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ABSTRACT: We develop a formalism for calculating forces on the nuclei within the
linear-scaling stochastic density functional theory (sDFT) in a nonorthogonal atom-
centered basis set representation (Fabian et al. Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2019, 9, e1412, 10.1002/wcms.1412) and apply it to the Tryptophan Zipper 2 (Trp-
zip2) peptide solvated in water. We use an embedded-fragment approach to reduce the
statistical errors (fluctuation and systematic bias), where the entire peptide is the main
fragment and the remaining 425 water molecules are grouped into small fragments. We
analyze the magnitude of the statistical errors in the forces and find that the systematic
bias is of the order of 0.065 eV/Å (∼1.2 × 10−3Eh/a0) when 120 stochastic orbitals are
used, independently of system size. This magnitude of bias is sufficiently small to ensure
that the bond lengths estimated by stochastic DFT (within a Langevin molecular
dynamics simulation) will deviate by less than 1% from those predicted by a
deterministic calculation.

1. INTRODUCTION
Kohn−Sham density functional theory (KS-DFT) is often used
for estimating the forces on the nuclei in ab initio molecular
dynamics simulations, with which reliable predictions con-
cerning structure and properties of molecules can be made.
Despite the fact that it can be used to study extended
molecular systems relevant to biomolecular chemistry and
materials science,1−4 the conventional applications are limited
in size due to the cubic algorithm complexity. Therefore,
several approaches to KS-DFT have been developed and are
routinely used for treating such extended systems. These
include linear-scaling approaches which rely on electron
localization within the system’s interior volume,5−33 or the
tight-binding DFT approach, which uses a very small basis set
complemented by approximations calibrated with empirical
data,34−36 and the orbital-free DFT, which is applicable to
relatively homogeneous systems.37,38 The way many of the
linear scaling approaches achieve their gentle algorithmic
complexity involves imposing a sparse structure on the KS
density matrix (DM) in a local real-space basis representation,
effectively truncating the protruding elements. The rationale of
this procedure relies on the electron localization which
characterizes many large systems.39 However, in metallic
systems at low-temperature and for low band semiconductors,
the localization length is very large, and such approaches are
difficult to apply.17

In order to enable treatment of systems in which electron
coherence is nonlocal, a different linear scaling approach was
proposed and dubbed stochastic density functional theory
(sDFT).40 In sDFT, we use a sparse representation of the KS-
DM which does not rely on truncation or modification of its

elements. Instead, sDFT is based on the paradigm that the
expectation values of the system observables can be regarded as
random variables in a stochastic process with an expected value
and a fluctuation. The fact that estimation of electronic
structure quantities can be done by statistical sampling allows
for a natural and highly effective implementation of sDFT on
parallel architectures.
The source of errors in sDFT is statistical in nature and

involves fluctuations, the magnitude of which can be controlled
by statistical sampling theory and/or by variance-reducing
techniques, such as the embedded-fragment method,41−44 or
the energy windowing approach.45,46 In addition to statistical
fluctuations, the sDFT estimates of the electron density and
the forces exhibit bias errors resulting from the nonlinear
nature of the SCF iterations.44,47 The magnitude of the bias
can be controlled by using the above-mentioned variance-
reducing techniques.
Early implementations of sDFT were based on real-space

grid representations of the electron density40,42,43,47,48 and
applied to relatively homogeneous systems: either to pure bulk
silicon,43,47 silicon with impurities,46 H−He mixtures49 or to
finite-sized hydrogen-passivated silicon nanocrystals and water
clusters.42,50,51 We recently demonstrated that the noisy forces
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produced by sDFT in the real-space grid representation can be
used within a Langevin dynamics approach, to determine
structural properties of such large systems.42,52

The real-space implementation of sDFT is especially useful
as a starting point for postprocessing DFT-based methods,
such as the stochastic GW for charge excitations,53,54 the
stochastic time-dependent DFT and Bethe-Salpeter equations
for neutral excitations,55−57 and for conductance calculations
in warm dense matter.49

If one is only interested in the ground state atomistic
structure, real-space grid representation could be quite
expensive, and a more efficient representation may be
beneficial. For this purpose, we recently developed an sDFT
approach based on nonorthogonal atom-centered basis sets.44

