growth and developmental status, enabling early

assessment of plant vigor (Candiago et al., 2015), early

detection of plant pathogens (Rumpf et al., 2010), estimation

of total gross primary production (Zhang et al., 2020c),

and characterization of changes in stomatal conductance

(Vialet-Chabrand and Lawson, 2019). In addition, proximal

tomography techniques, such as CT, PET, MRI, and NMR, are
Author(s).



Figure 5. Current PRS technology applications.
(A–F) A summary of current PRS technology applications in PP from different perspectives, including (A) passive versus active sensing, (B) proximal

versus remote sensing, (C) aboveground versus underground traits, (D) stress versus non-stress, (E) phenomics versus multi-omics, and (F) deep

learning versus non-deep learning.
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recommended for acquiring traits that are not visible to the

human eye, such as photoassimilate distribution (Wang et al.,

2014), root system structure (Xu et al., 2018), metabolic

processes (Phetcharaburanin et al., 2020), plant internal

damage (Lyons et al., 2020), and cellular water status (Musse

et al., 2017).

Multi-spatial data are usually acquired by integrating multiple

platforms according to the requirements of a working environ-

ment and data quality (Ravi et al., 2019). Ground-based platforms

are the most common platforms for data acquisition and can be

further divided into indoor and outdoor platforms depending on

the working environment. Indoor platforms are usually under

controlled conditions and are oriented toward phenotyping at

the level of the individual plant (Bi et al., 2021), organ (Sarkar

et al., 2021), or cell (Sun et al., 2021), which is particularly

advantageous for acquiring comparable phenotypic data.

Ground-based outdoor platforms such as gantries, handheld or

backpack instruments, and mobile vehicles focus on plant- to

canopy-scale phenotyping. In addition, airborne and satellite

platforms can be used to obtain phenotypes of plant populations

from field to global scales (higher spatial throughput), facilitating

the study of environmental and genetic plasticity in the expres-

sion of plants in different ecological contexts.

Multi-temporal data can be divided into single-time, diurnal, sea-

sonal, and inter-annual frequencies. In the early years, PRS

phenotype monitoring was mostly a single exploratory exercise

because of the limitations of phenotyping platforms and algo-

rithm performance (Weiss et al., 2020). The advent of satellite

imagery products has enabled inter-annual observations of

phenology traits on a global scale (Setiyono et al., 2018). The

rapid development of airplane and drone technology in recent
Plant Commun
years has greatly increased the temporal resolution of

phenotyping (Holman et al., 2016), allowing for the acquisition

of seasonal and even diurnal phenotype data. Thanks to the

development of active sensors (e.g. LiDAR; Guo et al.,

2018b) and high-throughput phenotyping facilities (e.g., gantries;

Guo et al., 2016), diurnal plant phenotyping (e.g., circadian

rhythms; Chaudhury et al., 2019; Jin et al., 2021a) can

be fully achieved, enabling higher temporal analysis of plant

growth.

Data processing

High-throughput and high-precision trait extraction from PRS

data is an essential step from sensors to biological knowledge

(Tardieu et al., 2017). Data preprocessing is important for

ensuring accuracy in phenotyping, such as radiation calibration

and geometric alignment. For example, the raw spectral signal

(e.g., one-dimensional [1D] curve or 2D image) records digital

number values, which need to be converted to physical quantities

like radiance and reflectance (Zhu et al., 2020a). In addition,

distortion of information in the spatial domain can occur during

PRS image acquisition. Systematic errors are predictable and

are usually calibrated at the sensor end (Berra and Peppa,

2020). Random observation errors are usually corrected by

geometrically calibrating the PRS image to a known ground

coordinate system (such as topographic maps and ground

control points) (Han et al., 2020; Liu et al., 2021b). After

preprocessing, the data processing pipeline is usually sensor

specific. 1D spectral curves, such as the hyperspectral curve,

usually require dimension reduction (Luo et al., 2020), wavelet

transformation (Paul and Chaki, 2021), and spectral index

calculation (Fu et al., 2020). 2D image–based phenotyping (e.g.,

with RGB images or multi-/hyperspectral images) usually

involves image registration (Tondewad and Dale, 2020),

classification (Cheng et al., 2020), segmentation (Hossain and
ications 3, 100344, November 14 2022 ª 2022 The Author(s). 17
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Figure 6. The path of linking PRS to multi-
omics by phenotyping and phenomics prac-
tices.
In multi-omics analysis, the P2G in black repre-

