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Advances in our understanding of mechanisms of leukemogenesis and
driver mutations in acute lymphoblastic leukemia (ALL) lead to a
more precise and informative sub-classification, mainly of B-cell

ALL. In parallel, in recent years, novel agents have been approved for the
therapy of B-cell ALL, and many others are in active clinical research.
Among the newly recognized disease subtypes, Philadelphia-chromosome-
like ALL is the most heterogeneous and thus, diagnostically challenging.
Given that this subtype of B-cell ALL is associated with a poorer prognosis,
improvement of available therapeutic approaches and protocols is a burn-
ing issue. Herein, we summarize, in a clinically relevant manner, up-to-date
information regarding diagnostic strategies developed for the identification
of patients with Philadelphia-chromosome-like ALL. Common therapeutic
dilemmas, presented as several case scenarios, are also discussed. It is cur-
rently acceptable that patients with B-cell ALL, treated with an aim of cure,
irrespective of their age, be evaluated for a Philadelphia-chromosome-like
signature as early as possible. Following Philadelphia-chromosome-like
recognition, a higher risk of resistance or relapse must be realized and treat-
ment should be modified based on the patient's specific genetic driver and
clinical features. However, while active targeted therapeutic options are
limited, there is much more to do than just prescribe a matched inhibitor to
the identified mutated driver genes. In this review, we present a compre-
hensive evidence-based approach to the diagnosis and management of
Philadelphia-chromosome-like ALL at different time-points during the dis-
ease course.    
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ABSTRACT

Introduction

In recent years several new agents have been approved for the treatment of acute
lymphoblastic leukemia (ALL), resulting in a tremendous improvement in long-
term survival of patients. Concurrently, refinements in risk stratification have
enabled escalation and de-escalation of therapy, thus minimizing treatment-related
mortality, while maintaining high response rates. While the traditional method for
subgrouping B-cell ALL (B-ALL) is based on cytogenetic and mutation analyses, it
has been demonstrated that each of the known subgroups has a unique gene
expression profile. Subsequent studies identified a B-ALL group which expresses
the BCR/ABL signature in the absence of the BCR/ABL fusion, and hence this group
was defined as Philadelphia chromosome-like (Ph-like) ALL. 
Surprisingly, a search for genetic alterations driving these types of leukemia has

revealed multiple mutations and/or aberrations, involving different signal transduc-
tion pathways. Clinically, patients with Ph-like ALL have been recognized as being
at a high risk for a poor response to therapy or relapse.1-3 Herein we describe the
challenges in the diagnosis and appropriate treatment selection for this heteroge-
neous group of patients.



Driver mutations and aberrations in Philadelphia
chromosome-like acute lymphoblastic leukemia

In their landmark analysis of 1,725 ALL patients,
Roberts et al. found kinase-activating mutations in more
than 90% of patients with Ph-like expression.4 The large
variability of genetic alterations recognized in patients
with Ph-like ALL makes further sub-categorization a chal-
lenge. For the purpose of a clinically oriented discussion,
we believe clustering Ph-like ALL into the following four
subgroups would be helpful. 

CRLF2-associated Philadelphia chromosome-like acute
lymphoblastic leukemia 
The CRLF2 protein is a cytokine receptor which het-

erodimerizes with interleukin-7 receptor (IL7R)-α, and
upon binding to its ligand (thymic stromal lymphopoi-
etin) activates the JAK-STAT pathway. This activation
leads to cell proliferation without concomitant differenti-
ation.5 In ALL, high expression of CRLF2 has been shown
to correlate with reduced survival.4,6,7 Several genotypes
are associated with high CRLF2 expression, including a
chromosomal translocation with IGH-CRLF2 fusion, a
cryptic interstitial deletion which results in a P2RY8-
CRLF2 fusion and CRLF2 point mutations engendering
uncontrolled receptor activation. 
The IGH-CRLF2 translocation is an early event in

leukemogenesis and remains stable in relapse, while the
P2RY8-CRLF2 translocation takes place later during dis-
ease development, is often subclonal and cannot be rec-
ognized in one-third to one-half of relapsed patients.8,9
Additionally, CRLF2 expression is 10-100-fold higher in
patients with IGH-CRLF2 than in those with the P2RY8-
CRLF2.5,10,11 With regard to the prognostic impact, the
relapse risk of IGH-CRLF2 ALL patients has been shown
to be twice as high as that of P2RY8-CRLF2 ALL
patients.12
Deregulation of CRLF2 expression is likely to require