We found that the Hamiltonian within this compact basis has a
much smaller energy range than in the real-space grid, allowing
a significant speedup of sDFT calculations.
Despite the fact that sDFT with the nonorthogonal atom-

centered basis set is designed to address the structural
properties of large systems, up to now, we did not have the
capability to estimate the forces on nuclei and therefore
focused only on the electronic energy and density of states.44

In this paper, we develop the necessary theory and computa-
tional tools for calculating the forces while maintaining the
linear-scaling complexity of sDFT. In addition, we analyze the
statistical fluctuations and the biases in the forces, using as a
benchmark the heterogeneous system of the Tryptophan
Zipper 2 (Trp-zip2) peptide solvated in water.
The manuscript is organized as follows: In Section 2, we

introduce our formalism for the stochastic forces calculations.
Then, in Section 3, we present the benchmark calculations on
the Tryptophan Zipper 2 (Trp-zip2) peptide in solution.
Finally, we summarize and discuss the results in Section 4.

2. FORCE CALCULATIONS IN STOCHASTIC DENSITY
FUNCTIONAL THEORY

In this section, we describe the theory of the electronic forces
on nuclei within the finite temperature KS-DFT formalism. We
set the notations and describe the basis set representation we
use for Kohn−Sham DFT in subsection 2.1 with the combined
implementation using real space grids briefly described in
subsection 2.2. Expressions for the forces are given in
subsection 2.3 with a detailed derivation given in Appendix
A. Finally, in subsections 2.4 and 2.5, we provide the details
behind the stochastic evaluation of the electronic density and
any other observables in sDFT (including the forces) and
present the statistical errors involved.
2.1. Setting the Stage. The KS Hamiltonian is given by

rh t v v v n ( )s pp
nl

pp
loc

HxcKS
̂ = ̂ + ̂ + ̂ + [ ] (1)

where tŝ = −(1/2)∇2 (we use atomic units throughout the
paper) is the electron kinetic energy operator, and v̂pp

nl =
∑C∈nucleiv̂pp(C)

nl, and v̂pp
loc = ∑C∈nucleivpp(C)

loc (r ̂ − RC) are the
nonlocal and local norm-conserving pseudopotential terms in
the Kleinman-Bylander form,58,59 for nucleus C, at position RC.
The last potential term, v̂Hxc, is the Hartree and exchange
correlation potential, depending on the electron density, n(r)
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where nHxc[ ] is the Hartree and exchange-correlation energy
functional.
We use a nonorthogonal atom-centered basis set, ϕα(r), α =

1,...,K, with an overlap matrix Sαγ = ⟨ϕα|ϕγ⟩, α, γ = 1,...,K.
Within such a basis set approach, the K × K DM is given as an
operator involving a function of HS−1

P S f HS( ; , )1 1 β μ= − −
(3)

where Hαγ = ⟨ϕα|ĥKS|ϕγ⟩ and

f
e

( ; , )
1

1 ( )
ε β μ ≡

+ β ε μ− (4)

is the Fermi−Dirac distribution function. The DM is used to
calculate expected values of single-electron observables ô as

o OP2 Tr⟨ ⟩̂ = × [ ] (5)

where O is the matrix representing ô in the basis, with elements

O oϕ ϕ= ⟨ | |̂ ⟩αγ α γ (6)

and the factor of 2 accounts for the electron’s spin in a closed
shell representation. For example, the expectation value of the
density operator n̂(r) is the electron density, given by

r r r r rn P P( ) ( ) 2 ( ) ( )∑δ ϕ ϕ[ ] = ⟨ − ̂ ⟩ = ×
αγ

αγ α γ
(7)

The DM in eq 3 minimizes the total electronic free-energy:

P P P k P( ) entB
1μ βΩ[ ] = [ ] − [ ] − [ ]−

(8)

Here, P[ ] is the electronic internal energy

P T V V P n P2 Tr ( )s PP
nl

PP
loc

Hxc[ ] = × [ + + ] + [ [ ]]

and the number of electrons is given by

P SP2 Tr[ ] = × [ ]

The actual value we use for the chemical potential μ is tuned to
enforce P[ ] to be equal to the actual number of electrons in
the system (see ref 44 for detail). Finally, Pent[ ] is the entropy
of the noninteracting electrons of the KS system, given by

P k SP SP SP SP2 Tr ln (1 )ln(1 )ent B[ ] = − × [ + − − ]

Equations 1−7 must be solved together, and the resulting
solution for the density n(r) and the DM P is called the self-
consistent field (SCF) solution to the KS equations. The
procedure for reaching SCF solution is iterative: in each
iteration, called an SCF cycle, P is calculated from H using eq
3, n(r) is from P from which vHxc[n](r) is calculated, and a new
KS Hamiltonian matrix H is built.