sents the pathway (black arrow) from phenomics

to genomics, and the G2P in red represents

the pathway (red arrow) from genomics to phe-

nomics.

Plant Communications Proximal and remote sensing in plant phenomics
Chen, 2019), and trait extraction (Jiang et al., 2020). 3D data, such

as LiDAR or image-reconstructed point clouds, typically undergo

a processing pipeline of registration (Cheng et al., 2018),

denoising (Hu et al., 2021), sampling (Bergman et al., 2020),

filtering (Jin et al., 2020a), normalization (Kwan and Yan, 2020),

classification/segmentation (Mao and Hou, 2019), and trait

extraction (Jin et al., 2021b). These phenotyping methods

enable the extraction of structural, physiological, and

performance-related traits.

Recently, integrated analysis platforms have been developed to

process phenotypic datawith improved throughput and efficiency.

Image Harvest is a high-throughput image analysis framework

(Knecht et al., 2016) that significantly reduces the phenotyping

costs required by plant biologists. MISIRoot, an in situ and non-

destructive root phenotyping robot, was developed to detect the

health of plant roots (Song et al., 2021c). In light of the large

volume of phenotypic data, some open-source and cross-

platform frameworks have been proposed for flexible and effective

phenotyping. PhenoImage is a typical open-source image pro-

cessing platform that provides simple access to high-

throughput/efficient phenotyping for non-computer professionals

(Zhu et al., 2021). These high-throughput phenotyping systems

with integrated data acquisition and processing have become
18 Plant Communications 3, 100344, November 14 2022 ª 2022 The Author(s).
ideal options for breeders (Wu et al.,

2020) because they provide automated and

flexible procedures for high-throughput

image processing algorithms (Zhang et al.,

2019b), paving the way for PP studies with

the help of data modeling.

PRS for PP

Data modeling is important for exploring

phenotypic knowledge with biological sig-

nificance from multi-dimensional pheno-

types. Basic statistical models mainly suf-

fice for simple preliminary analyses. By

contrast, machine-learning methods are

superior for high-dimensional and non-

linear modeling of phenotypic tasks

such as yield prediction (Ashapure et al.,

2020). However, machine-learning-based

methods usually require handcrafted

features, and their performance has not

been significantly improved under the

accumulation of big data (Guo et al.,

2020a). Deep learning, a new branch of

data-driven machine learning, can handle

more complex phenotypic tasks by per-

forming automatic feature extraction from
massive datasets, creating a new paradigm shift in phenomics

analysis (Jiang and Li, 2020; Nabwire et al., 2021). For

example, wheat ears can be identified and counted from

thousands of RGB images of the wheat canopy (Misra et al.,

2020). However, deep-learning-based methods usually have

higher requirements for data volume and quality.

In addition to empirical and data-driven methods whose general-

izability and interpretability may be questioned, mechanical

models based on physical and mathematical quantities are of

great interest because of their explainable and generalizable abil-

ity (Berger et al., 2018a). There have been many studies of

phenotypic radiative transfer models (RTMs) as a reliable

method for characterizing crop canopy differences, and one of

the most popular physical models is PROSAIL (Su et al.,

2019a), which has made significant progress in an inversion of

leaf area index (LAI) and canopy chlorophyll content (CCC).