additional players to drive the leukemic process. In an
ALL cell line with the IGH-CRLF2 translocation, knock-
down of CRLF2 was not found to reduce proliferation of
leukemic cells dramatically.5 About half of ALL patients
with deregulated CRLF2 also have mutations in the JAK-
STAT pathway4,7 and these latter are associated with a
worse prognosis.4,13 In an analysis by the German
Multicenter Study Group for Adult ALL (GMALL), one-
third of adult patients with high CRLF2 expression were
not found to harbor translocations or point mutations
involving CRLF2.14 Similarly, in a recently published
study, the CRLF2 translocation was identified in only
80% of Ph-like ALL patients demonstrating high CRLF2
expression.15 In fact, high CRLF2 immunophenotypic
expression does not per se confer a worse prognosis, if it
is not accompanied by CRLF2 genetic aberrations.11
Notably, high CRLF2 expression is reported to be signifi-
cantly more frequent among patients of Hispanic ethnici-
ty.12,16
Mutations/deletions in the IKZF1 gene are prevalent in

patients with Ph-like ALL1,17,18 and the presence of these
mutations may be a better predictor of a poor prognosis
than a high level of CRLF2 expression per se.17
Interestingly, a Chinese group recently demonstrated that
IKZF1 is an epigenetic regulator of CRLF2, and IKZF1
mutations/deletions can lead to overexpression of
CRLF2.19

ABL-class translocations
Translocations involving the pro-oncogenes ABL1,

ABL2, CSF1A and PGDFRB are evident in about 15% of
Ph-like ALL cases.4,20 Due to the translocations, these genes
lose their normal regulatory control; however, no specific
partner genes, among the many reported, have been iden-
tified as being of particular prognostic significance. The
presence of any of these translocations is considered suffi-
cient for the diagnosis of Ph-like ALL.20 The translocations
in question are mutually exclusive with CRLF2 and JAK-
STAT mutations but, as in other Ph-like subgroups, are
often concomitantly present with IKZF1 mutations/dele-
tions.4,20 Patients with ABL-activating translocations usual-
ly respond poorly to therapy, continue to have measurable
residual disease (MRD) after induction20 and should be
treated with ABL inhibitors, as discussed later.

EPOR and JAK2 translocations
EPOR translocations, capable of partnering with multi-

ple different genes, are grouped together with JAK2
translocations as they share the same mechanism of
inducing cell proliferation through constitutive activation
of the JAK pathway. These translocations are easy to rec-
ognize by fluorescence in situ hybridization (FISH) analysis
and they are associated with a poor prognosis.4,21,22 EPOR-
involving translocations lead to truncation of the erythro-
poietin receptor (EPO-R), its stabilization and overexpres-
sion, resulting in downstream activation of the JAK2 path-
way.23 These chromosomal aberrations comprise about
10% of Ph-like ALL alterations, are associated with IKZF1
mutations or deletions and could potentially be targeted
with JAK inhibition.17

JAK/STAT or RAS mutations: 
This subgroup accounts for about 15-20% of Ph-like

ALL cases. It includes genetic alterations of IL7R, FLT3,
SH2B3, JAK1, JAK3, IL2RB and RAS genes.24 These muta-
tions are all subclonal4 and there is paucity of data regard-
ing the dynamics of their alterations in relapse.
Remarkably, IKZF1 is less common in this subtype of Ph-
like ALL than in the above-mentioned ones.4,20,22 The prog-
nosis of these patients is believed to be better than that of
patients with other subtypes of Ph-like ALL.4,22 Individuals
presenting with a RAS mutation as their sole driver muta-
tion share both biological and clinical characteristics with
the above-delineated JAK/STAT-derived group.
Biologically, JAK/STAT and RAS signaling pathways are
closely connected. Notably, other kinase mutations, i.e.,
NRAS, KRAS, PTPN11, and NF14 are observed not only in
Ph-like ALL but also in hyperploid ALL.25,26 They are also
found, with different prevalences, in all other subgroups
of Ph-like ALL.4,20,22

Clinical presentation and diagnostic approaches
to Philadelphia chromosome-like acute 
lymphoblastic leukemia