2.2. Combined Real-Space Grid and Basis Set
Implementation. The theory described in the section
above uses, in addition to the basis function ϕα(r), also a
Cartesian grid (with uniform grid-spacing h) which spans the
space occupied by the electron density. The grid is used to
evaluate the matrix elements of eq 6 of various observables ô,
expressible as operators on the grid
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r rO h o( ) ( )
g

g g
3 ∑ ϕ ϕ= [ ̂ ]αγ α γ

(9)

where rg are the grid points (g is a 3D index). Each matrix
element of eq 9 can be evaluated efficiently, while we can also
gain by parallel architecture, allowing different cores to
independently compute different αγ pairs. [This requires a
fast evaluation of basis functions ϕα(rg) at the grid points. For
this, we employ standard quantum-chemical Cartesian
functions, expressible as sums of triple products, ϕα(x, y, z)
= ∑pξα

p(x)ηα
p(y)ζα

p(z) where the sums of ξα
p(x), ηα

p(y), and
ζα
p(z) are the primitive functions of the basis. At grid point rg,
the basis function is a sum (over the primitive functions) of
triple products formed from three 1D vectors: ξα

p(xg), ηα
p(yg),

and ζα
p(zg) which are kept in memory. The same technique is

used for the evaluation of the derivatives of the basis functions,
which is relevant for the calculation of forces, see Supporting
Information, Section S1.] In particular, the pseudopotentials
v̂PP
nl/loc are such grid operators. Evaluating the electron density of
eq 7 at the grid points allows calculation of the density-
dependent Hartree and XC potentials. For the former, we use
fast Fourier transform techniques.60

2.3. Electronic Forces on the Nuclei. In this subsection,
we give formal expressions for the electronic forces on the
nuclei expressible as matrix trace operations, based on a finite
temperature formalism presented in Appendix A. Our
derivation and final results are similar yet differ in many
ways with those of ref 61. We calculate the work done by the
electrons as nucleus C is displaced by δCX in the x-coordinate.
This work is the change in the free energy of eq 8, and
therefore

F XC C Cδ δ− = Ω (10)

where FC is the x-component of the force on the displaced
nucleus. The atom displacement δCX has three types of effects:
it causes an explicit change in its contribution to the
pseudopotential v̂pp

nl/loc → v̂pp
nl/loc + δCv̂pp

nl/loc, it displaces the
basis functions ϕα → ϕα + δCϕα, and it induces a variation in
the DM, P → P + δCP, since P is required to be the minimizer
of the free energy. Note that due to this minimum principle
δCΩ is unaffected (to first order) by δCP so that the work done
on the atom (see Appendix A)

F X P H HS S2 Tr ( ( ) )C C C C
1δ δ δ− = × [ − ]−

(11)

is given solely in terms of the variations in the Hamiltonian

H v v h h( ) ( )C C pp
nl

pp
loc

C KS KS Cδ ϕ δ ϕ δ ϕ ϕ ϕ δ ϕ= ⟨ | ̂ + ̂ | ⟩ + ⟨ | ̂ | ⟩ + ⟨ | ̂ | ⟩αβ α β α β α β

(12)

and the overlap

S( )C C Cδ δ ϕ ϕ ϕ δ ϕ= ⟨ | ⟩ + ⟨ | ⟩αβ α β α β (13)

matrices. The first term in eq 12 is the explicit change in the
pseudopotential, giving the direct forces on the atom. The
second and third terms in δCH (and similar terms in eq 13 for
δCS) are due to the variation in basis functions, and they lead
to the so-called Pulay forces,62 on the atom. More details
concerning the calculation of (δCS)αβ and (δCH)αβ are given in
Supporting Information, Section S1.
The estimation of the expectation value of a one-body

observable ô, given by eq 5, requires the calculation of the trace
of the matrix OP. By definition Tr[OP] = ∑k=1