A recent study demonstrated the potential of the PROSAIL model

for studying crop growth traits based on UAV RS (Wan et al.,

2021). Crop growth models (CGMs) such as WOFOST

(CWFS&WUR, the Netherlands) (Van Diepen et al., 1989),

DSSAT (University of Florida, USA) (Jones et al., 2003),

Agricultural Production System Simulator (APSIM) (CSIRO,

Australia) (Keating et al., 2003), STICS (INRA, France) (Brisson

mailto:Image of Figure 6|tif
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et al., 2003), and CropGrow (NJAU, China) (Zhu et al.,

2020c) have also received widespread attention. By integrating

the interactions among crop genetic potential, environmental

effects, and cultivation techniques, crop growth models can

simulate the growth and development of crops under different

conditions, effectively predicting plant responses to stress

(Tang et al., 2009), simulating the effects of climate extremes

on crop yield (Pohanková et al., 2022), predicting the

performance of varieties in target environments (Lamsal et al.,

2017), and explaining how G 3 E interactions affect crop

productivity (Messina et al., 2018). Therefore, CGMs may

provide decision support for precision agriculture, variety

selection, and management optimization (Kherif et al., 2022).
PP for multi-omics

Accurate and rapid analysis of phenomics data can not only help

expand our understanding of the dynamic developmental

processes of plants but also provide a novel approach to interdis-

ciplinary dialogue among multi-omics, including genomic, epige-

nomic, transcriptomic, proteomic, metabolomic, and microbio-

mic studies, which shows significant potential value in

integrating multi-dimensional regulatory networks from plant

genes to phenotypes (Watt et al., 2020).

Multi-omics analysis pipelines can generally be grouped into two

types: phenomics to omics (e.g., P2G, from phenomics to geno-

mics) and omics to phenomics (e.g., G2P, genomics to phenom-

ics) (Figure 6). Combining phenomics with other omics and using

association analysis for different times and environments,

quantitative trait loci (QTLs) can be located and candidate

genes or networks discovered (Furbank, 2009). Optimal traits

(ideotypes) can then be designed by genome editing.

PRS-based phenomics has been used to accelerate multi-omics

studies for identifying new genetic loci, screening high-quality va-

rieties, and accelerating breeding. In terms of rapid genetic loci

identification, non-destructive, dynamic, and high-throughput

phenotyping provides high-quality phenomics data for genome-

wide association studies (GWASs), leading to rapid identification

of the genetic architecture of important agronomic traits (Guo

et al., 2018c). For example, Wu et al. (2019a) used a high-

throughput micro-CT-RGB imaging system to obtain 739 traits

from 234 rice accessions at nine time points. A total of 402 signif-

icantly associated loci were identified, and two of them were

associated with yield and vigor, thus contributing to the selection

of high-yielding varieties. Zhang et al. (2017) quantified 106maize

phenotypic traits using an automated high-throughput phenotyp-

ing platform and identified 988 QTLs, including three hotspots.

They revealed the dynamic genetic structure of maize growth

and provided a new strategy for selecting superior maize vari-

eties. In terms of high-quality genetic selection, the high-

throughput phenotyping platform has proven its feasibility. Using

phenomics information on plant height, leaf shape, color, and

flowering time, 18 stable genetic mutants were successfully

screened from a library of several thousand tobacco mutants

(Wang et al., 2017). Dynamic high-throughput phenotyping data

were used for genomic selection to assess optimal wheat vari-

eties under drought and high-temperature environments, demon-

strating that the combination of genetic information and phenom-

ics data can help breeders identify and select quality wheat lines
Plant Commun
more effectively (Crain et al., 2018). In addition, high-throughput

phenotyping sensors have provided important data support for

accelerating breeding. The target selection cycle of corn oil con-

tent can be reduced from 100 generations to 18 generations by

combining MRI and near-infrared sensors (Song et al., 1999;

Dudley and Lambert, 2004; Song and Chen, 2004). In all, PP

has played a crucial role in indoor germplasm screening and

field performance evaluation of crop varieties.

