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Abstract

Background: Glucose modulates b-cell mass and function through an initial depolarization and Ca2+ influx, which then
triggers a number of growth regulating signaling pathways. One of the most important downstream effectors in Ca2+

signaling is the calcium/Calmodulin activated serine threonine phosphatase, calcineurin. Recent evidence suggests that
calcineurin/NFAT is essential for b-cell proliferation, and that in its absence loss of b-cells results in diabetes. We
hypothesized that in contrast, activation of calcineurin might result in expansion of b-cell mass and resistance to diabetes.

Methodology/Principal Findings: To determine the role of activation of calcineurin signaling in the regulation of pancreatic
b-cell mass and proliferation, we created mice that expressed a constitutively active form of calcineurin under the insulin
gene promoter (caCnRIP). To our surprise, these mice exhibited glucose intolerance. In vitro studies demonstrated that while
the second phase of Insulin secretion is enhanced, the overall insulin secretory response was conserved. Islet morphometric
studies demonstrated decreased b-cell mass suggesting that this was a major component responsible for altered Insulin
secretion and glucose intolerance in caCnRIP mice. The reduced b-cell mass was accompanied by decreased proliferation and
enhanced apoptosis.

Conclusions: Our studies identify calcineurin as an important factor in controlling glucose homeostasis and indicate that
chronic depolarization leading to increased calcineurin activity may contribute, along with other genetic and environmental
factors, to b-cell dysfunction and diabetes.
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Introduction

The normal response of pancreatic islet b-cells to various

conditions associated with Insulin resistance is to increase the mass

of Insulin producing cells. Plasma glucose concentration is an

important factor in this response and mediates increases in

glucose-induced islet b-cell growth and proliferation [1,2,3,4]. In

contrast, chronic elevation in plasma glucose, so called glucotoxi-

city, can have deleterious effects on b-cell function and survival

[5,6,7,8,9,10,11,12,13]. On the other hand, glucose starvation

negatively affects b-cell survival [13,14,15]. The explanation for

the different responses to glucose levels is unclear but changes in

intracellular Ca2+ concentrations play an important role. The idea

that chronically elevated intracellular Ca2+ concentrations due to

high glucose can result in deleterious effects on b-cell proliferation,

survival and/or function is consistent with the Ca2+ set-point

hypothesis described in the neuronal literature [16]. This concept

states that very low or high intracellular Ca2+ levels are

incompatible with survival and that between these extremes,

Ca2+ concentrations have protective and physiological effects on

neuronal function.

Increase in intracellular Ca2+ by glucose and depolarizing

agents activates several intracellular pathways including, Ca2+/

Calmodulin kinases (CaMK) and extracellular signal-regulated

protein kinases (ERK1 and ERK2) and calcineurin among others

[17,18,19,20,21]. Calcineurin is the only serine/threonine protein

phosphatase under the direct control of intracellular Ca2+ and

plays a critical role in coupling Ca2+ signals to cellular responses

[22]. Therefore, calcineurin is a major candidate to mediate

signals activated by glucose-induced depolarization and Ca2+

influx. Calcineurin is a heterodimer containing a catalytic/

Calmodulin-binding subunit, calcineurin A, tightly bound to a

calcineurin phosphatase regulatory Ca2+-binding subunit, calci-

neurin b1 (Cnb1) [22]. Calcineurin is an important regulator of

multiple biological functions, but very few studies have investigat-

ed its role in pancreatic b-cells. Elegant experiments by Heit, et. al.

demonstrated a role for this signaling pathway in regulation of b-

cell growth and function [23]. These studies showed that mice with
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conditional deletion of Cnb1 in b-cells developed diabetes as a

result of decreased b-cell mass, proliferation and insulin content

[23]. This phenotype was associated with decreases in critical

genes necessary for b-cell development and function including,

ins1, ins2, glut2, mafA, pdx1, beta2 and cyclin D2. Interestingly, the

metabolic phenotype and altered gene expression were restored by

conditional expression of active NFATc1 in cnb1-deficient b-cells

[23]. Nuclear factor of activated T cells (NF-AT) is one of the most

recognized calcineurin targets. Moreover, experiments with

calcineurin inhibitors FK506 and cyclosporin A (CsA) have

provided further insights into the role of calcineurin in metabolism

and b-cell function. CsA and FK506 inhibit calcineurin activity by

binding to regulatory proteins of the enzyme, Cyclophilin A and

FKBP-12 respectively [24]. Administration of CsA and FK506 to

rodents [25] or humans [26,27] induces hyperglycemia and

hypoinsulinemia. Complementary in vitro experiments in vitro using

insulinoma cells and human islets have demonstrated that CsA

and Fk506 reduce Insulin biosynthesis and secretion [28,29] [30].