K (uk)TOPuk

where uk is a set of K orthogonal unit vectors, and the

numerical effort involves K applications of OP on a vector u,
each of which scales quadratically, and thus the overall effort
scales as O(K3).
One essential component in reducing the scaling of this step

is to exploit the sparsity of the S−1H operation on a vector v,
which is used within a Chebyshev expansion,63 as a Fermi−
Dirac function representing P (see eq 3). [The application of
S−1 on a column vector involves repeated applications of S on
the vector, within the preconditioned conjugate gradient
method, implemented in the HSL-MA61 code. HSL is a
collection of FORTRAN codes for large scale scientific
computation (http://www.hsl.rl.ac.uk/).] This leads to the
following method for applying the DM onto a vector v8,64

Pv a v( , )
n

N

n n
0

C

∑ β μ=
= (14)

where vn, n = 0,1,... is obtained recursively
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(15)

Here, HS E
E

1 − ̅
Δ

−
is a shifted-scaled operator with eigenvalues in

the interval [−1,1] (So ΔE is equal to half the spectral range,
and E̅ is its center.). The expansion coefficients depend on β
and μ characterizing the Fermi−Dirac function; they rapidly
decay to zero once NC exceeds a system size independent value
determined by βΔE. With this technique, the step Puk involves
a linear scaling effort, and since there are K such vectors, the
complexity of the trace operation Tr[OP] is reduced from
O(K3) to O(K2).65

2.4. Stochastic Estimation of Observables and Forces.
In order to further reduce the numerical effort to linear scaling,
we use a stochastic vector approach, where the trace is sampled
using I stochastic vectors instead of calculated using a complete
set of K orthonormal vectors. The calculation effort is reduced
from O(K2) to O(IK), and I is system independent. A full
exposition of the method is given in ref 44. Here, we briefly
mention the essential elements.
Stochastic vectors, χT = (χ1,...,χK), have K random

components, χk; each is a random variable taking the values
±1 with equal probability. We refer the reader to Section S2 of
the Supporting Information for definition and discussion of
random variables (collectively denoted r), their expected values
E[r], their variance Var[r], and the statistical methods for
evaluating these quantities using finite samples. For each
component of the stochastic vector, (1) |χk| = 1 (2) E[χk] = 0,
and therefore, Var[χk] = 1. Furthermore, the product χkχj of
any pair of components has a zero expected value (E[χkχj] = 0,
k ≠ j), and hence, in matrix form

E IdTχχ[ ] = (16)

where Id is the K × K identity matrix. We view eq 16 as the
“stochastic resolution of the identity”, and using it, we express
the trace of the matrix OP as Tr[OP] = Tr[OPE[χχT]] =
E[Tr[OPχχT]], which upon rearrangement gives the stochastic
trace formula:66
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o OP2 E Tχ χ⟨ ⟩̂ = × [ ] (17)

The expected value E[χTOPχ] can be estimated using a sample
of size I with

m
I

OP2
1

I
i

I

i
T

i
1

∑ χ χ= ×
= (18)

which establishes a 70% confidence interval [mI − σI, mI + σI]
for ⟨ô⟩ where

s
II
Iσ =

(19)

and s OP m( )I I i
I

i
T

i I
1

1 1
2χ χ= ∑ −− = is the standard devia-

tion. We would like to highlight that since eq 18 is an average
over i independent χi

TOPχi terms, the computation is easily
implemented to gain from parallel architecture.
We can use the stochastic trace to estimate the electron

density at each grid point, based on eq 7. For this, we define
stochastic orbitals which are stochastic linear combinations of
the basis functions, defined on the grid as

r r( ) ( )i g

K

i g
1

∑η χ ϕ=
α

α
α

=

and projected stochastic orbitals

r rP( ) ( )i g

K

i g
1

∑ξ χ ϕ= [ ]
α

α
α

=

Using the above, we can now calculate the center of the
confidence interval for the electron density at point rg as the
sample mean:

r r rn
I

( ) 2
1

( ) ( )I g
i

I

i g i g
1

∑ η ξ= ×
= (20)

In ref 44 we have presented CPU times showing linear scaling
in the calculation of sDFT observables.