In summary, PRS paves the way for multi-omics studies

by providing phenotyping methodology and phenomics knowl-

edge, as shown in Figure 6. By acquiring multi-spatial, multi-tem-

poral, and multispectral data, structural, physiological, and

performance-related traits can be extracted with data processing

and modeling methods. Empirical, data-driven, and mechanical

methods can integrate multi-dimensional phenotypes and trans-

form data into phenomics knowledge. As a bridge for multi-omics

research, PRS-based PP provides unprecedented opportunities,

although there are still many challenges.
CHALLENGES AND FUTURE
PERSPECTIVES

Strengthening the spatial and temporal consistency of
PRS data

The plant phenotype involves comprehensive traits (e.g.,

biomass) that also show spatio-temporal changes with plant

growth and development owing to the co-regulation of genomics

and the environment (Dowell et al., 2010). PRS enables high-

throughput, high-precision, and multi-dimensional phenotyping,

benefiting from various available and affordable sensors and plat-

forms. Some considerations are recommended to improve

phenotypic data quality. First, choose an appropriate spectral/

spatial/temporal resolution based on the phenotypic targets.

Second, standardize data collection processes to ensure compa-

rability and improve processing efficiency by following standards

published by international organizations (Liping, 2003; Kresse,

2010). More importantly, because of the increasing need for

repeatable phenotyping, data sharing, and interdisciplinary

collaboration, a more serious challenge for PRS-based pheno-

typing is to maintain the spatio-temporal consistency of multi-

source data.

Spatio-temporal consistency is the key to ensuring the compara-

bility of phenotypes, which is more important for PS applications.

Unlike RS, which observes the earth in similar ways using unified

data acquisition, transfer, and processing protocols, PS usually

has comparability problems between different sensors due to

their different working settings and spatio-temporal resolutions

(Aasen et al., 2018). Therefore, it is necessary but challenging

to improve the spatio-temporal consistency of PS-based pheno-

typing. For data acquisition, a space and ground integrated

network with wireless sensor networks (WSNs) is operated to co-

ordinate plant traits from satellites and ground-based systems

(Huang et al., 2018). Another promising approach is to develop

novel sensors that can fuse data at the signal level. Some

efforts have beenmade to develop hyperspectral LiDAR and fluo-

rescence LiDAR sensors using techniques like RGB color-based

restoration (Wang et al., 2020a), geometric invariability-based

calibration (Zhang et al., 2019a), and multispectral waveform
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decomposition (Song et al., 2019). These have initially achieved

the simultaneous acquisition of geometric and radiation

information for plant structural and biochemical traits (Du et al.,

2016; Bi et al., 2020b).

At the feature and/or decision levels, fusing multi-source data is

also beneficial for strengthening spatiotemporal consistency

and fully utilizing the complementary advantages of multiple sen-

sors and platforms. Traditional multi-source feature fusion ap-

proaches are usually implemented with simple linear regression

by assigning weights to different extracted features (Rischbeck

et al., 2016; Sobejano-Paz et al., 2020). With the increasing

volume, heterogeneity, and non-linear characteristics of PRS

data, especially hyperspectral imagery and LiDAR data,

advanced machine-learning algorithms (e.g., domain adaptation

and transfer learning) have been developed to provide fusion so-

lutions (Ghamisi et al., 2019). Deep learning is a fast-growing field

in PRS and has been used for multi-source data fusion. For

example, a classification method based on an interleaving

perception convolutional neural network (IP-CNN) was devel-

oped to fuse spectral and spatial features (Zhang et al., 2022).

Similarly, these statistical, machine-learning, and deep-learning

methods have also been used to fusemulti-source data at the de-

cision level (Ouhami et al., 2021). For example, the nitrogen

nutrition status of multiple organs in almond trees was

successfully assessed by integrating spectral reflectances of

leaf and root tissues based on the weighted partial least

squares (Paz-Kagan et al., 2020). A micro-phenotypic analysis

of micronutrient stress was achieved by combining fluorescence

kinetics with cell-related traits (e.g., stomatal conductance) in

leaves (Mijovilovich et al., 2020). Although integrating multi-

source phenotypic traits can deepen our understanding of plant

behavior under multiple conditions, the automatic alignment of

heterogeneous PRS data and auxiliary data (e.g., geolocated

texts and images) is still challenging.