The prevalence of Ph-like ALL in cohorts of newly diag-
nosed pediatric patients is about 10-20%,1,3,4,18 and rises to
20-30% in adults.13,14,27 Ph-like cases are by definition
BCR/ABL-negative, and are also always MLL-,
ETV/RUNX1- and TCF3/PBX1-negative. Thus, they con-
stitute a subgroup within the B cell other ALL.17,28 It has
been previously reported that some patients may present
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with an overlapping group of hyperploid cytogenetics
and Ph-like ALL.11,28 A recent comprehensive and integra-
tive genomic classification of B-ALL categorized 23
leukemia subclasses, clearly defined by a specific genetic
aberration, thus minimizing overlaps with the Ph-like
phenotype.29
There is no consensus approach to the diagnosis of

patients who express a Ph-like gene signature.30 These
patients usually present with a higher white blood cell
count1,4,17,22,27,31 and are likely to remain MRD-positive fol-
lowing standard induction regimens.4,13,14,22,28,31 Selecting an
optimal screening method and defining the patient popu-
lation to be screened are still moving targets. 
When first recognized, Ph-like ALL were retrospectively

identified based upon gene expression profiling of  a very
wide array of genes.1,4,32 Notably, two large gene arrays,1,4
using a 257-gene probe set and a 110-gene set2 shared only
a minimal number of genes. Application of both  arrays to
each of two different cohorts of patients resulted in low
concordance.2 Remarkably, kinase fusion cases in the two
cohorts were identified by both methods in complete con-
cordance, while there were many cases of high expression
of CRLF2 and JAK/STAT mutations that were recognized
with the 257-gene probe set and not with the 110-gene
set.2 Thus, while the evaluation of newly diagnosed "B-
cell other" ALL patients should include an attempt to iden-
tify the Ph-like phenotype,33 a definitive diagnosis should
not rely on the gene expression phenotype but rather on
the identification of a genetic aberration in the cell signal-
ing related gene. RNA sequencing enables both identifica-
tion of a Ph-like phenotype and comprehensive analysis of
aberrant translocations. As this method is technically
complicated and unavailable in most centers, a routine
diagnosis of Ph-like ALL requires a combination of a sim-
ple screening test and an ultimate method to identify the
culprit leukemia driver in each patient.  
One screening approach is to search for a specific phe-

notype using limited sets of genes.34 Alternatively, a panel
of FISH probes or polymerase chain reaction (PCR) tests
covering the most common ABL, JAK/EPOR and CRLF2
translocations can be employed as a screening tool.27,35
Low density microarrays (LDA), using a limited number
of genes were first employed by Harvey et al.36 With an
array of only 15 genes the tests were highly sensitive and
specific (93% and 89%, respectively) for the identification
of Ph-like ALL. The concordance between this assay and
the result of the original 257-gene set analysis was only
87%, mainly due to over-diagnosis of cases of high CRLF2
expression by the LDA. Application of this method in
high-risk pediatric ALL patients failed to detect mutations
in about 15% of LDA-positive patients.15 Interestingly, the
study identified nine patients with CRLF2 translocations
who were LDA-negative, which translated into a false
negative value of less than 1%. Other LDA with fewer
genes were developed by Heatley et al.18 and Roberts et
al.37 To simplify this approach, Chiaretti et al. used quanti-
tative real-time PCR to assess expression levels of ten
genes and create a Ph-like ALL predictor.27 Expression-
based screening methods identify a phenotype and should
be followed by a search for a targetable genotype, either
by RNA sequencing, whole exome or targeted PCR panel
sequencing, or by multiple-probe FISH analysis. As men-
tioned above, false negative results are rare; however,
there are a substantial number of cases presenting with an
overexpression signature but with no detectable driver

genetic aberration. The actual risk and clinical implica-
tions in such cases are unknown. 
It is also possible to screen for Ph-like ALL by searching

directly for specific translocations and mutations. In a
study conducted by the research group from the Munich
Leukemia Laboratory in Germany38 screening by multiple
FISH probes and targeted PCR (ABL1, ABL2, CSF1R,
PDGFRB along with quantitative PCR for CRLF2) success-
fully identified all patients who had a Ph-like gene expres-
sion profile according to the aforementioned 257-gene set.
Another advantage of this method is the option of using
quantitative PCR of the found driver mutation for MRD
detection, although the negative predictive value of each
aberration should be evaluated separately. Cooperative
groups and leading centers around the world use different
methods for the identification of Ph-like ALL. In Europe,
some groups employ multiplex PCR or commercially avail-
able targeted RNA sequencing kits, while others use a FISH
panel for primary screening. In the USA, the Children's
Oncology Group (COG) uses LDA as the screening
approach. Comprehensive RNA sequencing is conducted
only in specific centers such as the St. Jude Medical Center.
The variability of the methods available makes the diag-

