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In this paper a mosquito-borne parasitic infection model in periodic environment is considered. Threshold parameter 𝑅0 is given
by linear next infection operator, which determined the dynamic behaviors of system.We obtain that when 𝑅0 < 1, the disease-free
periodic solution is globally asymptotically stable and when 𝑅0 > 1 by Poincaré map we obtain that disease is uniformly persistent.
Numerical simulations support the results and sensitivity analysis shows effects of parameters on 𝑅0, which provided references to
seek optimal measures to control the transmission of lymphatic filariasis.

1. Introduction

Lymphatic filariasis is a parasitic disease caused by filarial
nematode worms and is a mosquito-borne disease that is a
leading cause of morbidity worldwide. Lymphatic filariasis
affects 120million humans in tropical and subtropical areas of
Asia, Africa, theWestern Pacific, and some parts of theAmer-
icas [1]. It is estimated that 40 million people are chronically
disabled by lymphatic filariasis, making lymphatic filariasis
the leading cause of physical disability in the world [2].There
are some clinical manifestations for infective individuals,
such as acute fevers, chronic lymphedema, elephantiasis, and
hydrocele [3].

W. bancrofti parasites, which account for 90% of the
global disease burden, dwell in the lymphatic system, where
the adult female worms release microfilariae (mf) into the
blood. Mf are ingested by biting mosquitoes as a blood meal
of a mosquito, through several developmental stages, that
is, first into immature larvae and then L3 larvae. Infective
stage larvae L3 actively escape from themosquitomouthparts
entering another human host at the next blood meal through
skin [4]. These L3 larvae subsequently develop into worms
in humans and the process continues. So in order to remove
lymphatic filariasis from the society, not only are the infected
persons to be recovered but also the infected vectors are to be
killed or removed.

Mathematical models are powerful tools in disease con-
trol and may provide a powerful strategic tool for designing
and planning control programs against infectious diseases
[5]. Since 1960s, simple mathematical models of infection
have been in existence for filariasis and provided useful
insights into the dynamics of infection and disease in
human populations [6–8]. Michael et al. describe the first
application of the moment closure equation approach to
model the sources and the impact of this heterogeneity
for microfilarial population dynamics [9]. Simulation model
for lymphatic filariasis transmission and control [10, 11]
suggests that the impact of mass treatment depends strongly
on the mosquito biting rate and on the assumed coverage,
compliance, and efficacy; sensitivity analysis showed that
some biological parameters strongly influence the predicted
equilibrium pretreatment mf prevalence. References [12–14]
take into account the complex interrelationships between the
parasite and its human and vector hosts and provide the
management decision support framework required for defin-
ing optimal intervention strategies and for monitoring and
evaluating community-based interventions for controlling or
eliminating parasitic diseases. Gambhir and Michael have
shown a joint stability analysis of the deterministic filariasis
transmission model [15]. All such models have proved to be
of great value in guiding and assessing control efforts [16, 17].
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Environmental and climatic factors play an important
role for the transmission of vector-borne diseases and are
researched in many articles [18, 19]. For lymphatic filariasis,
proper temperature and humidity are more beneficial for
mosquito population to give birth and propagate. For exam-
ple, in temperate climates and in tropical highlands, temper-
ature restricts vector multiplication and the development of
the parasite in the mosquito, while in arid climates precipita-
tion restricts mosquito breeding.Therefore, the transmission
of lymphatic filariasis exhibits seasonal behaviors especially
in the northern areas [20, 21]. Nonautonomous phenomenon
in infectious disease often occurs, and basic reproductive
number of periodic systems is described as the spectral radius
of the next infection operator [22].

But the dynamics system considers the periodic envi-
ronment between human and mosquito is little. How to
make a comprehensive understanding of the role of periodic
environment in the transmission of lymphatic filariasis and
how to control the transmission of lymphatic filariasis effi-
ciently are problems that provide motivation for our study.
For the limitation of ecology environmental resources such
as food and habitat, it is reasonable to adopt logistic growth
for mosquito population. Nonautonomous logistic equations
have been studied [23–28]. Based on above works and [29–
34], we investigate a simple lymphatic filariasis model in
periodic environment:𝑆󸀠ℎ (𝑡) = Λ (𝑡) − 𝛽1 (𝑡) 𝑆ℎ (𝑡) 𝐼𝑚 (𝑡)1 + 𝛼1 (𝑡) 𝑆ℎ (𝑡) − 𝜇1 (𝑡) 𝑆ℎ (𝑡)+ 𝜐 (𝑡) 𝐼ℎ (𝑡) ,𝐼󸀠ℎ (𝑡) = 𝛽1 (𝑡) 𝑆ℎ (𝑡) 𝐼𝑚 (𝑡)1 + 𝛼1 (𝑡) 𝑆ℎ (𝑡) − 𝜇1 (𝑡) 𝐼ℎ (𝑡) − 𝜐 (𝑡) 𝐼ℎ (𝑡) ,𝑆󸀠𝑚 (𝑡) = 𝑟 (𝑡) 𝑆𝑚 (𝑡) (1 − 𝑆𝑚 (𝑡)𝐾 (𝑡) ) − 𝛽2 (𝑡) 𝑆𝑚 (𝑡) 𝐼ℎ (𝑡) ,𝐼󸀠𝑚 (𝑡) = 𝛽2 (𝑡) 𝑆𝑚 (𝑡) 𝐼ℎ (𝑡) − 𝜇2 (𝑡) 𝐼𝑚 (𝑡) .