While these studies demonstrated that calcineurin deficiency

resulted in b-cell failure and diabetes, it is unclear whether

increased glucose-induced Ca2+ influx and subsequent calcineurin

activation will mimic the hypertrophic effects of chronic

depolarization on b-cell function and mass.

The experiments reported herein explored the role of sustained

activation of calcineurin activity in regulation of pancreatic b-cell

mass and function. To achieve this, we generated transgenic mice

overexpressing a constitutively active calcineurin mutant in b-cells

under the control of the rat insulin promoter. These mice

developed hyperglycemia and hypoinsulinemia as a result of

decreased b-cell mass and Insulin secretion. The changes in b-cell

mass resulted from decreased proliferation and augmented

apoptosis. The current work demonstrated that sustained

calcineurin hyperactivity negatively impacts b-cell growth and

function. These studies imply that calcineurin could mediate some

of the glucotoxic effects induced by chronic hyperglycemia in type

2 diabetes.

Methods

Generation of transgenic mice
The constitutively active calcineurin used for these experiments

lacks the regulatory domain of calcineurin A (CnMut) [31,32].

The calcineurin mutant was provided by Gerald R. Crabtree

(Stanford University School of Medicine) and was generated by

introducing a stop codon at nucleotide 1259 as described [31].

This sequence was inserted at the EcoRI site in a RIP-I/b-Globin

expression vector. This chimeric gene (caCnRIP) was excised by

enzymatic digestion, purified, and microinjected into fertilized

eggs of C57Bl6 6 CBA mice according to standard technique.

Three transgenic founders (#167, #138 and #139) expressing the

caCnRIP chimeric gene were generated in a C57Bl66CBA genetic

background. Founders were backcrossed to C57BL6J mice.

Experiments were performed on comparable mixed background.

Two lines exhibited a similar phenotype. The studies described

herein were performed on animals derived from the #138 line. All

procedures were approved by the Washington University Animal

Studies Committee.

MIN6 cell culture and adenoviral infection
MIN6 cells were maintained in DMEM (Gibco) as previously

described [33]. The cells were transduced either with a control

GFP or a constitutively active calcineurin adenovirus overnight at

an MOI of 19. The transduced cells were maintained in the media

for 48 hours before harvesting.

Immunoblotting
For western blot analysis, blots of isolated pancreatic islet lysates

and MIN6 cells were probed with antibodies against calcineurin A

(BD Biosciences), phospho Akt S473 (Cell Signaling) and tubulin

(Sigma). Protein obtained from islets (50 g; ,100 islets) were used

for each experiment. Briefly, islet lysates were separated by

electrophoresis on polyacrylamide gels and transferred to nitro-

cellulose or PVDF membranes (Bio-Rad). After blocking over-

night, membranes were incubated for 24 hours with primary

antibodies at the dilutions recommended by the manufacturer.

Immunoblotting experiments were performed at least three times

in duplicate.

Immunostaining, islet morphometry and analysis of
proliferation and apoptosis

Pancreata obtained from 12-week-old mice were used for

morphometry and immunohistochemistry. Immunostaining for

insulin, glucagon, somatostatin and pancreatic polypeptide cells

was performed as described [34,35]. The b-cell mass was

calculated by point counting morphometry from 5 insulin stained

sections (5 mm) separated by 200 mm using the NIH ImageJ

software (v1.43n freely available at http://rsb.info.nih. gov/ij/

index.html [36] as described [34,35]. Pancreata from neonates

were obtained during the first 12 hours of life. Proliferation was

assessed in insulin and Ki67 (Novocastra, Burlingame, CA) stained

sections as previously described [34]. Apoptosis was determined in

pancreatic sections using cleaved Caspase 3 (Cell Signaling) and

Insulin staining as described [35]. At least 1000 insulin stained

cells were counted for each animal.

Assessment of glucose metabolism and insulin secretion
Fasting blood samples were obtained after overnight fasting

from the tail vein. All the metabolic studies were performed in

male mice. Glucose was measured on whole blood using

AccuChek II glucometer (Roche Diagnostics, Indianapolis).