nosis of a Ph-like expression signature in a patient  with no
defined genetic alteration a challenge. Figure 1 presents a
suggested clinical screening algorithm for Ph-like ALL to
be applied outside of clinical trials. 

Treatment of Philadelphia chromosome-like
acute lymphoblastic leukemia

To illustrate some of the key therapeutic issues and
dilemmas in Ph-like ALL, we present and discuss several
case scenarios. The discussion focuses on possible benefits
of induction therapy intensification for these patients,
post-induction treatment in MRD-positive and -negative
patients as well as management of the most challenging
cases of relapsed and elderly patients.

Is there any preferred induction regimen for patients
presenting with Philadelphia chromosome-like acute
lymphoblastic leukemia?

Case presentation. A 57-year old previously healthy man
diagnosed with pre-B ALL has just been transferred from a rural
hospital to your center. His peripheral blast count at diagnosis
was 32x109 cells/L which dropped significantly after 1 week of
steroid therapy. FISH panel analysis identified the EPOR
translocation as the sole cytogenetic aberration. What are prefer-
able induction therapy options? 
Remission induction protocols commonly employed in

ALL are variations of a consensus basic paradigm, combin-
ing four or five of the following drugs: anthracyclines, vin-
cristine, cyclophosphamide, L/PEG-asparaginase and
steroids. Differences between the protocols lie in their
intensity, schedule and the addition of 6-mercaptopurine,
cytarabine and rituximab. Data derived from randomized
comparisons are scanty and inconclusive regarding sur-
vival superiority following any induction regimen, despite
variations in remission rates in specific subgroups.39-41 In
current clinical practice, appropriate treatment intensity
and chemotherapy doses are usually determined based on
the risk of adverse events and not on disease characteris-
tics. Thus, a patient's advanced age, co-morbidities and/or
fragility would lead most physicians to prescribe
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low/moderate-intensity regimens, such as mini-Hyper-
CVAD (cyclophosphamide and dexamethasone at 50%
dose reduction, no anthracycline, methotrexate at 75%
dose reduction, cytarabine at 0.5 g/m2 x 4 doses) or other
similar protocols.42-44 
Until recently, the majority of Ph-like ALL patients were

identified late during the course of treatment, usually after
the completion of induction. Yet, with the implementa-
tion of CRFL2 immunophenotyping tests and routine
application of wide-spectrum, rapid FISH panels and LDA,
it is reasonable that a patient could be diagnosed with a
Ph-like aberration early during induction. Clinical trials,
such as the COG AALL1521, examining the benefit of
adding ruxolitinib to standard induction, are currently
recruiting patients. However, should the identification of
an EPOR or JAK translocation entail alteration of the
selected induction regimen for patients treated outside
clinical trials? Ph-like ALL patients tend to remain MRD-
positive after induction13,14 and are therefore planned for
intensification of consolidation therapy by most pediatric
protocols.45-47 Pediatric-oriented intensification regimens
are extremely toxic and difficult to administer to high-risk
adult patients. The presence of the EPOR translocation is
an established adverse prognostic feature,5,23 but due to its
rarity, randomized studies to assess a potential benefit of
different induction or intensification regimens will proba-
bly never be conducted. In the absence of such clinical tri-
als, intensified induction seems reasonable.
Among 148 recently reported adults with ALL, the

achievement of MRD negativity did not translate into a
better outcome in the 49 patients who were diagnosed