(1)

In view of the biological background, system (1) has initial
values 𝑆0ℎ (0) > 0,𝐼0ℎ (0) > 0,𝑆0𝑚 (0) > 0,𝐼0𝑚 (0) > 0,

(2)

where 𝑆ℎ(𝑡) and 𝐼ℎ(𝑡) separately denote the densities of
the susceptible and the infective individuals for human
population at time 𝑡; 𝑆𝑚(𝑡) and 𝐼𝑚(𝑡) represent the densities
of the susceptible and the infected individuals for mosquito
population at time 𝑡, respectively. It is easy to see that𝑁ℎ(𝑡) =𝑆ℎ(𝑡) + 𝐼ℎ(𝑡) and 𝑁𝑚(𝑡) = 𝑆𝑚(𝑡) + 𝐼𝑚(𝑡) are size of human
population andmosquito population, respectively.Λ(𝑡) is the
recruitment rates of human host at time 𝑡; 𝜇1(𝑡) and 𝜇2(𝑡)
are the death rate of human host and infected mosquito,
including the natural death rate and disease-induced death

rate; 𝛽1(𝑡) and 𝛽2(𝑡) denote the contact rate of infected
mosquito to humans or infected humans to mosquito; 𝛼1(𝑡)
is the force of infection saturation at time 𝑡; 𝜐(𝑡) is the
recovery rate of infectious human host at time 𝑡; 𝑟(𝑡) and𝐾(𝑡) are the intrinsic growth rate and the carrying capacity of
environment for mosquito population at time 𝑡, respectively.

In view of the biological background of system (1), we
introduce the following assumptions:

(H1) All coefficients are continuous, positive 𝜔-periodic
functions;

(H2) ∫𝜔0 𝑟(𝑡)𝑑𝑡 > 0.
The organization of this paper is as follows. In Section 2,

some preliminaries are given and compute the basic pro-
duction number. In Section 3, we will study the globally
asymptotical stability of the disease-free periodic solution
and the uniform persistence of the model. In Section 4,
simulations and sensitive analysis are given to illustrate
theoretical results and exhibit different dynamic behaviors.

2. Basic Reproduction Number

Denote 𝑓𝐿 = sup
𝑡∈[0,𝜔)

𝑓 (𝑡) ,𝑓𝑀 = inf
𝑡∈[0,𝜔)

𝑓 (𝑡) , (3)

where 𝑓(𝑡) is a continuous 𝜔-periodic function.
Let (𝑅𝑘, 𝑅𝑘

+) be the standard ordered 𝑘-dimensional
Euclidean space with a norm ‖ ⋅ ‖. For 𝑢, V ∈ 𝑅𝑘, we denote𝑢 ≥ V if 𝑢 − V ∈ 𝑅𝑘

+, 𝑢 > V if 𝑢 − V ∈ 𝑅𝑘
+ \ {0}, and 𝑢 ≫ V if𝑢 − V ∈ Int(𝑅𝑘

+), respectively.
Let 𝐴(𝑡) be a continuous, cooperative, irreducible, and𝜔-periodic 𝑘 × 𝑘 matrix function; we consider the following

linear system: 𝑑𝑥 (𝑡)𝑑𝑡 = 𝐴 (𝑡) 𝑥 (𝑡) . (4)

Denote Φ𝐴(𝑡) be the fundamental solution matrix of (4)
and let 𝜌(Φ𝐴(𝜔)) be the spectral radius of Φ𝐴(𝜔). Then by
the Perron-Frobenius theorem, 𝜌(Φ𝐴(𝜔)) is the principle
eigenvalue of Φ𝐴(𝜔) in the sense that it is simple and admits
an eigenvector 𝑉∗ ≫ 0.
Lemma 1 (see [35]). Let 𝑝 = (1/𝜔) ln 𝜌(Φ𝐴(𝜔)), where 𝐴(𝑡)
is a continuous, cooperative, irreducible, and 𝜔-periodic 𝑘 ×𝑘 matrix function. Then system (4) gives a solution 𝑥(𝑡) =𝑒𝑝𝑡V(𝑡), where V(𝑡) is a positive 𝜔-periodic function.

When system (1) gives disease-free solution, obviously𝐼ℎ(𝑡) ≡ 0 and 𝐼𝑚(𝑡) ≡ 0. So we get the following subsystem:𝑆󸀠ℎ (𝑡) = Λ (𝑡) − 𝜇1 (𝑡) 𝑆ℎ (𝑡) , (5)𝑆󸀠𝑚 (𝑡) = 𝑟 (𝑡) 𝑆𝑚 (𝑡) (1 − 𝑆𝑚 (𝑡)𝐾 (𝑡) ) . (6)
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From Lemma 2.1 of [33] and Lemma 2 of [23] we obtain the
following lemma.

Lemma2. (i) System (5) has a unique positive𝜔-periodic solu-
tion 𝑆∗ℎ (𝑡)which is globally asymptotically stable. (ii) System (6)
has a globally uniformly attractive 𝜔-periodic solution 𝑆∗𝑚(𝑡).

So, according to Lemma 2, system (1) has a unique
disease-free periodic solution (𝑆∗ℎ (𝑡), 0, 0, 𝑆∗𝑚(𝑡)).

In the following, we use the generation operator approach
to define the basic reproduction number of (1). We check
the assumptions (A1)–(A7) in [22] and denote 𝑥 = (𝐼ℎ(𝑡),𝐼𝑚(𝑡), 𝑆ℎ(𝑡), 𝑆𝑚(𝑡))𝑇 and

F (𝑡, 𝑥) =((
(

𝛽1 (𝑡) 𝑆ℎ (𝑡) 𝐼𝑚 (𝑡)1 + 𝛼1 (𝑡) 𝑆ℎ (𝑡)𝛽2 (𝑡) 𝑆𝑚 (𝑡) 𝐼ℎ (𝑡)00
))
)

,

V
− (𝑡, 𝑥) =((((

(

𝜇1 (𝑡) 𝐼ℎ (𝑡) + 𝜐 (𝑡) 𝐼ℎ (𝑡)𝜇2 (𝑡) 𝐼𝑚 (𝑡)𝛽1 (𝑡) 𝑆ℎ (𝑡) 𝐼𝑚 (𝑡)1 + 𝛼1 (𝑡) 𝑆ℎ (𝑡) + 𝜇1 (𝑡) 𝑆ℎ (𝑡)
𝑟 (𝑡) 𝑆2𝑚 (𝑡)𝐾 (𝑡) + 𝛽2 (𝑡) 𝑆𝑚 (𝑡) 𝐼ℎ (𝑡)

))))
)

,

V
+ (𝑡, 𝑥) = ( 00Λ (𝑡) + 𝜐 (𝑡) 𝐼ℎ (𝑡)𝑟 (𝑡) 𝑆𝑚 (𝑡) ) .

