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Abstract

Background: Surgery is usually the treatment of choice for patients with cervical compressive myelopathy (CCM).
Motor evoked potential (MEP) has proved to be helpful tool in evaluating intraoperative cervical spinal cord
function change of those patients. This study aims to describe and evaluate different MEP baseline phenotypes for
predicting MEP changes during CCM surgery.

Methods: A total of 105 consecutive CCM patients underwent posterior cervical spine decompression were
prospectively collected between December 2012 and November 2016. All intraoperative MEP baselines recorded
before spinal cord decompression were classified into 5 types (I to V) that were carefully designed according to the
different MEP parameters. The postoperative neurologic status of each patient was assessed immediately after
surgery.

Results: The mean intraoperative MEP changes range were 10.2% ± 5.8, 14.7% ± 9.2, 54.8% ± 31.9, 74.1% ± 24.3, and
110% ± 40 in Type I, II, III, IV, and V, respectively. There was a significant correlation of the intraoperative MEP
change rate with different MEP baseline phenotypes (r = 0.84, P < 0.01). Postoperative transient new spinal deficits
were found 0/31 case in Type I, 0/21 in Type II, 1/14 in Type III, 2/24 in Type IV, and 4/15 in Type V. No permanent
neurological injury was found in our cases series.

Conclusions: The MEP baselines categories for predicting intraoperative cervical cord function change is proposed
through this work. The more serious the MEP baseline abnormality, the higher the probability of intraoperative MEP
changes, which is beneficial to early warning for the cervical cord injury.

Keywords: Cervical compressive myelopathy (CCM), Motor evoked potential (MEP), Intraoperative neuromonitoring,
MEP baselines phenotypes, Intraoperative cervical cord function changes
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Background
Cervical compressive myelopathy (CCM) is one of the
most commonly acquired cause of spinal cord dys-
function [1], and surgery is usually the treatment of
choice for those patients. It is important to assess
cervical cord function in patients with CCM during
surgical treatment. Over the past decades, the major-
ity of studies are concerning the application of intra-
operative transcranial motor evoked potential (MEP)
to detect impending spinal cord damage, early warn-
ing the operating team to take action to avoid injury
in cervical spine surgery [2–7].
Previously, imaging methods such as magnetic reson-

ance imaging (MRI) are able to detect pathologic
changes in patients with CCM, and are thought to be
useful for the evaluation of prognosis [8–12]. Another
reported predictor of postoperative prognosis is the pre-
operative cross-sectional area of the spinal cord at the
site of maximum compression [13–15]. furthermore,
somatosensory-evoked potentials (SEPs) classification
system could be used as an objective tool, in addition to
clinical scales, for the quantitative assessment of spinal
cord function in CCM [16]. These are preoperative pre-
diction methods for postoperative spinal cord function
change.
Currently, we have found that the different intraopera-

tive MEP baselines before cord decompression probably
can predict the impending neuromonitoring changes
after spinal canal decompression. In order to further test
this hypothesis, our objective was to put forward differ-
ent intraoperative MEP phenotypes and verify its feasi-
bility for predicting the neuromonitoring changes after
spinal decompression in CCM patients.

Methods
Patients
We prospectively collected 105 consecutive patients
from December 2012 to December 2016. The major
clinical characteristics and diagnosis of the population
were showed in Table 1. Patients were eligible for this
study when they met all the following inclusion criteria:
(1) presenting with symptomatic CCM with at least 1
clinical sign of myelopathy; (2) evidence of objective
CCM on a magnetic resonance image (MRI); (3) absence
symptomatic lumbar stenosis or thoracic myelopathy; (4)
no previous surgical treatment for CCM; (5) undergoing
the same anesthesia regime. Patients’ duration of symp-
toms and preop modified Japanese Orthopedic Associ-
ation (mJOA) scores associated with MEP phenotypes
were showed in Fig. 1.

Preoperative and postoperative neurological assessment
All patients underwent a detailed preoperative assess-
ment of neurological function and the degree of cord

compression on MRI with MEP baseline recording. The
postoperative neurologic status of each patient was
assessed immediately after surgery by comparing the pa-
tient’s documented preoperative motor and sensory
function with his or her early postoperative motor and
sensory function.