with a Ph-like disease.13 These patients were treated with
Hyper-CVAD or augmented BFM (Berlin-Frankfurt-
Munich) protocols with no specific intensification or mod-
ification for their high-risk ALL. In a pediatric series of 488
patients, those from the very high-risk group remained at
a high risk of relapse even if MRD negativity was
achieved.48 A new comprehensive study from the United
Kingdom has suggested that the cutoff level for clinically
relevant MRD is different for various genetic subtypes of
ALL.49 Thus, it is reasonable to consider all Ph-like ALL
patients as high risk, regardless of their MRD status. Some
data from 344 pediatric patients suggest that therapy
intensification for Ph-like MRD-positive patients can lead
to MRD eradication and improve outcome.28 However,
confirmation from additional, large studies is required to
feel confident about adopting chemotherapy intensifica-
tion as a suitable therapeutic approach to be used as
induction in Ph-like ALL patients. Notably, a randomized
trial testing the value of enhancing therapy for MRD-pos-
itive patients, regardless of their genetic background,
showed only a moderate improvement in event-free sur-
vival. However, even such benefit cannot be readily
extrapolated to genetically very high-risk groups.50
As to practical suggestions for the patient in question,

although not specifically tested in the context of Ph-like
ALL, addition of rituximab if leukemic cells are CD20+ and
the use of L-asparaginase or PEG-asparaginase, known to
be active in high-risk ALL, may be recommended. At the
same time, the risk of asparaginase-related complications
at his age needs to be considered.51-53
Blinatumomab, a bispecific antibody targeting CD19
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Figure 1. Screening of newly diagnosed cases of B-cell other acute lymphoblastic leukemia. *FISH-break-apart. **Targeted sequencing for mutations in JAK, IL7R,
FLT3, SH2B3, RAS and PTPN11. ALL: acute lymphoblastic leukemia; LDA: low density microarray; FISH: fluorescence in situ hybridization; Ph-like: Philadelphia chro-
mosome like. 



and CD3, has not yet been tested as an agent for Ph-like
ALL treatment intensification. However, it has been
proven to be effective in MRD eradication, and is current-
ly being incorporated in clinical trials as part of front-line
treatment for other high-risk ALL patients.

Should targeted agents be added to induction 
regimens if the diagnosis of Philadelphia 
chromosome-like acute lymphoblastic leukemia 
is confirmed?

Case presentation. A 23-year old woman with a recent diag-
nosis of B-ALL is being treated at your institution according to a
GMALL protocol.54 On day 15 of induction, results of molecular
tests reveal an IGH–CRLF2 translocation and a JAK2-activating
mutation at R683G in the pseudo-kinase domain. Should JAK
inhibitors be included in the treatment plan?
Most aberrations identified in patients with Ph-like ALL

lead to kinase activation in the JAK2 pathway.55,56
Preclinical studies support the rationale that JAK inhibi-
tion would potentially counteract the aberrant, prolifera-
tion signal derived from the mutation.57,58 Early-phase clin-
ical trials have shown that the combination of JAK
inhibitors with chemotherapy is safe and tolerable.59-61
However, the clinical benefit of the addition of currently
available JAK inhibitors, such as ruxolitinib, to chemother-
apy in ALL is questionable. Unlike myeloproliferative neo-
plasms, in which JAK2 inhibition with low/intermediate-
dose ruxolitinib is sufficient to yield a clinical response,62
in leukemia, the use of ruxolitinib has not yet been
approved. In addition, the proliferation signal in Ph-like
ALL is derived from several kinases and parallel blockage
of JAK 1&2, RAS and mTOR is probably needed for
leukemia cell elimination.30,58,63-65 Thus, high ruxolitinib
doses of at least 50 mg twice daily60,66 could be required to
achieve clinical benefit. Phase II studies exploring the role
of incorporating ruxolitinib in induction regimens for Ph-
like ALL are ongoing. 
For the minority of Ph-like patients presenting with

BCR-activating aberrations, data are accumulating that
kinase inhibition by BCR/ABL specific tyrosine kinase
inhibitors (TKI) may be beneficial.67-70 Most reports claim-
ing the benefit of TKI present results of patients diagnosed
with a PDGFRB translocation; so far, only a few cases of
successful TKI use in patients with ABL1 aberrations have
been reported.4,71,72 Although no generalized conclusion
can be made regarding the value of TKI in all ABL-activat-
ing cases, we feel that, given the established safety of
these drugs and the data provided in the above-mentioned
reports, arguments for off-label TKI use when considering
targeted therapies for Ph-like ALL are much stronger than
those for the use of JAK inhibitors. At the same time, one
should bear in mind that Ph-like leukemia is a genetically
complex disease and resistance to TKI, related to clonal
evolution and appearance of additional mutations, has
been reported.73-75 Therefore, the addition of targeted ther-
apy to first-line chemotherapy in Ph-like ALL is currently
considered experimental.