(7)

So system (1) can be written as the following form:𝑥󸀠 (𝑡) = F (𝑡, 𝑥 (𝑡)) −V (𝑡, 𝑥 (𝑡)) ≡ 𝑓 (𝑡, 𝑥 (𝑡)) , (8)

whereV(𝑡, 𝑥) = V−(𝑡, 𝑥)−V+(𝑡, 𝑥). From the expressions of
F(𝑡, 𝑥) andV(𝑡, 𝑥), it is easy to see that conditions (A1)–(A5)
are satisfied. We will check (A6) and (A7).

Obviously, 𝑥∗(𝑡) = (0, 0, 𝑆∗ℎ (𝑡), 𝑆∗𝑚(𝑡)) is disease-free
periodic solution of system (8). We define𝑀(𝑡) = (𝜕𝑓𝑖 (𝑡, 𝑥∗ (𝑡))𝜕𝑥𝑗 )

3≤𝑖,𝑗≤4

, (9)

where 𝑓𝑖(𝑡, 𝑥∗(𝑡)) and 𝑥𝑖 are the 𝑖th component of 𝑓(𝑡, 𝑥(𝑡))
and 𝑥, respectively. So we can get

𝑀(𝑡) = (−𝜇1 (𝑡) 00 𝑟 (𝑡) − 2𝑟 (𝑡)𝐾 (𝑡) 𝑆∗𝑚 (𝑡))3≤𝑖,𝑗≤4

. (10)

For 𝑆∗𝑚(𝑡) is the globally uniformly attractively 𝜔-periodic
solution of (6), ∫𝜔

0
𝑟 (𝑡) [1 − 𝑆∗𝑚 (𝑡)𝐾 (𝑡) ] 𝑑𝑡 = 0. (11)

Hence,

exp{∫𝜔

0
[𝑟 (𝑡) − 2𝑟 (𝑡)𝐾 (𝑡) 𝑆∗𝑚 (𝑡)] 𝑑𝑡}= exp{−∫𝜔

0
[ 𝑟 (𝑡)𝐾 (𝑡)𝑆∗𝑚 (𝑡)] 𝑑𝑡} < 1. (12)

It is easy to see that 𝜌(Φ𝑀(𝜔)) < 1, and condition (A6) holds.
Further, we define

F (t) = (𝜕F𝑖 (𝑡, 𝑥∗ (𝑡))𝜕𝑥𝑗 )
1≤𝑖,𝑗≤2

,
V (t) = (𝜕V𝑖 (𝑡, 𝑥∗ (𝑡))𝜕𝑥𝑗 )

1≤𝑖,𝑗≤2
. (13)

F𝑖(𝑡, 𝑥∗(𝑡)) and V𝑖(𝑡, 𝑥∗(𝑡)) are the 𝑖th component of
F(𝑡, 𝑥∗(𝑡)) andV(𝑡, 𝑥∗(𝑡)). So we obtain that

F (t) = ( 0 𝛽1 (𝑡) 𝑆∗ℎ (𝑡)1 + 𝛼1 (𝑡) 𝑆∗ℎ (𝑡)𝛽2 (𝑡) 𝑆∗𝑚 (𝑡) 0 ) ,
V (t) = (𝜇1 (𝑡) + 𝜐 (𝑡) 00 𝜇2 (𝑡)) .

(14)

Obviously 𝜌(Φ−𝑉(𝜔)) < 1; thus condition (A7) holds.
Let 𝑌(𝑡, 𝑠) be 2 × 2matrix solution of the following initial

value problem:𝑑𝑌 (𝑡, 𝑠)𝑑𝑡 = −𝑉 (𝑡) 𝑌 (𝑡, 𝑠) ∀𝑡 ≥ 𝑠; 𝑌 (𝑠, 𝑠) = 𝐼. (15)𝐼 is identity matrix. Let 𝐶𝜔 be the ordered Banach space of
all 𝜔-periodic functions from 𝑅 → 𝑅2, which is equipped
with maximum norm ‖ ⋅ ‖∞ and the positive cone 𝐶+

𝜔 = {𝜙 ∈𝐶𝜔 : 𝜙(𝑡) ≥ 0, ∀𝑡 ∈ 𝑅}. By the approach in [22], we consider
the following linear operator 𝐿 : 𝐶𝜔 → 𝐶𝜔. Suppose that𝜙(𝑠) ∈ 𝐶𝜔 is the initial distribution of infectious individuals
in this periodic environment. 𝐹(𝑠)𝜙(𝑠) is the distribution of
new infections produced by the infected individuals who
were introduced at time 𝑠, and 𝑌(𝑡, 𝑠)𝐹(𝑠)𝜙(𝑠) represents the
distributions of those infected individuals who were newly
infected at time s and remain in the infected compartment
at time 𝑡. Then𝜓 (𝑡) = ∫0

−∞
𝑌 (𝑡, 𝑠) 𝐹 (𝑠) 𝜙 (𝑠) 𝑑𝑠

= ∫+∞

0
𝑌 (𝑡, 𝑡 − 𝑎) 𝐹 (𝑡 − 𝑎) 𝜙 (𝑡 − 𝑎) 𝑑𝑎 (16)

denotes the distribution of accumulative new infections
at time 𝑡 produced by all those infected individuals 𝜙(𝑠)
introduced at previous time to 𝑡.(𝐿𝜙) (𝑡) = ∫+∞

0
𝑌 (𝑡, 𝑡 − 𝑎) 𝐹 (𝑡 − 𝑎) 𝜙 (𝑡 − 𝑎) 𝑑𝑎,∀𝑡 ∈ 𝑅, 𝜙 ∈ 𝐶𝜔. (17)
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As in [22], 𝐿 is the next infection operator, and the basic
reproduction number of system (1) is given by𝑅0 = 𝜌 (𝐿) , (18)

where 𝜌(𝐿) is the radius of 𝐿. Next we show that𝑅0 serves as a
threshold parameter for the local stability of the disease-free
periodic solution.