The above technique can be used to evaluate the electronic
forces on the nuclei as they too are formulated as matrix traces
(see eq 11). The computational effort for evaluating the direct
forces coming from v̂pp

nl (the non-local pseudopotential) as well
as all Pulay terms, for each degree of freedom, are independent
of the system size since they are local (See Supporting
Information Section S1.C. for detail). The computational effort
for evaluating the force coming from v̂pp

loc (the local
pseudopotential), for each degree of freedom, will scale
linearly unless specialized particle mesh methods (beyond
the scope of this paper) are used.
The SCF cycle of KS theory in sDFT involves using our best

estimate for the density, i.e., nI(r), to build the Hamiltonian.
Since nI(r) includes an uncertainty (a fluctuation), the
resulting Hamiltonian matrix H also has a fluctuation. Then,
plugging H into the Chebyshev expansion from which a new
nI(r) is calculated converts the fluctuation into a bias, as
discussed in Section S2.C of the Supporting Information.
Thus, after the SCF converges, all expectation values have both
an uncertainty σI and a bias error, which we define as

m oEI I
dDFTρΔ = | [ ] − ⟨ ⟩̂ |

The estimation of the uncertainty σI can be done using eq 19,
but the estimation of ΔρI is more complicated since we need
to determine E[mI]. We discuss this issue when we determine
the bias error in the force (see Section 3).

2.5. Embedded Fragments Approach. In order to
mitigate the fluctuation and bias errors, we developed a basis
set version of the embedded-fragment (EF) approach,41−44

which can be described in a general way as introducing a
correction term to the sDFT calculation. We first split all the
atoms in the system into F fragments, such that each atom, and
all basis functions centered on it, belong to one and only one
fragment. If the fragments are chosen such that their size is
independent of the total system size, with sublinear scaling and
minimal increase in computation time we can calculate the
electron density in each fragment, using 1.) deterministic DFT
ndDFT
f (r) ( f = 1,...,F) and 2.) stochastic DFT nI

f(r). We then use
the difference

Figure 1. Left panel: Tryptophan Zipper 2 (Trp-zip2) peptide, composed of 220 atoms. Right panel: Trp-zip2 peptide (ribbon) solvated by 425
water molecules. The full system is composed of 1495 atoms and 4024 valence electrons, and 3118 basis functions are necessary to describe it using
a minimal basis set.
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r r rn n n( ) ( ) ( )f f
I
f

dDFTΔ = − (21)

as a correction to the sDFT calculation of the density nI(r) on
the entire system:

r r rn n n( ) ( ) ( )I
EF

I
f

F
f

1

∑= + Δ
= (22)

We note that the correct result, nI
EF(r) = ndDFT(r), is obtained

in two limits: 1) when F = 1 (i.e., the entire system is a
fragment) and 2) when I → ∞, so nI

f(r) → ndDFT
f (r), etc.

Similarly, the expectation value of any operator of interest, ô

o o oI
EF

I
f

f
I∑⟨ ⟩̂ = ⟨ ⟩̂ + ⟨Δ ̂ ⟩

(23)

where ⟨Δôf⟩I = ⟨ôf⟩dDFT − ⟨ôf⟩I. The EF approach is applicable
to the forces calculation, by choosing ô to be the relevant
operators from eq 11. For further details on the implementa-
tion of the embedded fragments method in our program, see
Supporting Information, Section S3.

3. STATISTICAL ANALYSIS OF SDFT FORCES IN THE
TRYPTOPHAN ZIPPER 2 PEPTIDE

Our test system is a Tryptophan Zipper 2 (Trp-zip2) peptide
(pdb 1le1), composed of 220 atoms (left panel of Figure 1),
solvated with 425 water molecules, and built using a universal
force field (UFF) in ArgusLab67,68 (right panel of Figure 1).
For benchmark calculations, we focused on the 20 nitrogen
atoms of the peptide (indexed by C) and calculated the forces
acting on each Cartesian degree of freedom. In these
calculations, the embedded-fragment method was used, for
which we chose to consider the peptide as a single fragment
and then divided the 425 water molecules into 27 fragments,
with an average size of 16 molecules.
To study the statistical errors, we performed the sDFT

calculations using an increasing number of stochastic vectors, I
= 12, 120, 1200, according to eq 17. To estimate the
magnitudes of the bias and the uncertainty, we repeated the
calculations M times (using independent random number