Plasma insulin levels were determined on 5 ml aliquots by using

a Rat Insulin ELISA kit (Crystal Chem, Chicago, Illinois). Glucose

tolerance tests were performed in 12-hour fasted animals by

injecting glucose (2 mg/g) intraperitoneally as described [34].

Islet isolation and in vitro insulin secretion
Islet isolation was accomplished by collagenase digestion and

differential centrifugation through Ficoll gradients using a modifi-

cation of procedures described previously for rat islets [34]. After

isolation, islets were hand picked and lysed in lysis buffer (Cell

Signaling, Beverly, Massachusetts). Insulin secretion in vitro was

assessed by static incubation of islets. After overnight culture in

RPMI media containing 5 mM glucose, islets of similar size from

caCnRIP mice and wild-type mice were handpicked and pre-cultured

for an hour in Krebs-Ringer medium containing 2 mM glucose.

Groups of five islets in triplicate were incubated in Krebs-Ringer

medium containing either 2 mM glucose, 20 mM glucose, or

30 mM KCl, and incubated at 37uC. After 1-hour incubation,

medium was collected and stored at –20uC, after which insulin was

measured by RIA. Islet perifusion experiments were carried out as

described [37]. Briefly, groups of 80 were suspended in Bio-Gel P2

beads and perifused at 1 mL/min using a temperature-controlled

multi-chamber perifusion system (Cellex Biosciences, Minneapolis,

MN). Net hormone release responses of perifused cell columns to

treatments were quantified by integrating the baseline-subtracted

area under the curve during the treatment period. Each time point

was subtracted from the prepulse mean, defined as the average of

the three time points before the treatment period.

Calcineurin and b Cells
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Statistical analysis
All values are expressed as mean 6 SEM. Paired Student’s t test

was used for all comparisons. Differences were considered

statistically significant at p,0.05.

Results

Generation of mice expressing a constitutively active
form of calcineurin in b-cells

The constitutively active calcineurin mutant used for these

studies lacks the regulatory domain of calcineurin A (caCn) and

exhibits Ca2+-independent constitutive phosphatase activity in vitro

and in vivo [31,32,38]. This was achieved by deleting the carboxy

terminal sequence including a fraction of the Calmodulin binding

domain and the auto inhibitory domain of calcineurin A as

described [31,32,38]. This sequence was inserted downstream of

the rat insulin I promoter sequence (caCnRIP, Figure 1A). Two lines

with a similar expression levels and phenotypes were obtained.

The studies described herein were performed on animals derived

from one of these lines. Expression of the transgene in islet lysates

from WT and transgenic mice demonstrated expression of the

mutant protein (40 Kd band) only in caCnRIP mice (Figure 1B). No

alterations in weight were observed in caCnRIP mice suggesting that

there were no major abnormalities in appetite control by

expression of the transgene in the hypothalamus (data not shown).

caCnRIP mice exhibit hyperglycemia
To determine the effects of constitutively active calcineurin in

islet b-cells on glucose metabolism, we examined random glucose

and insulin levels in 8–12 week-old mice. Random glucose levels

were higher in caCnRIP mice (Figure 2A). caCnRIP mice exhibited

concomitant hypoinsulinemia (Figure 2B). Intraperitoneal glucose

tolerance testing demonstrated that caCnRIP mice displayed higher

glucose levels after 30 and 60 minutes after glucose injection

(Figure 2C). Similar glucose intolerance was observed in 12 week

old mice (Figure 2C). The glucose intolerance was also observed in

caCnRIP females (Figure S1).

Overexpression of constitutively active calcineurin in
islets induces the second phase of insulin secretion

To begin to elucidate the mechanisms responsible for impaired

glucose tolerance in caCnRIP mice, we assessed insulin secretion in

vivo and in vitro. Insulin levels in caCnRIP mice were reduced relative

to those in WT mice after overnight fasting and did not increase

after glucose injection (Figure 3A). Insulin levels were lower in

caCnRIP islets cultured in 2 mM glucose for 60 min (p,0.05, data
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Figure 1. Transgene construct and expression in islet lysates from WT and caCnRIP mice. A. Domain structure of calcineurin A. The mutant
form including the first 1259 bp (400 amino acids) was subcloned into a vector containing the rat insulin promoter. B. Immunoblotting for calcineurin
using islet lysates from WT and caCnRIP mice. The endogenous calcineurin A band migrates at 60 kD and the caCn mutant at 40 kD. The western is
representative of two experiments performed in duplicate.
doi:10.1371/journal.pone.0011969.g001
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not shown). Glucose stimulated insulin secretion in isolated islets

was similar in caCnRIP mice (Figure 3B). Since calcineurin signaling

has been reported to modulate the different phases of Insulin

secretion [39], we performed islet perifusion experiments. Basal

Insulin secretion at 2 mM glucose before and after glucose

stimulation was decreased in caCnRIP islets (Figure 3C). No

significant difference was observed in the first phase of Insulin

secretion (Figure 3C). Interestingly, the second phase of insulin

secretion was enhanced in caCnRIP islets (Figure 3C). However, the

area under the curve for glucose stimulated Insulin secretion was

comparable (p.0.05, data not shown).