Theorem 3 (see Wang and Zhao [22], Theorem 2.2). Assume
that (A1)–(A7) hold; then the following statements are valid:

(i) 𝑅0 = 1 if and only if 𝜌(Φ𝐹−𝑉(𝜔)) = 1;
(ii) 𝑅0 > 1 if and only if 𝜌(Φ𝐹−𝑉(𝜔)) > 1;
(iii) 𝑅0 < 1 if and only if 𝜌(Φ𝐹−𝑉(𝜔)) < 1.
So the disease-free periodic solution (𝑆∗ℎ (𝑡), 0, 0, 𝑆∗𝑚(𝑡)) is

asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 > 1.
3. Global Stability of Disease-Free

Periodic Solution

DenoteΩ = {(𝑆ℎ, 𝐼ℎ, 𝑆𝑚, 𝐼𝑚) : 𝑆ℎ > 0, 𝐼ℎ ≥ 0, 𝑆𝑚 ≥ 0, 𝐼𝑚
≥ 0, 0 < 𝑆ℎ + 𝐼ℎ ≤ Λ𝐿𝜇𝑀1 < +∞, 0 ≤ 𝑆𝑚 + 𝐼𝑚
≤ 𝑀∗

𝑚Δ < +∞} .
(19)

Ω is a positively invariant set with respect to system (1) and a
global attractor of all positive solutions of system (1).𝑁󸀠

ℎ (𝑡) = Λ (𝑡) − 𝜇1 (𝑡)𝑁ℎ (𝑡) ≤ Λ𝐿 − 𝜇𝑀1 𝑁ℎ (𝑡) , (20)

where Λ𝐿 = sup𝑡>0Λ(𝑡) and 𝜇𝑀1 = inf 𝑡>0𝜇1(𝑡). So it is easy to
obtain𝑁ℎ(𝑡) ≤ Λ𝐿/𝜇𝑀1 .𝑁󸀠

𝑚 (𝑡) = 𝑟 (𝑡) 𝑆𝑚 (𝑡) (1 − 𝑆𝑚 (𝑡)𝐾 (𝑡) ) − 𝜇2 (𝑡) 𝐼𝑚 (𝑡)≤ (𝑟 (𝑡) + 𝜇2 (𝑡)) 𝑆𝑚 (𝑡) − 𝜇2 (𝑡)𝑁𝑚 (𝑡)≤ 𝑀𝑚 − 𝜇2 (𝑡)𝑁𝑚 (𝑡) , (21)

where𝑀𝑚 = sup𝑡∈[0,𝜔)(𝑟(𝑡) + 𝜇2(𝑡))𝑆𝑚(𝑡).
From the third equation of (1), for all 𝑡 ≥ 0 we have𝑆󸀠𝑚 (𝑡) ≤ 𝑟 (𝑡) 𝑆𝑚 (𝑡) (1 − 𝑆𝑚 (𝑡)𝐾 (𝑡) ) ; (22)

by the comparison principle and Lemma 2, we obtain

lim
𝑡→∞

sup 𝑆𝑚 (𝑡) ≤ lim
𝑡→∞

sup 𝑆∗𝑚 (𝑡) ≤ 𝑀∗
𝑚, (23)

where 𝑆∗𝑚(𝑡) is the globally uniformly attractively positive 𝜔-
periodic solution and𝑀∗

𝑚 = max𝑡∈[0,𝜔]𝑆∗𝑚(𝑡). So, for any small𝜖 existing a 𝑡0, for all 𝑡 ≥ 𝑡0 we have𝑆𝑚 (𝑡) ≤ 𝑆∗𝑚 (𝑡) + 𝜀 ≤ 𝑀∗
𝑚 + 𝜖. (24)

So we obtain𝑁󸀠
𝑚 (𝑡) ≤ sup

𝑡≥0
(𝑟 (𝑡) + 𝜇2 (𝑡)) (𝑀∗

𝑚 + 𝜖)− 𝜇2 (𝑡)𝑁𝑚 (𝑡) , (25)

and lim𝑡→∞ sup𝑁𝑚(𝑡) ≤ (𝑀∗
𝑚+𝜖)Δ, whereΔ = sup𝑡>0 (𝑟(𝑡)+𝜇2(𝑡))/inf 𝑡>0𝜇2(𝑡). For 𝜖 small enough,𝑁𝑚(𝑡) ≤ 𝑀∗

𝑚Δ.
Theorem4. If𝑅0 < 1, the disease-free periodic solution (𝑆∗ℎ (𝑡),0, 𝑆∗𝑚(𝑡), 0) is globally asymptotically stable. And if 𝑅0 > 1, it is
unstable.

Proof. ByTheorem 3 we obtain that if 𝑅0 < 1, (𝑆∗ℎ (𝑡), 0, 𝑆∗𝑚(𝑡),0) is locally stable. Next we prove that when 𝑅0 < 1 the
disease-free solution (𝑆∗ℎ (𝑡), 0, 𝑆∗𝑚(𝑡), 0) has global attractivity.

When 𝑅0 < 1 and by (iii) of Theorem 3, we have𝜌(Φ𝐹−𝑉(𝜔)) < 1. So there exists a small enough constant𝜀1 > 0 such that 𝜌(Φ𝐹−𝑉+𝜀1𝑁(𝜔)) < 1, where
𝑁(𝑡) = ( 0 𝛽1 (𝑡)1 + 𝛼1 (𝑡) (𝑆∗ℎ (𝑡) + 𝜀1)𝛽2 (𝑡) 0 ) . (26)

From Lemma 2 and nonnegativity of the solutions, for any𝜀1 > 0 there exists 𝑡1 > 0 such that 𝑆ℎ(𝑡) ≤ 𝑆∗ℎ (𝑡) + 𝜀1 and𝑆𝑚(𝑡) ≤ 𝑆∗𝑚(𝑡) + 𝜀1, so for all 𝑡 > 𝑡1 we have𝐼󸀠ℎ (𝑡) ≤ 𝛽1 (𝑡) (𝑆∗ℎ (𝑡) + 𝜀1) 𝐼𝑚 (𝑡)1 + 𝛼1 (𝑡) (𝑆∗ℎ (𝑡) + 𝜀1) − 𝜇1 (𝑡) 𝐼ℎ (𝑡)− 𝜐 (𝑡) 𝐼ℎ (𝑡) ,𝐼󸀠𝑚 (𝑡) ≤ 𝛽2 (𝑡) (𝑆∗𝑚 (𝑡) + 𝜀1) 𝐼ℎ (𝑡) − 𝜇2 (𝑡) 𝐼𝑚 (𝑡) .
(27)