In addition, data transmission, processing, and storage should

include a complete record of metadata, and standardized

methods should be adopted to further ensure spatio-temporal

data consistency (Jang et al., 2020; Guo et al., 2021). Detailed

documentation may include metadata names, acquisition

steps (e.g., sensor types and configurations), and experimental

conditions (such as experimental design, environmental

conditions, time, and geographic location). Metadata also

include standard processing methods and unified data formats,

which are particularly significant for the integration of multi-

source phenomics data and other omics data (Coppens et al.,

2017). Metadata will help to build a PP database based on

plant ontology. For example, the GnpIS database contains data

from indoor and outdoor experiments, from experimental design

to data collection, and follows the findable, accessible, interoper-

able, and reusable (FAIR) principles (Pommier et al., 2019),

enabling data to be shared with researchers in different fields

over time.

Finally, data sharing is an important step for strengthening inter-

disciplinary studies and promotes the integration of data sets

from multiple sources, creating an unprecedented amount of in-

formation that can be reused to generate novel knowledge

(Roitsch et al., 2019). For example, an open plant breeding

network database, ImageBreed, was designed for image-based
20 Plant Communications 3, 100344, November 14 2022 ª 2022 The
phenotyping queries against genotype, phenotype, and experi-

mental design information to train machine-learning models and

support breeding decisions (Morales et al., 2020). In particular,

Harfouche et al. (2019) considered the sharing of data between

individual researchers and breeders to be one of the key

challenges for artificial intelligence (AI) breeding in the next

decade. They emphasized that data sharing may contribute to

deeper insights into data and improve the robustness of

breeding programs. Several shared databases have been

constructed, such as the GnpIS database (Pommier et al.,

2019) described above.
Exploring novel phenotypic traits

Plant phenotypic traits are the ‘‘spokespersons’’ of PP and multi-

omics communication, yet many phenotypic traits are still unex-

plored or unnoticed. PRSmay expand the frontier of plant pheno-

typing and enrich plant science studies.

PRSmay help to discover traditionally unobservable phenotypes.

The root system is a key organ for keeping plants vigorous and

vibrant (Watt et al., 2020), but its phenotyping is easily

overlooked owing to limited accessibility and the lack of

efficient tools for trait extraction. There are challenges involved

in underground phenotyping. As a commonly used non-invasive

geophysical technique, ground-penetrating radar has been suc-

cessfully used to characterize various root system traits. Liu

et al. (2022) proposed an automated framework for processing

ground-penetrating radar data that provides new opportunities

for determining root water content under field conditions and

increasing our understanding of plant root system interactions

with the environment (soil and water). Research interest in root

phenology has increased the application of other 3D

visualization techniques such as CT and MRI, and the

development of these techniques and new methods has, in

turn, increased the potential for understanding complex root

systems and their environmental interactions (Topp et al., 2013;

Maenhout et al., 2019; Falk et al., 2020). The leaf stoma is

another challenging microscopic phenotype that can be

observed using advanced PRS technology. Xie et al. (2021a)

introduced a high-throughput epidermal cell phenotype analysis

pipeline based on confocal microscopy that was combined with

QTL techniques to identify the heritability of epidermal traits in

field maize, providing a physiological and genetic basis for further

studies on stomatal development and conductance.

PRS enables the proposition of novel biologically meaningful

traits. Using RGB cameras and deep learning, Yang et al.