Approaches to post-remission therapy in patients with
Philadelphia chromosome-like acute lymphoblastic
leukemia with measurable residual disease 

Case presentation. A 63-year old man with B-ALL achieved
complete remission after two cycles of Hyper-CVAD therapy.
MRD analysis by fluorescence activated cell sorting identified
leukemic cells at a level of 4x10-3 in the bone marrow. Results of

molecular tests revealed the P2RY8-CRLF2 translocation. How
should this patient be treated?
MRD monitoring is currently incorporated in ALL treat-

ment protocols and decisions on the intensity of the first-
line regimen and upfront allogeneic stem cell transplanta-
tion (SCT) rely mainly on the results of MRD evaluation.
The likelihood of Ph-like ALL patients remaining MRD-
positive after standard induction is high. MRD positivity
at the end of induction is considered to be associated with
a high risk of relapse in patients with Ph-like ALL as well
as any other type of ALL. In such case, in adults, allogeneic
SCT is strongly recommended, while some pediatric pro-
tocols would mandate intensification, not necessarily fol-
lowed by allogeneic SCT.47,76 A retrospective study found
no survival benefit from allogeneic SCT compared to
chemotherapy intensification for high-risk pediatric
patients.77 However, since results of allogeneic SCT are
superior in patients who are MRD-negative prior to the
transplant,78,79 intensification of therapy aiming to eradi-
cate residual disease is logical even prior to allogeneic
SCT. An analysis of the outcomes of 81 children treated in
the ALL8 trial of the Australian and New Zealand
Children’s Haematology/Oncology Group (ANZCHOG)
showed that even if considering only patients who
achieved MRD negativity after allogeneic SCT, those who
started conditioning with detectable MRD had a worse
outcome.80 Although patients included in this study were
not tested for the Ph-like signature, most of them were
classified as "high-risk B-other" which probably overlaps
with Ph-like ALL. A recent analysis of results of the
ALL2008 study by the Nordic Society of Pediatric
Hematology and Oncology (NOPHO) suggested that
high-risk pediatric patients who remain MRD-positive at
the end of consolidation will have a better outcome if
residual disease is eradicated with intensive chemothera-
py blocks prior to allogeneic SCT.81 Evidence supporting
the administration of blinatumomab prior to transplant in
an attempt to eliminate MRD is accumulating.
Remarkably, based on a single-arm study, the Food and
Drug Administration specifically approved the use of bli-
natumomab for high-risk B-ALL patients who achieve
remission but remain MRD-positive. In a prospective trial,
MRD was eliminated in 78% of patients following blina-
tumomab treatment at a daily dose of 15 mg/m2.82 The
poor outcome of ALL patients older than 15 years, who
remain MRD-positive after initial therapy and receive no
blinatumomab prior to allogeneic SCT, was confirmed in
a large European retrospective analysis.83 Apart from the
recommendation of using this drug, additional treatment
intensification may also be considered. For instance, idaru-
bicin administration (for 3 days) just prior to
busulfan/cyclophosphamide conditioning has been
reported to improve post-SCT survival in MRD-positive
patients.84
As far as concerns the issue of MRD elimination in the

Ph-like ALL setting, there are case reports demonstrating
complete eradication or significant reduction of MRD at
the time of allogeneic SCT resulting from pre-transplant
intensification with ruxolitinib.61,85 However, the addition
of targeted therapy, such as JAK or BCR/ABL inhibitors,
should not substitute MRD eradication with blinatu-
momab or intensive chemotherapy prior to transplanta-
tion. Currently, no data are available to support mainte-
nance with JAK2 inhibitors following allogeneic SCT in
Ph-like ALL patients. While ruxolotinib has an immune
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suppressive effect and is suggested to be active against
graft-versus-host disease,86,87 its routine use may prevent
the benefit of the graft-versus-leukemia effect. For many
years the association of graft-versus-host disease with
graft-versus-leukemia activity has been considered ques-
tionable in ALL; yet, a currently published large retrospec-
tive study has confirmed an association between the pres-
ence of graft-versus-host disease and lower relapse rates.88
Moreover, a preclinical animal model challenges the effec-
tiveness of ruxolitinib maintenance in prevention of
leukemia relapse.89 Thus, ruxolitinib maintenance after
allogeneic SCT should be considered experimental.
For patients with Ph-like ALL who carry an ABL-activat-