Intraoperative electrophysiological assessment
Two kinds of monitoring instruments (Cadwell Indus-
tries Inc. Cascade Pro Systems, Kennewick, WA, USA;
Axon Systems Inc., Hauppauge, NY) were used. More-
over, MEP testing was performed after showing the ver-
tebral lamina using subcutaneous needle electrodes by
stimulating of 400 V constant voltage and multiple trains
of 6 pulses, with duration of 400 μs. The inter-stimulus
interval was 2.5 ms for each stimulation trains. The two
pairs of stimulation electrodes were inserted subcutane-
ously over motor cortex regions C3–C4. Recording elec-
trodes were placed into the abductor hallucis muscles in
both of the lower extremities and the first dorsal inter-
osseous muscles in the upper extremities (control).
According to many previous studies [17] and our ex-

perience [18–21], in cervical compressive myelopathy
(CCM) patients underwent neural decompressive sur-
gery, the surgical induced MEP alerting often derived
from the procedure of spinal decompression especially

Table 1 The general data and the clinical diagnoses of all
patients

General data and diagnosis Mean ± SD (Range)/N (%)

General data

Age 58.2 ± 11.1 (26–75 y)

Male/Female 71/34

Height 168.9 ± 8.4 (140–180 cm)

Weight 71.4 ± 14.1 (42–98 kg)

BMI 24.9 ± 4.1 (15–34)

Operation time 164.8 ± 39.3 (110–300min)

Bleeding volume 232.2 ± 179.5 (150–900ml)

Diagnosis (n, %)

Cervical spondylotic myelopathy 63 (60.0%)

OPLL 13 (12.4%)

Cervical disk herniation 6 (5.7%)

Congenital anomaly of cervical spine 4 (3.8%)

Atlantoaxial subluxation 12 (11.4%)

Others 7 (6.7%)

Type of surgery (n, %)

ACDF 19 (18.1%)

PCDF 78 (74.3%)

Laminectomy 8 (7.6%)

OPLL Ossification of posterior longitudinal ligament, ACDF Anterior cervical
decompression and fusion, PCDF Posterior cervical decompression and fusion
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severe spinal oppression segment. Otherwise it is often
physiological or false-positive and we should first rule
out systemic and anesthetic factors first [22]. The MEPs
could be read directly from our monitoring instrument
in every surgical point and were collected by averaging
three times.

The 5 MEP types
In current study, a different MEP phenotype (Table 2)
was firstly addressed for predicting the IONM changes
for CCM patients e.g. in Fig. 2.
Type I indicated safe MEP baseline with excellent

stability;
Type II also indicated safe MEP baseline with good

stability;
Type III was referred to sensitive MEP baseline with

average stability;
Type IV was high-sensitive MEP with poor stability;
Type V was indeterminate/high risk MEP baseline.
The MEPs were recorded from the foot muscles (ab-

ductor hallucis) for the classification. The MEP types in
this study aimed at unilateral baseline, amplitude and la-
tency were considered as peak to peak and the initial of

trains’ stimulation to the initial of MEP response re-
spectively. And the baseline classification in Table 2 re-
lies on the MEP stability that is defined based on the
amplitude and latency.

Anesthesia management
General anesthesia was induced with a bolus dose of
propofol (3 mg/kg) and fentanyl (2.5 μg/kg) combined
with a short-acting muscle relaxant (rocuronium) and
inhalation agents (sevoflurane or nitrous oxide). Subse-
quently, maintenance of anesthesia was propofol (5–8
mg/kg/h) based on hemodynamic response; remifentanyl
(0.05-2μg/kg/min); and a total dose of 5–6 μg/kg fenta-
nyls (intermittent infusion) were used. No muscle relax-
ant or inhalation agent was used after anesthesia
induction.
It should be noted that anesthetic is crucial role for

MEP recording and classification, so all consecutive pa-
tients underwent the same anesthesia regime. MEP base-
line must be recorded after performing the rocuronium
of more than 50 min [23]. The patients with different
TOF might affect the MEP responses, even using total
intravenous anesthesia (TIVA), thus within 100 ± 5%
TOF changes were confirmed when recording MEP
baseline (Fig. 3). Moreover, the electroencephalographic
density spectral array was also used to evaluate the
depth of anesthesia, and we also strictly controlled the
BIS value as 50–60 when recording the MEP signals.

Statistical analysis
General data of patients were described as means and
SD or n (%), and the statistical analyses were performed
using Microsoft Excel 2007 (Microsoft, Redmond, WA,
USA) and SPSS 19.0 (SPSS, Inc., Chicago, IL, USA)

Fig. 1 Patients’ duration of symptoms and preop mJOA scores associated with MEP classification

Table 2 The detail of different MEP baseline phenotypes

Types Amplitude (μV) Latency (ms) Stability

I > 300 < 50 Excellent

II > 300 > 50 Good

100–300 < 50

III 100–300 > 50 Moderate

IV 20–100 – Poor

V 0–20 – Indeterminate/High Risk

The MEP types in this study aimed at unilateral baseline
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software. Statistical comparisons were made by χ2 test,
and P < 0.05 was considered significant. Pearson’s correl-
ation test was applied to evaluate the correlation of MEP
phenotypes with the incidence of intraoperative moni-
toring changes.