Considering the auxiliary system

𝐼󸀠ℎ (𝑡) = 𝛽1 (𝑡) (𝑆∗ℎ (𝑡) + 𝜀1) 𝐼󸀠𝑚 (𝑡)1 + 𝛼1 (𝑡) (𝑆∗ℎ (𝑡) + 𝜀1) − 𝜇1 (𝑡) 𝐼󸀠ℎ (𝑡)− 𝜐 (𝑡) 𝐼󸀠ℎ (𝑡),𝐼󸀠𝑚 (𝑡) = 𝛽2 (𝑡) (𝑆∗𝑚 (𝑡) + 𝜀1) 𝐼󸀠ℎ (𝑡) − 𝜇2 (𝑡) 𝐼󸀠𝑚 (𝑡).
(28)

From Lemma 1, it follows that there exists a positive 𝜔-
periodic solution V1(𝑡) such that 𝐽(𝑡) ≤ 𝑒𝑝𝑡V1(𝑡), where 𝐽(𝑡) =(𝐼ℎ(𝑡), 𝐼𝑚(𝑡))𝑇 and 𝑝 = (1/𝜔) ln 𝜌(Φ𝐹−𝑉+𝜀1𝑁(𝜔)) < 0. Then
lim𝑡→∞𝐽(𝑡) = 0; that is, lim𝑡→∞𝐼ℎ(𝑡) = 0 and lim𝑡→∞𝐼𝑚(𝑡) =0.

Moreover, from the equations of 𝑆ℎ(𝑡), 𝑆𝑚(𝑡), we get
lim
𝑡→∞

𝑆ℎ (𝑡) = 𝑆∗ℎ (𝑡) ,
lim
𝑡→∞

𝑆𝑚 (𝑡) = 𝑆∗𝑚 (𝑡) . (29)

Hence, disease-free periodic solution of system (1) is globally
attractive. This completes the proof.
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Define𝑋 = {(𝑆ℎ, 𝐼ℎ, 𝑆𝑚, 𝐼𝑚) : 𝑆ℎ > 0, 𝐼ℎ ≥ 0, 𝑆𝑚 ≥ 0, 𝐼𝑚≥ 0} ,𝑋0 = {(𝑆ℎ, 𝐼ℎ, 𝑆𝑚, 𝐼𝑚) ∈ 𝑋 : 𝐼ℎ > 0, 𝐼𝑚 > 0} . (30)

We have𝜕𝑋0 = 𝑋 \ 𝑋0 = {(𝑆ℎ, 𝐼ℎ, 𝑆𝑚, 𝐼𝑚) ∈ 𝑋 : 𝐼ℎ𝐼𝑚 = 0} . (31)

From system (1), it is easy to see that 𝑋 and𝑋0 are positively
invariant, and 𝜕𝑋0 is also a relatively closed set in𝑋.

Let 𝑃 : 𝑋 → 𝑋 be the Poincaré map associated with
system (1), satisfying𝑃 (𝑥0) = 𝑢 (𝜔, 𝑥0) , ∀𝑥0 ∈ 𝑋; (32)𝑢(𝑡, 𝑥0) is the unique solution of system (1) satisfying initial
condition 𝑢(0, 𝑥0) = 𝑥0. 𝑃 is compact for the continuity of
solutions of system (1) with respect to initial value, and 𝑃 is
point dissipative on𝑋.

We further define𝑀𝜕 = {(𝑆0ℎ, 𝐼0ℎ , 𝑆0𝑚, 𝐼0𝑚) ∈ 𝜕𝑋0 : 𝑃𝑚 (𝑆0ℎ, 𝐼0ℎ , 𝑆0𝑚, 𝐼0𝑚)∈ 𝜕𝑋0 ∀𝑚 > 0} , (33)

where 𝑃𝑚 = 𝑃(𝑃𝑚−1) for all𝑚 > 1 and 𝑃1 = 𝑃. Now, prove𝑀𝜕 = {(𝑆0ℎ, 0, 𝑆0𝑚, 0) : 𝑆0ℎ > 0, 𝑆0𝑚 ≥ 0} . (34)

Obviously {(𝑆ℎ, 0, 𝑆𝑚, 0) : 𝑆ℎ > 0, 𝑆𝑚 ≥ 0} ⊆ 𝑀𝜕.
If 𝑀𝜕 \ {(𝑆ℎ, 0, 𝑆𝑚, 0) : 𝑆ℎ > 0, 𝑆𝑚 ≥ 0} ̸= 0, then there

exists at least a point (𝑆0ℎ, 𝐼0ℎ , 𝑆0𝑚, 𝐼0𝑚) ∈ 𝑀𝜕 satisfying 𝐼0ℎ > 0 or𝐼0𝑚 > 0. We consider two possible cases.
If 𝐼0ℎ = 0 and 𝐼0𝑚 > 0, then it is clear that from system (1)𝐼𝑚(𝑡) ≥ 0 for any 𝑡 > 0. From the second equation of system

(1) and 𝑆ℎ > 0, we obtain𝐼ℎ (𝑡) = 𝐼0ℎ𝑒−∫
𝑡

0
[𝜇1(𝑠)+𝜐(𝑠)]𝑑𝑠+ ∫𝑡

0

𝛽1 (𝑠) 𝑆ℎ (𝑠) 𝐼𝑚 (𝑠)1 + 𝛼1 (𝑠) 𝑆ℎ (𝑠) 𝑒∫𝑡𝑠 [𝜇1(𝜏)+𝜐(𝜏)]𝑑𝜏𝑑𝑠 > 0, (35)

for all 𝑡 > 0.
If 𝐼0𝑚 = 0 and 𝐼0ℎ > 0, then 𝐼ℎ(𝑡) = 𝐼0ℎ𝑒−∫

𝑡

0
[𝜇1(𝜏)+𝜐(𝜏)]𝑑𝜏 > 0.