ing mutation the question of post-transplant TKI mainte-
nance is unlikely to be answered in prospective clinical tri-
als, mainly because of the rarity of this condition. However,
safety data of post-transplant TKI maintenance can be
extrapolated from the Philadelphia chromosome-positive
ALL setting and encourage the use of this approach.
Persistence of MRD even after allogeneic SCT or failure

to eradicate it prior to transplantation is a poor prognostic
marker and a sign of impending relapse. In these circum-
stances, patients should be aggressively treated with
intensive therapy individualized according to their treat-
ment history and should be considered for chimeric anti-
gen receptor T-cell therapy. Preclinical data suggest that
for this very high-risk population, if IKZF1 mutations or
deletions are present, a clinical trial with focal adhesion
kinase (FAK) inhibitors could be an appropriate option.90,91

Patients with Philadelphia chromosome-like acute 
lymphoblastic leukemia who achieve measurable 
residual disease-negative remission

Case presentation. A 42-year old woman presented with B-
ALL with CRFL2 overexpression and a peripheral blood white
blood cell count of 105x109/L. Molecular evaluation identified the
IGH-CRLF2 translocation. Following two cycles of Hyper-
CVAD + PEG-asparaginase she achieved molecular remission
[MRD-negativity (<10-4), not detected by multicolor flow cytom-
etry assay]. How should this patient be further treated?
MRD is currently recognized as the most powerful risk

factor in ALL patients. Absence of MRD, as evaluated by
the tests capable of detecting even a low concentration
(10-4) of leukemic cells, is associated with a superior out-
come irrespective of molecular subtypes, patient's age and
treatment protocols used.77,92,93 However, in patients carry-
ing high-risk molecular aberrations, such as Ph-like ALL
patients, achievement of molecular remission does not
completely abrogate the risk of a relapse. In the pediatric
Australian ALL8 trial, among 666 recruited patients, the
relapse risk was significantly higher in Ph-like patients
with CRFL2 translocations than that in all non-Ph-like ALL
patients (57.8% vs. 16%, respectively; P<0.0001).80
Notably, ten of 14 (71.4%) relapses in Ph-like ALL patients
occurred despite the achievement of MRD negativity by
day 79.18 Similar results were reported in the AIEOP-BFM
ALL2000/R2006 study, in which a higher cumulative inci-
dence of relapse was observed in Ph-like ALL patients
(33.9% vs. 14.9% in non-Ph-like ALL; P=0.009) even
though a poor prednisone response and MRD positivity
rates were identical in both groups.94 Similarly, data on
adult patients demonstrated a high relapse rate in Ph-like
ALL patients, including those who achieved molecular
remission, regardless of whether BFM-based or Hyper-
CVAD regimens were used.13

A study by Roberts et al. suggested that risk-adapted
therapy assigning patients with a high MRD level to allo-
geneic SCT could overcome the substantial risk of
relapse.28 However, due to the lack of evidence supporting
routine assignment to allogeneic SCT, a recent expert
review and the updated recommendations from the
European Working Group for Adult Acute Lymphoblastic
Leukemia (EWALL) and the Acute Leukemia Working
Party of the European Society for Blood and Marrow
Transplantation (EBMT) advocated the use of allogeneic
SCT during first complete remission only in MRD-posi-
tive pediatric and adult patients with Ph-like ALL.95,96
Relapse rates in MRD-negative adults are higher than in
pediatric patients with identical MRD kinetics of eradica-
tion. Therefore, in our opinion, a more liberal allogeneic
SCT referral policy should be considered in adults with
Ph-like ALL even if they achieve molecular remission.
Additional risk factors, such as an IKZF1 alteration, have
the potential to identify patients at the highest risk of
relapse.97-99 However, we are unaware of any available
prospective data on patients’ outcome following therapy
stratification by IKZF1 alteration. 