(2020b) proposedLPR as a novel phenotypic trait indicative of

source-sink relationships, revealing unique canopy light intercep-

tion patterns of ideal-plant-architecture varieties from a solar

perspective. Liu et al. (2021a) used a LiDAR camera to develop

a new algorithm to segment maize stems and leaves and

introduced COV, a new phenotyping trait that characterizes the

photosynthetic capacity of plant canopies. The fusion of multi-

source PRS data also helps us to understand plant phenotyping

traits at a finer scale in multiple dimensions. Shen et al. (2020b)

resolved the pattern of biochemical pigmentation with age and

species vertical variation in different tree species based on

fused hyperspectral and LiDAR data, providing an important po-

tential indicator for quantifying the terrestrial carbon cycle.
Author(s).
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PRS boosts time-series phenotyping. Monitoring and tracking

plant growth dynamics such as growth duration (Park et al.,

2016), flowering rate (Zhang et al., 2019e), filling habit, and

senescence dynamics (Han et al., 2018) is a long-term interest

of biologists. As early as the eighteenth century, astronomer

Jean Jacques discovered that leaves of the mimosa plant exhibit

a normal daily rhythm independent of changes in daylight, sug-

gesting a regular adaptation of the plant to its environment,

now known as the circadian rhythm (McClung, 2006). Plant

rhythms are important for the study of plant responses to

changing environments (Webb, 2003). However, time-series ob-

servations of plant phenotyping lag far behind the study of growth

rhythms in plant physiology (e.g., the circadian clock). LiDAR, as

an active sensing technology, is less affected by environmental

light conditions and has been successfully used to explore the

seasonal and circadian rhythms of plant growth at the individual

and organ levels (Puttonen et al. 2016, 2019; Herrero-Huerta

et al., 2018; Jin et al., 2021a). However, in situ measurements

occur only at a specific time and place, and the resulting

conclusions may not be universal. Recently launched and

forthcoming earth observation satellites (e.g., OCO-3) offer a

possible solution. These satellites have diurnal sampling capabil-

ities that can increase the exploration of diurnal patterns of car-

bon and water uptake by different ecosystems and plants at

different life stages (Xiao et al., 2021b). These time-series pheno-

types derived from PS and RS may help to find new traits/genes

(Das Choudhury et al., 2018) and large-scale phenotypic plas-

ticity (Stotz et al., 2021) in response to environmental change,

respectively.

PRS may also be beneficial for multi-scale phenotyping.

Combining RS techniques to capture phenotypic variation that

connects molecular biology to earth-system science would also

be a major research interest (Pallas et al., 2018; Porcar-Castell

et al., 2021). Meanwhile, large-scale phenotypic analysis could

help us to understand within-species variation in plants and thus

reveal whether local provenances have sufficient genetic variation

in functional traits to copewith environmental change (Camarretta

et al., 2020).Mizuno et al. (2020) described the tolerance of inbred

quinoa lines to salt stress under three different landscape

conditions and demonstrated the genotype-phenotype relation-

ships for salt tolerance among quinoa lines, providing a useful ba-

sis for molecular elucidation and genetic improvement of quinoa.

More studieshaveexploreddifferent genetic gains analyzedat the

landscape scale and individual scales (Dungey et al., 2018; Tauro

et al., 2022). It is foreseeable that combining PRS techniques will

be beneficial for unraveling more universal genetic mechanisms

across different scales.

However, phenotyping discrepancies among scales should be

considered (Wu et al., 2019b) because PRS signals are

influenced by different targets. For example, the leaf-level spec-

trum is mainly related to leaf thickness, structure, pigment,

and water content, whereas the canopy-level spectrum is influ-

enced by canopy structure (e.g., LAI and leaf inclination distri-

bution) (Berger et al., 2018b). In addition, topographic and

climatic factors need to be considered at landscape and even

higher levels (Zarnetske et al., 2019). Solutions for multi-scale

transformation include (1) physical models, such as scaling

from leaf to canopy level based on the PROSPECT and

SAIL model (Li et al., 2018c); (2) pixel-based methods, such
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effect of the LAI estimated from heterogeneous pixels in