Pancreas morphometry on WT and caCnRIP mice
Morphometric analysis was then performed to determine the

cause of altered glucose tolerance and Insulin secretion in caCnRIP

mice. Staining for Insulin and a cocktail of antibodies for non b-

cells revealed that islets from caCnRIP mice showed decreased size

and irregular shape (Figure 4A). Analysis of b-cell mass in 12-

week-old mice indicated that caCnRIP mice exhibited more than a

50% reduction in b-cell mass (Figure 4B). To determine whether

this reduced mass was a developmental defect or acquired post-

natally, the b-cell mass in WT and caCnRIP neonates was examined

and found to be not significantly different (Figure 4C). These

studies demonstrate that caCnRIP mice are born with normal b-cell

mass and develop decrease in mass during the first 12 weeks of life.

Decrease in b-cell mass in caCnRIP mice results from
decreased proliferation and increased apoptosis

We next examined whether the decrease in b-cell mass in

caCnRIP mice was the result of decreased proliferation or increased

apoptosis. Analysis of proliferation performed by Ki67 staining

demonstrated that caCnRIP mice exhibited decreased proliferation

(Figure 5A). caCnRIP mice also displayed a concomitant increase in

apoptosis revealed by cleaved-caspase 3 staining (Figure 5B),

indicating that calcineurin affects both proliferation and apoptosis.

Discussion

The current studies extend our knowledge of the role of

calcineurin in pancreatic islet b-cells by examining the effects of

chronic activation of calcineurin on b-cell mass and function.

These experiments demonstrate that long-term activation of

calcineurin induces impaired glucose tolerance by alterations in

b-cell mass. We also show that activation of calcineurin signaling

negatively affects proliferation and survival of b-cells. These

morphological alterations resemble in part the phenotype of b-cells

exposed to chronic hyperglycemia and suggest that chronic

activation of calcineurin could be an important component of

the glucotoxic effect of hyperglycemia in type 2 diabetes and

possibly also explain the failure of these agents to control diabetes

after long-term therapy with this medication.
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doi:10.1371/journal.pone.0011969.g002
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The expression of the calcineurin mutant in b-cells resulted in

major disturbances in plasma glucose levels. A small fraction of the

animals developed frank diabetes making it difficult to maintain

the line. The abnormalities in glucose were associated with

decreased Insulin levels. Transgenic mice exhibited severe

impairment in glucose-induced Insulin secretion in vivo. The

severe defect in Insulin secretion in the context of 50% of normal

b-cell mass suggested the possibility that caCnRIP mice might

exhibit some degree of impaired Insulin secretion. However, in vitro

Insulin secretion in response to glucose was similar in static

incubation and perifusion experiments (Figure 3). Islet perifusion

experiments showed that islets from caCnRIP mice exhibited a

robust first phase of Insulin secretion implying that the readily

releasable pool was not significantly altered. Interestingly, we

observed a significant increase in the second phase of insulin

secretion suggesting that calcineurin may modulate events

associated with insulin granule trafficking [39]. The changes in

second phase of Insulin secretion could be explained in part by

dephosphorylation of Kinesin Heavy chain (KHC) on b-granules.

Phosphorylation of KHC inhibits the binding of granules to

microtubules and prevents the transport towards the cell

membrane [39,40]. In contrast, inhibition of calcineurin-mediated

KHC dephosphorylation using inhibitors and adenoviruses

inhibits second phase of insulin secretion [39]. In summary the
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Figure 4. Pancreas morphometry on WT and caCnRIP mice. A. Immunostaining for Insulin and non b-cells in pancreas from WT and caCnRIP

mice. Images presented were obtained at different magnifications (Upper panel 10x and lower panel 40x). Assessment of b-cell mass using point-
counting morphometry in WT and caCnRIP mice at 12 weeks of age (B) and neonates (C). Results are mean 6 SEM (n = 4). * p,0.05.
doi:10.1371/journal.pone.0011969.g004
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discrepancies in insulin secretion in vitro and in vivo are difficult to

reconcile but it is possible that the stress of the isolation procedure

and the selection of islets for perifusion are biased to favor the

availability and collection of healthier islets and these islets are not

completely representative of the integrated response obtained in in

vivo experiments. It is also probable that activation of calcineurin in

neurons could contribute to the regulation of in vivo insulin

secretion in this model. However, we believe that this is less likely

due to lack of evidence of central expression of the promoter used

for these experiments.