Relapse in patients with Philadelphia chromosome-like
acute lymphoblastic leukemia

Case presentation. A 7-year old child presented with B-ALL
and an IGH-CRLF2 translocation. After COG-based induction,
MRD was detected at a level of 10-2 and high-risk intensive
chemotherapy blocks were administered. Two weeks after the last
chemotherapy the child had a full-blown hematologic relapse.
How should this patient be managed? 
Leukemia in patients presenting with early relapse right

after intensive therapy is a devastating disease and pre-
scribing additional chemotherapy seems futile. As
described above, an anticipated effect of JAK inhibitors is
modest and therefore in patients at a high risk of disease
relapse immunotherapy should be the selected option. In
CD19+ ALL, blinatumomab is an acceptable option for
both adult100 and pediatric patients.101,102 For adult patients,
inotuzumab ozogamicin is also a valid option.103 Although
still not widely available, chimeric antigen receptor T-cell
therapy is a powerful strategy to be used in such high-risk
patients. A remission achieved with chimeric antigen
receptor T-cell therapy should be followed by allogeneic
SCT.104-106 To minimize the risk of CD19– escape and
relapse, there is a rationale for combining CD19 with
CD22-directed therapies and this combination should be
evaluated against the risk of developing veno-occlusive
disease during subsequent allogeneic SCT.107 Targeted
therapy based on a patient’s classification as having Ph-
like ALL and/or identification of a specific genetic aberra-
tion should not replace the use of other efficient agents
available for the relapse setting. 

Patients of advanced age with Philadelphia 
chromosome-like acute lymphoblastic leukemia

Case presentation. A 78-year old man who until recent days
had been healthy with no chronic diseases, was admitted to hos-
pital because of ALL. At presentation his white blood cell count
was 55x109/L, his hemoglobin concentration was 8.5 g/dL and a
spontaneous tumor lysis syndrome was diagnosed. Cytogenetic
evaluation revealed an IGH-CRLF2 translocation and a molec-
ular test identified an activating JAK2 mutation at the R683G
position. How should this patient be treated?
Patients of advanced age diagnosed with ALL may
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achieve remission with intensive therapy but despite that
are anticipated to experience a poorer survival mainly due
disease relapse.108 The Ph-like signature was reported in
24% of ALL patients over the age of 6522 but no prospec-
tive studies have included these patients, considering their
genetic profile. Given that in most patients of advanced
age, prolonged intensive chemotherapy followed by allo-
geneic SCT is not feasible, all such patients should be con-
sidered at high risk of relapse, regardless of their gene
expression profile. The most promising approach thus far,
which provided a considerable long-term survival  in Ph-
negative ALL patients older than 60 years, was reported
by Kantarjian et al.109 In their protocol, researchers from
MD Anderson Cancer Center replaced a significant por-
tion of chemotherapy with inotuzumab ozogamicin,
hence creating a less toxic first-line regimen.109 With a
median follow-up of 29 months, the 2-year progression-
free survival rate of 52 patients with a median age of 68
years was 59%. Blinatumomab can also be safely added to
such a protocol.110 We consider such a modified induction
an acceptable approach for all Ph-negative ALL patients of
advanced age. As previously discussed, the addition of tar-
geted agents is rational only if BCR/ABL-activating genetic
aberrations are identified and thus, for patients treated on
such protocols molecular evaluation can be limited to
BCR/ABL-activating lesions only. Outside of clinical trials,
the patient in question should be treated with a less toxic
regimen. Assuming that such regimen will not result in
MRD eradication, blinatumomab should be added as early

as possible, and inclusion of inotuzumab ozogamicin
should be encouraged, if its off-label use is possible.

Summary

Patients with the Ph-like gene expression pattern are at
a high risk of relapse and theoretically could be offered
treatment considering specific genetics of their disease.
However, given that this group of patients is heteroge-
neous, it is unlikely that prospective studies will be con-
ducted for each specific mutation to identify optimal treat-
ment protocols. Moreover, no consensus exists regarding
the preferred approach to be used for the diagnosis of Ph-
like ALL and management of a specific patient. Under
these circumstances, the following three principles should
guide the management of these patients. Screening for the
Ph-like pattern should be adopted in routine practice in all
patients. Patients should be informed that current screen-
ing methods may miss rare gene mutations that could be
subject to off-label use of available targeted therapies (e.g.,
crizotinib); nevertheless, the effect of targeted therapy on
such rare leukemic mutations has not been reported. If the
ABL-activating aberration is identified, adding TKI to ther-
apy is advised. All patients with identified kinase-activat-
ing aberrations should be defined as high risk; hence,
intensification of chemotherapy, treatment with kinase
targeting agents and/or antibody-derived novel agents
may be considered.  

Ph-like ALL
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