From the third equation of system (1) and 𝑆𝑚 > 0, we obtain𝐼𝑚 (𝑡) = 𝐼0𝑚𝑒−∫
𝑡

0
𝜇2(𝑠)𝑑𝑠+ ∫𝑡

0
𝛽2 (𝑠) 𝑆𝑚 (𝑠) 𝐼ℎ (𝑠) 𝑒∫𝑡𝑠 𝜇2(𝜏)𝑑𝜏𝑑𝑠 > 0, (36)

for all 𝑡 > 0. Hence, for any case, it follows that (𝑆ℎ(𝑡), 𝐼ℎ(𝑡),𝑆𝑚(𝑡), 𝐼𝑚(𝑡)) ∉ 𝜕𝑋0, so (𝑆0ℎ, 𝐼0ℎ , 𝑆0𝑚, 𝐼0𝑚) ∉ 𝑀𝜕. This leads to
a contradiction; there exists one fixed point 𝐸0 = (𝑆∗ℎ (𝑡),0, 𝑆∗𝑚(𝑡), 0) of 𝑃 in𝑀𝜕.

In the following, we will discuss the uniform persistence
of the disease, and 𝑅0 serves as a threshold parameter for the
extinction and the uniform persistence of the disease.

Theorem 5. If 𝑅0 > 1, then system (1) is uniformly persistent.
There exists a positive constant 𝜀, such that for all initial
conditions (1) satisfies

lim
𝑡→∞

inf 𝐼ℎ (𝑡) ≥ 𝜀,
lim
𝑡→∞

inf 𝐼𝑚 (𝑡) ≥ 𝜀. (37)

When 𝑅0 > 1, system (1) admits at least one positive periodic
solution.

Proof. From Theorem 3, if 𝑅0 > 1 then we obtain𝜌(Φ𝐹−𝑉(𝜔)) > 1. For an arbitrary small constant 𝜂 > 0,
that 𝜌(Φ𝐹−𝑉−𝜂𝑁(𝜔)) > 1, 𝑁(𝑡) is the same as in Theorem 3.
From assumption (H2), we obtain any small enough 𝜀 > 0,∫𝜔0 [𝑟(𝑡) − 𝛼(𝑡)𝜀]𝑑𝑡 > 0. Consider perturbed equations𝑆󸀠𝜀ℎ (𝑡) = Λ (𝑡) − 𝜀𝛽1 (𝑡) 𝑆𝜀ℎ (𝑡)1 + 𝛼1 (𝑡) 𝑆𝜀ℎ (𝑡) − 𝜇1 (𝑡) 𝑆𝜀ℎ (𝑡) , (38)

𝑆󸀠𝜀𝑚 (𝑡) = 𝑟 (𝑡) 𝑆𝜀𝑚 (𝑡) (1 − 𝑆𝜀𝑚 (𝑡)𝐾 (𝑡) ) − 𝜀𝛽2 (𝑡) 𝑆𝜀𝑚 (𝑡) . (39)

Using Lemma 2 in [25] and Lemma 1 of [27], we obtain (38)
and (39) that admit globally uniformly attractive positive 𝜔-
periodic solutions 𝑆∗𝜀ℎ(𝑡) and 𝑆∗𝜀𝑚(𝑡). For the continuity of
solutions with respect to 𝜀, and for 𝜂 > 0 there exists 𝜀1 > 0
for all 𝑡 ∈ [0, 𝜔]; thus we have𝑆∗𝜀1𝑚 (𝑡) > 𝑆∗𝑚 (𝑡) − 𝜂,𝑆∗𝜀1ℎ (𝑡) > 𝑆∗ℎ (𝑡) − 𝜂. (40)

Denote 𝑥0 = (𝑆0ℎ, 𝐼0ℎ , 𝑆0𝑚, 𝐼0𝑚) ∈ 𝑋0, according to the
continuity of the solutionwith respect to the initial condition;
there exists 𝛿 for given 𝜀1, for all 𝑥0 ∈ 𝑋0 with ‖𝑥0 − 𝐸0‖ < 𝛿;
it follows ‖𝑢(𝑡, 𝑥0) − 𝑢(𝑡, 𝐸0)‖ < 𝜀1 for all 𝑡 ∈ [0, 𝜔].

Following, we prove

lim
𝑚→∞

sup 𝑑 (𝑃𝑚 (𝑥0) , 𝐸0) ≥ 𝛿. (41)

We suppose the conclusion is not true; then following
inequality holds:

lim
𝑚→∞

sup 𝑑 (𝑃𝑚 (𝑥0) , 𝐸0) < 𝛿, (42)

for some 𝑥0 ∈ 𝑋0. Without loss of generality, we can assume
that 𝑑 (𝑃𝑚 (𝑥0) , 𝐸0) < 𝛿 ∀𝑚 ≥ 0. (43)

So we obtain󵄩󵄩󵄩󵄩󵄩𝑢 (𝑡, 𝑃𝑚 (𝑥0)) − 𝑢 (𝑡, 𝐸0)󵄩󵄩󵄩󵄩󵄩 < 𝜀1 ∀𝑚 ≥ 0, 𝑡 ∈ [0, 𝜔] . (44)

For any 𝑡 ≥ 0, 𝑡 = 𝑚𝜔 + 𝑡󸀠, where 𝑡󸀠 ∈ [0, 𝜔] and𝑚 = [𝑡/𝜔] is
the greatest integer less than or equal to 𝑡/𝜔, so we have󵄩󵄩󵄩󵄩󵄩𝑢 (𝑡, 𝑥0) − 𝑢 (𝑡, 𝐸0)󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩𝑢 (𝑡󸀠, 𝑃𝑚 (𝑥0)) − 𝑢 (𝑡󸀠, 𝐸0)󵄩󵄩󵄩󵄩󵄩< 𝜀, ∀𝑡 ≥ 0. (45)
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Hence, it follows that 0 ≤ 𝐼ℎ(𝑡) ≤ 𝜀1 and 0 ≤ 𝐼𝑚(𝑡) ≤ 𝜀1 for all𝑡 ≥ 0. Then from the first and third equations of (1),𝑆󸀠ℎ (𝑡) ≥ Λ (𝑡) − 𝜀1𝛽1 (𝑡) 𝑆ℎ (𝑡)1 + 𝛼1 (𝑡) 𝑆ℎ (𝑡) − 𝜇1 (𝑡) 𝑆ℎ (𝑡) ,𝑆󸀠𝑚 (𝑡) = 𝑟 (𝑡) 𝑆𝑚 (𝑡) (1 − 𝑆𝑚 (𝑡)𝐾 (𝑡) ) − 𝜀1𝛽2 (𝑡) 𝑆𝑚 (𝑡) . (46)