Decreased b-cell mass was an important component responsible

for the hyperglycemic phenotype in caCnRIP mice. The diminished

b-cell mass was caused by reduced proliferation and increased

apoptosis. The mechanisms involved in the regulation of b-cell

cycle by calcineurin are partially understood. Heit et al. showed

that transgenic activation of NFATc1 in b-cells induces prolifer-

ation by inducing Cyclin D and Cdk4 levels [23]. This suggests

that the decreased proliferation observed by activation of

calcineurin is mediated in an NFATc1-independent manner. It

is important to note that NFAT transcription factors are not the

only calcineurin-downstream substrates and other calcineurin-

regulated proteins such as Map Kinase Phosphatase 1 (MKP1)

[41], Cdk4 [42,43], PKA, NO synthase and the co-activator

TORC could also be involved [44,45,46]. To this end, we have

demonstrated that glucose and KCl-induced depolarization

induces MKP1 expression in a calcineurin-dependent manner

(data not shown). Therefore, increased MKP1 can inhibit

Mitogen-Activated Protein Kinase (MAPK) activation and subse-

quent cell cycle progression. In summary, the current findings are

consistent with a negative effect of calcineurin on cell cycle

progression by activation of downstream signaling targets other

than NFATc1. The loss of the transgenic line prevents us from

pursuing some of these avenues.

The decreased b-cell mass in caCnRIP mice could also be

explained in part by augmented apoptosis. The role of

calcineurin in apoptosis has been extensively examined in

neurons and lymphoid tissues, among others [16,47,48,49]. In

b-cells, inhibition of calcineurin is protective against apoptosis

induced by proinflammatory cytokines and dexamethasone

[47,50,51]. The mechanisms involved in apoptosis observed in

caCnRIP mice could be multifactorial. As demonstrated in other

systems, including b-cells, calcineurin-mediated dephosphoryla-

tion and activation of the pro-apoptotic Bcl-2 family protein Bad

is a major component of apoptosis induced by elevated Ca2+/

Calcienurin signaling [49,50,51]. Recent experiments showed

that calcineurin decreased Akt signaling by dephoshorylation of

S473 [52]. However, AktS473 phosphorylation was not altered in

MIN6 cells expressing a constitutively active calcineurin suggest-

ing that this mechanism is not likely to play a role (Figure S2). In

summary, our studies suggest that the genetic activation of

calcineurin signaling reduces b-cell mass by induction of

apoptosis. It is unclear at this point if these calcineurin effects

are mediated by NFAT.

In summary, the present work shows that chronic activation of

calcineurin signaling regulates survival and proliferation of b-cells.

These studies together with those obtained in mice with deletion of

Cnb1 in b-cells [23] suggest that calcineurin signaling is a major

component of the effects induced by glucose depolarization/Ca2+

influx. Similar pattern of responses derived from apoptotic

responses to intracellular Ca2+ concentration in neurons have

led to the development of the Ca2+ set-point hypothesis [16]. The

results of the present study suggest that persistent activation of

calcineurin signaling could be an important component respon-

sible for the responses to chronic depolarization.

Supporting Information

Figure S1 A Random blood glucose levels in 8-week-old females

(n = 4). B. Glucose tolerance in 8-week-old females. Intraperitoneal

glucose tolerance tests was performed in 8 and 12-week old

caCnRIP mice and littermates females (B) (n = 4).

Found at: doi:10.1371/journal.pone.0011969.s001 (0.40 MB EPS)

Figure S2 Western blots on MIN6 cells transduced with a

control (GFPAdv) or constitutively active calcineurin (caCnAdv)

adenovirus. Immunoblotting for Calcineurin (A) or phospho Akt

(473) (B) and tubulin. Expression levels were normalized to tubulin

and quantified on the right. Results are mean 6 SEM (n = 4).

* p,0.05.

Found at: doi:10.1371/journal.pone.0011969.s002 (0.71 MB EPS)
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