coarse-resolution images; and (3) object-based methods, such

as simulation zone partitions for separating and clustering

large regions into smaller zones with similar crop growth traits

and environments (Guo et al., 2018a). Despite these existing

multi-scale phenotyping and modeling solutions, more efforts

are needed to understand the interactions of phenotypes

among different scales that may contribute to multi-omics

analysis.
Facilitating multi-omics communication

In the coming years, an important challenge in phenomics will be

to identify the genetic and environmental determinants of pheno-

types. Multi-omics analysis shows promise for resolving the spa-

tio-temporal regulatory networks of important agronomic traits

(Yang et al., 2020a).

Discovering genes according to phenotypic variation has

enabled tremendous advances, but high-throughput gene dis-

covery still has a long way to go with PRS-derived phenomics

(P2G) (Furbank et al., 2019). "Genetic gain" is a fundamental

concept in quantitative genetics and breeding and refers to

the incremental performance per unit of time achieved

through artificial selection (Araus et al., 2018). The integration

of different levels of phenotyping and modern breeding

techniques, such as marker-assisted selection (MAS), QTLs,

and GWAS, can help maximize genetic gain and further shorten

breeding cycles (Xiao et al., 2022). At the population level, Sun

et al. (2019) investigated the possibility of using hyperspectral

traits (i.e., Normalized Difference Spectral Index) for genetic

studies. At the organ level, Nehe et al. (2021) explored genetic

variation based on a combination of RGB images and KASP

(Kompetitive Allele Specific PCR) markers for marker-assisted

selection of drought-tolerant wheat varieties. At the cell/tissue

level, Zhang et al. (2021) revealed natural genetic variation and

dissected the genetic structure of vascular bundles using

GWAS of 48 micro-phenotypic traits based on CT scans. Time-

series phenotypes for genetic analysis have also increased our

understanding of the genetic basis of dynamic plant phenotypes.

Campbell et al. (2019) discovered a locus associated with rice

shoot growth trajectories using random regression methods

based on continuous visible light images, providing a viable

solution for revealing persistent and time-specific QTLs. There-

fore, a collaboration between high-throughput PP and functional

genomics has enhanced our ability to identify new genetic vari-

ants (Grzybowski et al., 2021), thereby accelerating precision

breeding and cultivation and bridging the research gap

between genomics and phenomics (Araus and Kefauver, 2018;

Singh et al., 2019).

Predicting phenotypes according to genetic variation is another di-

rection of the genomics and phenomics combination that

is important for guiding gene editing to achieve smart

breeding (G2P) (Yang et al., 2014; Ma et al., 2018). With

the advent of the breeding 4.0 era, in which phenomics,

genomics, bioinformatics, and biotechnology are involved in the

conventional breeding pipeline, researchers have identified

diverse molecular mechanisms of phenotype formation controlled

by the expression of deoxyribonucleic acid (DNA) (Wang et al.,
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2020b). Therefore, correlating molecular phenotypes with

phenotypes at the organism-wide scale can further reveal genetic

loci associated with plant phenotypes, enabling the

establishment of a complete information flow model from DNA to

phenotypic traits (Salon et al., 2017). Furthermore, researchers

can use the information flow model to explain the causal

relationship of genetic variants to phenotypic variation, remove

deleterious alleles, and introduce beneficial alleles, significantly

accelerating the process of crop improvement (Rodriguez-Leal

et al., 2017; Wang et al., 2020b).