By the comparison principle, we obtain for any 𝑡 ≥ 0𝑆ℎ (𝑡) ≥ 𝑆𝜀1ℎ (𝑡) ,𝑆𝑚 (𝑡) ≥ 𝑆𝜀1𝑚 (𝑡) . (47)

Consider (38); there exists 𝑡1 > 0; for all 𝑡 > 𝑡1 we have𝑆𝜀1𝑚 (𝑡) > 𝑆∗𝜀1𝑚 (𝑡) − 𝜂,𝑆𝜀1ℎ (𝑡) > 𝑆∗𝜀1ℎ (𝑡) − 𝜂. (48)

By (38) and (48) we obtain𝑆𝑚 (𝑡) > 𝑆∗𝑚 (𝑡) − 𝜂,𝑆ℎ (𝑡) > 𝑆∗ℎ (𝑡) − 𝜂. (49)

Then for all 𝑡 > 𝑡1 we have𝐼ℎ (𝑡) ≥ 𝛽1 (𝑡) (𝑆∗ℎ (𝑡) − 𝜂) 𝐼𝑚 (𝑡)1 + 𝛼1 (𝑡) (𝑆∗ℎ (𝑡) − 𝜂) − 𝜇1 (𝑡) 𝐼ℎ (𝑡)− 𝜐 (𝑡) 𝐼ℎ (𝑡) ,𝐼𝑚 (𝑡) ≥ 𝛽2 (𝑡) (𝑆∗𝑚 (𝑡) − 𝜂) 𝐼ℎ (𝑡) − 𝜇2 (𝑡) 𝐼𝑚 (𝑡) .
(50)

Consider the following auxiliary system:𝐼ℎ (𝑡) = 𝛽1 (𝑡) (𝑆∗ℎ (𝑡) − 𝜂) 𝐼𝑚 (𝑡)1 + 𝛼1 (𝑡) (𝑆∗ℎ (𝑡) − 𝜂) − 𝜇1 (𝑡) 𝐼ℎ (𝑡)− 𝜐 (𝑡) 𝐼ℎ (𝑡),𝐼𝑚 (𝑡) = 𝛽2 (𝑡) (𝑆∗𝑚 (𝑡) − 𝜂) 𝐼ℎ (𝑡) − 𝜇2 (𝑡) 𝐼𝑚 (𝑡).
(51)

From Lemma 1, it follows that there exists a positive𝜔-periodic function V2(𝑡) such that (51) has a solution𝐽(𝑡) = V2(𝑡)𝑒𝑝1𝑡, where 𝑝1 = (1/𝜔) ln(𝜌(Φ𝐹−𝑉−𝜂𝑁(𝜔))). For𝜌(Φ𝐹−𝑉−𝜂𝑁(𝜔)) > 1,
lim
𝑡→∞

𝐼ℎ (𝑡) = +∞,
lim
𝑡→∞

𝐼𝑚 (𝑡) = +∞. (52)

This leads to a contradiction.

That is to say, 𝑀𝜕 \ {(𝑆ℎ, 0, 𝑆𝑚, 0) : 𝑆ℎ > 0, 𝑆𝑚 ≥0} = 0 and {𝑀1} is globally attractive in 𝑀𝜕, and all orbit
in𝑀𝜕 converges to {𝑀1}. By [22], we obtain that 𝑃 is weakly
uniformly persistent with respect to (𝑋0, 𝜕𝑋0). All solutions
are uniformly persistent with respect to (𝑋0, 𝜕𝑋0); thus we
have lim𝑡→∞𝐼ℎ(𝑡) ≥ 𝜀, lim𝑡→∞𝐼𝑚(𝑡) ≥ 𝜀.

4. Sensitivity Analysis and Prevention Strategy

We conducted numerical simulation to this model and
computed the reproductive numbers 𝑅0. It was confirmed
that using the basic reproduction number of the time-
averaged autonomous systems of a periodic epidemic model
overestimates or underestimates infection risks inmany other
cases. Bacaer and Guernaoui give methods to compute 𝑅0,
such as method of discretization of the integral eigenvalue
[36] and Fourier series method for general periodic case and
sinusoidal case and application of Floquet Theory method
[37]. In [22]Wang andZhao propose that in order to compute𝑅0 we only need to compute the spectrum of evolution
operator of the following system (53):𝑑𝑤𝑑𝑡 = [−𝑉 (𝑡) + 𝐹 (𝑡)𝜆 ]𝑤, 𝑤 ∈ 𝑅𝑛, 𝜆 ∈ (0,∞) ; (53)

here system (53) is 𝜔-periodic equation, and𝑊(𝑡, 𝑠, 𝜆) is the
evolution operator of system (53) with 𝑡 ≥ 𝑠, 𝑠 ∈ 𝑅. By
Perron-Frobenius theorem 𝜌(𝑊(𝜔, 0, 𝜆)) is an eigenvalue of𝑊(𝑡, 0, 𝜆), 𝑡 ≥ 0. Next, usingTheorem 2.1 in [22] to compute𝑅0 numerically, 𝑅0 serves as threshold parameter in periodic
circumstances.