generator seeds) from which we calculated a sample average
force vector

F F
M
1

C
m

M

C
m

1

∑̅ =
=

and a 3 × 3 force covariance matrix

F F F F
M
1

( )( )
m

M

C
m

C C
m

C
T2

1

∑Σ = − ̅ − ̅
=

as an estimate for the covariance of the sDFT calculation. As
the forces acting on each atom are represented as 3-
dimensional vectors (over the Cartesian coordinates), we
would like to obtain scalar values, irrespective of the way the
Cartesian axes are defined, in order to estimate the uncertainty
and bias of the sDFT forces. [In addition to the analysis given
here, we also present the distribution of the errors FC

m − FC
dDFT

in the Supporting Information, Section S2.D.] For a canonical
estimate of the uncertainty, we use an average over the
eigenstates of Σ2

1
3

TrC
2σ = Σ

(24)

where FC
dDFT = ∥FCdDFT∥ is the magnitude of the dDFT

electronic force on atom C. For a canonical estimate of the bias
in the force, we use the L2-Norm of the error in the average
force vector:

F FC C C
dDFTρΔ = ̅ − (25)

In Figure 2, we present data for the statistical errors in the
forces of the 20 nitrogen atoms, ordered by an atom index
according to their distance from the center of the peptide (1
closest, 20 furthest). The estimates for the uncertainty in the
forces, σC of eq 24, are plotted in blue circles, while the
estimates of the bias ΔρC of eq 25, with an error bar calculated
as ±σC/ M , are plotted in orange triangles with blue error
bars. The medians over all nitrogen atoms are plotted as
dashed lines. The used number of stochastic vectors, I, as well
as the number of repetitions, M, is shown above each panel.

Figure 2. Statistical errors in the sDFT forces acting on the 20 nitrogen atoms in the solvated-TrpZip2 system calculated using I = 12, 120, 1200
stochastic vectors (see left, center, and right panels). For each nitrogen atom, we show the uncertainty σC (blue dots) and the estimate in the bias
ΔρC (orange triangles), see eqs 24 and 25 in the text, with error bars calculated as ±σC/ M . In the I = 12 column, we also plot ΔρCfrag = ∥FCfrag −
FC
dDFT∥ (gray diamonds), where FC

frag is the dDFT force vector on the nitrogen atom C from the peptide-only fragment calculation. The dotted lines
connecting the markers are presented as a guide for the eye, while the dashed horizontal lines are medians over all atoms of σC and ΔρC. For
simplification of the image, in the I = 120, 1200 columns, we only present the median of ΔρCfrag (gray dashed line) taken over all 20 nitrogen atoms.
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We found that stable estimates of σC are obtained even when
using a small number of M ≈ 50 repetitions and observe that
they obey the expected 1/ I behavior in accordance with the
central limit theorem. Since the variance is given by the matrix
elements of the system, (see Supporting Information, Section
S2.C, eq S3), the pattern seen for σC as a function of atom
index is almost unchanged for different values of I. To estimate
the bias, we need a good estimate of E[mI] (the expected value
of the forces when calculated using I stochastic vectors in eq
18). As σC is much larger than ΔρC, a very large number of
repetitions, M, was required in order to achieve a good enough
estimate of E[mI] such that ΔρC values are useful estimates of
the bias. It is clear from the error bars that for almost all
nitrogen atoms we have good estimates of the bias.
In the I = 12 column, for an added perspective, we plot, in

gray diamonds, the error ΔρCfrag = ∥FCfrag−FCdDFT∥, where FCfrag is
the force vector on the nitrogen atom C from a dDFT
calculation on its peptide only (gas-phase) fragment. The
median is given again, in a dashed line. We observe that the
values of ΔρCfrag for the atoms closer to the center of the
fragment are mostly smaller than those further away, causing a
similar pattern in the sDFT errors. When comparing the
median of ΔρCfrag (plotted for all panels in a gray dashed line)
with those of the stochastic results, we see they are higher even
for the I = 12 stochastic vectors case, whereas for the cases of I
= 120, 1200 we observe a reduction in the errors, showing that
overall sDFT significantly improves the force estimation in
comparison to the deterministic fragment calculation. [We
base this conclusion on the medians of ΔρC. The same
conclusions are valid also when considering the largest error,
maxC{ΔρC}.]
Additional sDFT calculations on a smaller system,

composed of the Trp-zip2 peptide and only 195 solvating
water molecules, show that for a given number of stochastic
orbitals (I = 12) the uncertainty and bias are very similar to the
case of the original solvated system (see Supporting
Information, Section S4). This suggests the statistical errors
are roughly independent of system size.