Results
Our results showed that 31 cases were classified as type
I, 21 as type II, 14 as type III, 24 cases as type IV, and 15
cases as type V. The mean MEP changes range were
10.2% ± 5.8, 14.7% ± 9.2, 54.8% ± 31.9, 74.1% ± 24.3, and
110% ± 40 in Type I, II, III, IV, and V, respectively. With

the MEP types proceeding, the neuromonitoring changes
is increasing. And there was a significant correlation of
the intraoperative MEP change rate with different MEP
baseline classification (r = 0.84, P < 0.01) (Fig. 4).
No significant neuromonitoring change and postopera-

tive new spinal deficit was found in Type I & II. Among
14 patients in Type III, 2 showed significant MEP losses,
5 showed intraoperative MEP improvements. Among 24
patients in Type IV, 4 showed significant MEP loss, 6
showed MEP improvements. Among 15 patients in Type
V, 7 showed significant MEP loss, 6 showed MEP im-
provements (Table 3). Postoperative new spinal deficits

Fig. 2 a The representative MEP waveform and parameters among the 5 baseline types. Type II has two subtypes. b The preoperative T2-
weighted sagittal magnetic resonance image (MRI) from the patients with different MEP baseline types (Types I, II, III, IV and V)

Fig. 3 The TOF were monitored when recording MEP baseline
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were found 0/31 case in Type I, 0/21 in Type II, 1/14 in
Type III, 2/24 in Type IV, and 4/15 in Type V. Further-
more, Multivariate analysis indicated that these three
variables (Duration of symptoms, Preoperative SC cross-
sectional area, MEP baseline categories) were also the
main significant contributors for the impending MEP
warning. (Table 4).

Discussion
The present study had focused on describing different
MEP phenotypes for predicting intraoperative neuromo-
nitoring change in patient underwent cervical cord de-
compression surgery. The main finding of this study was
that the MEP baselines were classified into 5 types to
imply the possibility of monitoring changes in different
level during CCM surgery. The type I and II are safe and
stable MEP baseline that generally does not present sig-
nificant intraoperative monitoring changes; type III and
IV are sensitive MEP baseline that should attract our at-
tention for possible monitoring changes; type V is high-
risk MEP baseline that would imply a possibility of great
neuromonitoring changes. The main clinical significance
of this knowledge was that we provide a novel predictor
to help surgeons further assess the possible changes of
cervical cord function, identify high-risk patients and
then institute rigorous prevention strategies to achieve
safer and more secure treatment for CCM patients.

The rationale for MEP monitoring is to directly test
the integrity of lateral corticospinal tract and cervical
nerve roots and then assess the function of motor sys-
tem during cervical spine surgery [24, 25]. And MEPs
amplitude change is highly sensitivity (approaching
100% & specificity (more than 95%) [22, 26, 27]) to pre-
dict a new postoperative neurological injury. Thus, MEP
baseline signal may indicate the impairment’s degree of
cervical cord or motor system dysfunction in pure CCM
patients. During the patients with the type I or II MEP
baseline, the injuries degree of nervous tissue from blood
supply or direct mechanical cord compression are prob-
ably in relative compensatory stage.
On the other hand, the accumulated experimental

evidence suggests that reperfusion lesions can result
in neuronal death, which reactive oxygen radicals
have been implicated to play an important role after
decompression of a chronic compressive lesion of the
cervical cord [28–30]. And reperfusion can occur in
any level and any spot where surgical decompression
was performed for the chronic compressive lesion.
The severity and area of the reperfusion lesions de-
pend on the area where neurons are really damaged.
Theoretically, the neurons from cervical cord cannot
present the high-risk reperfusion lesions in those pa-
tients with type I and II MEPs baseline. Meanwhile
our current data can also support this point. The 52
patients with type I and II MEPs baseline did not ap-
pear significant intraoperative monitoring loss or new
spinal deficit. Therefore, the type I and II MEPs base-
line is safe and will usually not show an impending
significant monitoring loss and then to predict cer-
vical cord injury during the surgery of CCM.