Phenotype differences due to various gene expressions in het-

erogeneous environments have recently been studied

(Friedman et al., 2019). However, current studies do not fully

consider multiple environmental factors and environmental

dynamics. The surrounding environment (e.g., soil, moisture,

light) and plant internal environment (e.g., pH) are specific and

different for each genotype or variety (Xu, 2016). An integrated

understanding of environmental dynamics and accurate

environmental factor measurements are also extremely

important for breeding resilient varieties because of G 3 E

interactions (Langstroff et al., 2022). CGMs provide a

quantitative framework for linking the effects of genes or alleles

to traits. The motivation and potential benefits of CGMs as a

G2P trait linkage function for applying quantitative genetic

mechanisms to predict expected traits were explored in a

recent review (Cooper et al., 2020). When applied to practical

production, however, the model achieved only small

improvements in accuracy, probably caused by the difficulty of

estimating parameters for CGMs (Toda et al., 2020). PRS-

based high-throughput phenotyping technologies offer opportu-

nities for parameter improvement of CGMs. Combining PRS and

CGMs for phenomics-genomics research is an interesting

endeavor (Kasampalis et al., 2018). For example, Yang et al.

(2021) integrated RGB images to parameterize the APSIM for

the development of varieties with performance in the target

environment. Furthermore, developing virtual CGMs to predict

crop growth states based on G 3 E data in real time and thus

regulate real plant growth is promising (Liu et al., 2019a).

Although multi-source PRS data provide the above-mentioned

opportunities for multi-omics analysis, they also introduce new

data processing challenges due to massive data accumulation.

Therefore, deep-learning methods have gained wide popularity

in recent years (Xiao et al., 2022). Image-based deep-learning

methods have been well investigated for phenotypic analyses

such as wheat head counting (Khaki et al., 2022) and stress

detection (Wang et al., 2022). More deep-learning-based

phenotypic applications have been reviewed (Singh et al., 2018;

Guo et al., 2020a; Arya et al., 2022). Here, we want to highlight

the challenges of deep learning for phenomics based on PRS

data. One challenge is to construct large-volume, well-labeled,

and openly available datasets. There are already ways to pro-

mote open data in the current phenotyping community, such

as algorithm competitions. Meanwhile, ‘‘sharing the right data

right’’ has been proposed because it allows for scientific repro-

ducibility (Tsaftaris and Scharr, 2019). Another challenge is the

development of networks with multimodal data. Multi-task

learning (MTL) is an important direction that not onlymay facilitate

multiple task implementation but also can integrate multi-

source input. MTL has been proven effective and efficient for
22 Plant Communications 3, 100344, November 14 2022 ª 2022 The
phenotyping (Dobrescu et al., 2020). For example, Sun et al.

(2022) used MTL to simultaneously predict both yield and grain

protein content of wheat from LiDAR and multispectral data. In

addition, generative adversarial networks (GANs) are also prom-

ising for the analysis of very large, multi-source datasets that lack

labeled phenotypic data. Yasrab et al. (2021) predicted plant leaf

and root growth from multi-temporal data using a GAN. GAN-

based methods may also be coupled with growth models to

relate digital pairs of plant simulation and plant growth, support-

ing smart breeding and intelligent management (Drees et al.,

2021).

CONCLUDING REMARKS

PP has become a bottleneck technology for high-throughput

breeding and a key valve for increasing yield production. Our

era has witnessed tremendous advances in PRS and PP, but

there has not previously been a systematic understanding of

the history, applications, and trends of PRS in PP. This review fo-

cuses on PRS applications in PP from an interdisciplinary

perspective over the last two decades and covers the overall his-

tory, systematic application progress, and pipeline to link PRS-

based phenomics to multi-omics analysis, giving insights into

future challenges and perspectives. To the best of our knowl-

edge, the application analysis covers nearly all aspects of PRS

application in PP, including the global spatial distribution and

pattern of temporal dynamics, specific PRS technologies (sensor

and platform types), phenotypic research fields, working environ-

ments, species, and traits. As a bridge for multi-omics research,

PRS-based PP involves multi-dimensional data acquisition, pro-

cessing, and modeling, which can be used to accelerate multi-

omics studies to identify new genetic loci, screen high-quality va-

rieties, and accelerate breeding. We also highlight some key di-

rections to better promote the in-depth development of PRS in

PP, including strengthening the spatial and temporal consistency

of PRS data, exploring novel phenotypic traits, and facilitating

multi-omics communication.
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