4. SUMMARY AND CONCLUSIONS

We have presented a method for force calculations within finite
temperature sDFT in nonorthogonal atom-centered basis sets.
The forces are random variables evaluated using the stochastic
trace formula applied to various operators derived from the
free energy and are therefore, like all sDFT observables,
characterized by statistical errors, a fluctuation, and a bias. The
calculation of the forces is adapted to benefit from the
embedded-fragment methodology. These calculations are
dominated by the SCF sDFT convergence step, and therefore
the times for force calculations are similar to those reported in
ref 44.
In Section 3, we presented benchmarking calculations,

focusing on the statistical errors in the force estimates for the
20 nitrogen atoms of a solvated Tryptophan Zipper 2 peptide
system. The results are given as a function of I, the number of
stochastic vectors used in the calculation according to eq 17.
The uncertainty in the sDFT forces follows the expected 1/ I
behavior in accordance with the central limit theorem. Using a
very large number of repetitions, we were also able to uncover
the bias and determine that it is at least an order of magnitude
smaller than the uncertainty. The magnitude of the force bias is
of the order of 0.065 eV/Å (∼10−3Eh/a0) when 120 stochastic

orbitals are used, independently of system size. A back-of-the-
envelope calculation shows that this magnitude of bias is
sufficiently small to ensure that the bond lengths estimated by
stochastic DFT (within a Langevin molecular dynamics
simulation) will deviate by less than 1% from those predicted
by a deterministic calculation. [Assuming the minimum of the
Born−Oppenheimer potential is harmonic with a local force
constant k, the bond length deviation δR due to a force
perturbation δF obeys |kδR| = |δF|. In typical solids and
molecules, k is on the order of 5 to 100 eV Å−2,69,70 so for δF
of the order of 0.065 eV/Å, we find δR ≲ 0.01 Å, 1% or less for
most bond lengths of interest.] Indeed, this fact was
demonstrated using a Langevin Dynamics simulation on
silicon nanocrystals,42 within a real-space representation
sDFT. Our present results indicate that sDFT based on
nonorthogonal atom-centered basis sets can be also used
successfully in this way.
It is instructive to discuss the efficiency and accuracy of the

basis set44 vs real-space grid40,42 representations of sDFT
calculations. For this, we used the Si35H36 system, comparing
the 6-31G basis set calculations with those of a real-space grid
having 643 points and grid spacing of δx = 0.5a0 (For more
information about this comparison, see the Supporting
Information, Section S5.). We find that the time for application
of the density matrix to a random vector in the 6-31G basis is a
factor of 30 faster than in the grid representation. On the other
hand, surprisingly, the standard deviation of fluctuations in a
typical Si force component is about 5 times larger in the basis
set calculation than in the grid. Therefore, we need a factor of
52 = 25 more stochastic vectors (because their number is
proportional to the square of the standard deviation) in the
basis set calculation for achieving the same fluctuation error. If
we had only a single processor, the two representations would
thus require a similar numerical effort for achieving a given
fluctuation goal: the grid is 30 times slower but requires a
factor of 25 less samplings. Due to the highly parallelizable
nature of sDFT, the necessary extra sampling required by the
basis-set-based calculation does not automatically lead to
increased wall-times, if additional CPUs can be offered. We
conclude that the basis-set-based calculations can achieve
smaller wall-times than real-space grids, given additional CPUs.

■ APPENDIX A: DERIVATION OF THE CHANGES IN
FREE ENERGY

Here, we derive the force expression of eq 11. The force is
given by the change in free energy

P P P k P( ) entB
1μ βΩ[ ] = [ ] − [ ] − [ ]−

due to displacement of the nuclei. When nuclei are displaced,
the DM also changes, and we will show that under any change
in the density matrix P → P + δ0P, while keeping the nuclei
fixed, the free energy of eq 8 does not change when P is given
by eq 3. This will be done by examining each term in the above
equation separately and summing over all of them. Then, we
will consider the direct change in free energy due to a
displacement of the nuclei (while P is held constant). It is only
this latter change which affects the free energy.