Firstly, by the means of the software Matlab we compute𝑅0. We choose parameters Λ(𝑡) = 0.6 + 0.4 sin(2𝜋𝑡/12),𝜇1(𝑡) = 0.5 + 0.1 sin(2𝜋𝑡/12), 𝜇2(𝑡) = 0.8 + 0.1 sin(2𝜋𝑡/12),𝛽1(𝑡) = 0.6 + 0.1 sin(2𝜋𝑡/12), 𝛽2(𝑡) = 0.7 + 0.1 sin(2𝜋𝑡/12),𝛼1(𝑡) = 0.2 + 0.1 sin(2𝜋𝑡/12), 𝜐(𝑡) = 0.02 + 0.03 sin(2𝜋𝑡/12),𝑟(𝑡) = 0.5 + 0.4 sin(2𝜋𝑡/12), 𝐾(𝑡) = 0.9 + 0.3 sin(2𝜋𝑡/12). By
numerical calculations, we obtain 𝑅0 = 0.9243 < 1; then the
disease will be extinct; see Figure 1(a). If we choose 𝛽1(𝑡) =0.9 + 0.1 sin(2𝜋𝑡/12), 𝛽2(𝑡) = 1.2 + 0.1 sin(2𝜋𝑡/12), then𝑅0 = 1.4662 > 1; the disease is permanent; see Figure 1(b).
The evolution trajectory in spaces (𝑆ℎ, 𝐼ℎ) and (𝑆𝑚, 𝐼𝑚) are in
Figures 2(a) and 2(b), respectively.

In order to perform sensitivity analysis of parameters𝛽1(𝑡), 𝛽2(𝑡), 𝐾(𝑡), and 𝛼1(𝑡), we fix all parameters as in
Figure 1, except that we choose the composite functions as
follows: 𝛽1 (𝑡) = 𝛽01 + 0.1 sin(2𝜋𝑡12 ) ,𝛽2 (𝑡) = 𝛽02 + 0.1 sin(2𝜋𝑡12 ) ,𝐾 (𝑡) = 𝑘0 + 0.3 sin(2𝜋𝑡12 ) ,𝛼1 (𝑡) = 𝛼0 + 0.1 sin(2𝜋𝑡12 ) ,

(54)

where 𝛽01 = (1/12) ∫120 𝛽1(𝑡)𝑑𝑡, 𝛽02 = (1/12) ∫120 𝛽2(𝑡)𝑑𝑡,𝑘0 = (1/12) ∫120 𝐾(𝑡)𝑑𝑡, and 𝛼0 = (1/12) ∫120 𝛼1(𝑡)𝑑𝑡.
We first fix other parameters and detect the effect of

parameters of 𝑘0 and 𝛼0 on 𝑅0. From Figure 3(a), we see
that with the increase of 𝛼0, 𝑅0 decreases, and the gradient
also decreases, so this strengthens the psychological hint of
susceptible human individuals to be benefit for the extinction
of the disease. In Figure 3(b), with the increasing of 𝑘0 the



Computational and Mathematical Methods in Medicine 7

0 10 20 30 40

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

t

Sh(t)

Sm(t)

Ih(t)

Im(t)

S ℎ
(t
)
S m

(t
)
I ℎ
(t
)
or

I m
(t
)

(a)

0 10 20 30 40

1.5

1

0.5

0

t

Sh(t)

Sm(t)

Ih(t)

Im(t)

S ℎ
(t
)
S m

(t
)
I ℎ
(t
)
or

I m
(t
)

(b)

Figure 1: Plot the evolution tendency of four populations. (a) Fixed parameters 𝛽1(𝑡) = 0.6 + 0.1 sin(2𝜋𝑡/12), 𝛽2(𝑡) = 0.7 + 0.1 sin(2𝜋𝑡/12);
then 𝑅0 = 0.9243 < 1; (b) Parameters 𝛽1(𝑡) = 0.9 + 0.1 sin(2𝜋𝑡/12), 𝛽2(𝑡) = 1.2 + 0.1 sin(2𝜋𝑡/12); then 𝑅0 = 1.4662 > 1.

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Sh

I h

1.510.50

(a)

Sm

I m

0.24

0.22

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06
10.80.60.40.2

(b)

Figure 2: When 𝑅0 = 1.4662, we graph the trajectory of two populations in spaces (𝑆ℎ, 𝐼ℎ) and (𝑆𝑚, 𝐼𝑚), respectively.
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Figure 3: Sensitivity analysis of the basic reproduction 𝑅0 with parameter 𝑘0 or 𝛼0.
sensitivity of𝑅0 increases.That is to say, the carrying capacity
of environment for mosquito is bigger and the disease
is widespread more easily, so decreasing the circumstance
fit survival for mosquitoes, such as contaminated pool or
puddle and household garbage, is a necessary method for the
extinction of disease.

Next, we consider the combined influence of parameters𝛽10 and 𝛽20 on 𝑅0; in Figure 4 we can see that the basic
reproduction number 𝑅0 may be less than 1 when 𝛽10 and𝛽20 are small; the smaller 𝛽20 the more sensitive the effect on𝑅0.

In Figure 5, the basic reproduction number 𝑅0 is affected
by 𝛽10 and 𝑘0; with the increasing of 𝑘0 the sensitivity of 𝑅0
increases; if we fix 𝛽10 as a constant the case will be similar
to Figure 3(b). And the similar trend of 𝛽10 on the sensitivity
of 𝑅0, so in the season in which temperature and humidity
are more beneficial for mosquito population to give birth and
propagate taking measures to avoid more bites is necessary.

5. Conclusion

In this paper, we have studied the transmission of lymphatic
filariasis; lymphatic filariasis is a mosquito-borne parasitic
infection that occurs in many parts of the developing world.
In order to systematically investigate the impact that vector
genus-specific dependent processes may have on overall
lymphatic filariasis transmission, we, according to the nature
characteristic of lymphatic filariasis and considering the
logistic growth in periodic environments of mosquito, model
the transmission of lymphatic filariasis. The dynamic behav-
ior of system (1) is determined by the threshold parameter
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Figure 4: Sensitivity analysis of the basic reproduction 𝑅0 with
parameters 𝛽01 and 𝛽02.
𝑅0; when 𝑅0 < 1 disease-free periodic solution is globally
asymptotically stable and when 𝑅0 > 1 disease is uniformly
persistent. We also give some numerical simulations which
support the results we prove, confirming that 𝑅0 serves as
a threshold parameter. Sensitivity analysis show effects of
parameters on 𝑅0, which contribute to providing a decision
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Figure 5: Sensitivity analysis of the basic reproduction 𝑅0 with
parameters 𝛽01 and 𝑘0.
support framework for determining the optimal coverage for
the successful prevention programme.
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