Fig. 4 Absolute value distribution of intraoperative MEP change rate
with different baseline phenotypes

Table 3 The summary of monitoring changes and new neurologic deficit for each MEP baseline type from 105 CCM patients

Type I Type II Type III Type IV Type V

Significant monitoring loss 0 0 2 4 7

Significant monitoring improvement 0 1 5 6 6

New neurologic deficits 0 0 1 2 4

Total cases (%) 31 (29.5%) 21 (20.0%) 14 (13.3%) 24 (22.9%) 15 (14.3%)

Table 4 Results of stepwise multivariate regression analysis

Variable = β0 MEP warning

Model: (R2=0.301, p<0.01)

β-coefficient P Value

Duration of symptoms 0.205 0.0081

Preoperative mJOA score 0.018 0.0358

Preoperative SC cross-sectional area 0.189 0.0095

MEP baseline categories 0.268 0.0026

Note: All independent variables were entered into the regression. Values
denoted are β-coefficient values (95% confidence intervals)
mJOA Japanese Orthopedic Association, MEP Motor-Evoked Potentials, SC
Spinal Cord
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Next, the CCM patients with Type III and IV MEPs
baseline often have severe and long-term preoperative
cervical cord compression and then perform poor MEP
baselines. According to our data and experience, the
monitoring signals often change in the patients with
these baseline types. Interestingly, the patients with Type
III or IV baseline not only perform a monitoring loss
but also lots of monitoring improvement cases (Table 3).
In our opinion, the mainly reason for monitoring loss is
probably related to neural reperfusion lesions injury; the
monitoring improvement is probably because the excit-
ability of neuron or corticospinal tract is improving fol-
lowing cervical cord decompression. And the increasing
arterial supply would also improve spinal cord ischemia
and then benefit the MEP augment. Moreover, many
previous studies have also proved that in patients with
preoperative compression of the spinal cord or cauda
equina, resulting in low or absent monitoring at the start
of surgery, an immediate increase in MEPs after surgical
decompression may predict a recovery of neurologic
outcomes [31–34]. Furthermore, during our finding,
only when the MEP baseline was in the Type III or IV,
the amplitude would change easily and frequently and
we should be careful that ahead of the cord decompres-
sion. Thus, the MEP in Type III or IV is high-sensitive
baseline that should really be aroused our attention.
The Type V often derives from the patients with pre-

operative severe cervical cord compression, which often
present sporadic disappearance or sudden enlargement
without high-risk surgical maneuvers. On the basis of
previous study, [35–38] increasing degrees of spinal cord
deficits were associated with depressed feasibility of in-
traoperative MEP/SEP monitoring, respectively. More-
over, according to our data and experience, the Type V
MEP baseline is really very difficult to accurately predict
a new neurologic deficit, but when it is constant or amp-
lifying after cervical cord decompression that usually im-
plies a favorable prognostic in CCM patients.
MEPs reflect spinal cord functional status, especially

pathologic changes in the entire corticospinal motor
system below the brain stem [39–45]. The type III,
IV, and V MEPs baseline can often gradually reflect
the severity of clinical symptoms. Some previous
study also showed a correlation between the mJOA
score and the electrophysiological parameters in CCM
[7, 18, 19, 46]. Moreover, according to this study and
previous report [47], the cervical cord morphology
and electrophysiological parameters are also relevant
in CCM. Therefore, we can draw the conclusion that
there are significant correlations among cervical cord
morphology, electrophysiological parameters and clin-
ical features. As thus we can use the MEP classifica-
tion to represent the quantitative neurologic function
and provide the high-sensitive MEP types to help us

to predict the monitoring change ahead in decom-
pressive CCM surgery.

Limitations
There are some limitations must be clarified in this
study. First, the MEP baseline classification is derived
from our hypothesis and experience of a single institu-
tion. Further studies enrolling larger number of cases
and a multicenter prospective evaluation of the reliability
and validity of this new classification are needed. Sec-
ond, although we believe our analysis to be compelling,
the new classification system is still in the stage of ex-
ploration and appropriate corrections are much needed
in the future. Third, because of the number of patients
in this study was relatively small, the postoperative new
spinal deficit among the 5 types did not present statis-
tical significance (Table 3). But the correlations between
the MEP baseline and the postoperative spinal deficit are
appearing in our follow-up study of large sample cases.

Conclusions
In this paper, we exhibited different MEP phenotypes
before surgical spinal decompression during CCM pa-
tients. Using this MEP classification, the more serious
the MEP baseline abnormality, the higher the probability
of intraoperative monitoring changes. That is probably
help surgeons to predict the impending spinal cord func-
tion changes in CCM patients.
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