A.1. The Variation in P[ ]
Starting from

r rP n P d( )∫[ ] = [ ]
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and

r r rn P P( ) 2 ( ) ( )∑ ϕ ϕ[ ] = ×
αγ

αγ α γ

Combining these we see

P SP2 Tr[ ] = × [ ]

We consider two types of variations: δ0 which changes the DM
but not the atoms and δC which changes the position of atom
C (and thus affects the basis functions associated with that
atom) but not P.

1. P → P + δ0P (assuming nuclei are constant): Here

r r rn P( ) 2 ( ) ( )0 0∑δ δ ϕ ϕ= ×
αγ

αγ α γ
(26)

so

P S P2 Tr0 0δ δ[ ] = × [ ] (27)

2. Nucleus C moves by δCX (and ϕα → ϕα + δCϕα)
(constraining P to be constant): the change in the
density is

r r r r rn P( ) 2 ( ) ( ) ( ) ( )C C C∑δ δ ϕ ϕ ϕ δ ϕ= × [ + ]
αγ

αγ α γ α γ

so

P P S2 TrC Cδ δ[ ] = × [ ] (28)

using the change in the overlap matrix

S( )C C Cδ δ ϕ ϕ ϕ δ ϕ= ⟨ | ⟩ + ⟨ | ⟩αβ α β α β (29)

A.2. The Variation in P[ ]
Starting from

P T V V P n P2 Tr ( )s PP
nl

PP
loc

Hxc[ ] = × [ + + ] + [ [ ]]

we have two types of variations: δ0 which changes the DM but
not the atoms and δC which changes the position of atom C
(and thus affects the basis functions associated with that atom)
but not P.

1. P → P + δ0P (freezing the nuclei). We have that

r r rn P v n P n d( ( )) ( )Hxc Hxc0 0∫δ δ[ [ ]] = [ ]

so using eq 26

P H P2 Tr0 0δ δ[ ] = × [ ] (30)

2. Nucleus C moves by δCX (and ϕα→ ϕα + δCϕα)
(constraining P to be constant): we find

P P H2 TrC Cδ δ[ ] = × [ ] (31)

where

H v v h h( ) ( )C C pp
nl

pp
loc

C KS KS Cδ ϕ δ ϕ δ ϕ ϕ ϕ δ ϕ= ⟨ | ̂ + ̂ | ⟩ + ⟨ | ̂ | ⟩ + ⟨ | ̂ | ⟩αβ α β α β α β

(32)

A.3. The Variation in Pent[ ]
Starting from Pent[ ] = −2 × kBTr[SP ln (SP) + (1 − SP) ln (1
− SP)],

1. P → P + δ0P (freezing the nuclei). We have by
derivation that
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Ç
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n P k
SP

SP
S P2 Tr ln

1ent0 B 0δ δ[ [ ]] = − ×
− (33)

2. Nucleus C moves by δCX (and ϕα → ϕα + δCϕα)
(constraining P to be constant): we find
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P S2 Tr ln
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− (34)

A.4. The Variation in Ω[P]
Here, we combine the above results, while using the
relationship

i
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y
{
zzz

SP
SP

HSln
1

1 1μ β−
−

=− −

which we find by substituting in eq 3 for P.

1. P → P + δ0P (freezing the nuclei). Using eqs 27, 30, and
33, we have
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10

1
0δ μ β δΩ = × − −

−
−

leading to

00δ Ω =
This reflects the fact that P of eq 3 minimizes Ω [P].

2. Nucleus C moves by δCX (and ϕα → ϕα + δCϕα) (since
a variation in P does not affect the value of Ω, we can
take it as a constant): using eqs 28, 31, and 34, we find

P H HS S2 Tr ( )C C C
1δ δ δΩ = × [ − ]−

(35)

The change in free energy is composed of two terms: a
term due to the energy, δCH (which includes a direct
change and a Pulay term, see eq 32), and a change due
to entropy, which depends purely on Pulay changes in
the overlap matrix, δCS (see (29)).
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Schiffmann, F.; Golze, D.; Wilhelm, J.; Chulkov, S.; Bani-Hashemian,
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