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Radiochemistry and Preclinical PET Imaging
of 68Ga-Desferrioxamine Radiotracers
Targeting Prostate-Specific Membrane Antigen
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Abstract
Radiotracers incorporating the urea-based Glu-NH-C(O)-NH-Lys group have gained prominence due to their role in targeting
prostate-specific membrane antigen (PSMA)—a clinical biomarker of prostate cancer. Here, the synthesis, radiolabeling, and in
vitro and in vivo characterization of two 68Ga-radiolabeled Glu-NH-C(O)-NH-Lys radiotracers conjugated to the desferriox-
amine B (DFO) chelate were evaluated. Two linker groups based on amide bond and thiourea coupling chemistries were
employed to develop 68Ga-DFO-Nsucc-PSMA (68Ga-4) and 68Ga-DFO-pNCS-Bn-PSMA (68Ga-7), respectively. Radiosynthesis
proceeded quantitatively at room temperature with high radiochemical yields, chemical/radiochemical purities, and specific
activities. Pharmacokinetic profiles of 68Ga-4 and 68Ga-7 were assessed using positron-emission tomography (PET) in mice
bearing subcutaneous LNCaP tumors. Data were compared to the current clinical benchmark radiotracer 68Ga-HBED-CC-PSMA
(68Ga-1) (HBED ¼ N,N0-Bis(2-hydroxy-5-(ethylene-beta-carboxy)benzyl)ethylenediamine N,N0-diacetic acid). Results indicated
that the target binding affinity, protein association, blood pool and background organ clearance properties, and uptake in PSMA-
positive lesions are strongly dependent on the nature of the chelate, the linker, and the spacer groups. Protein dissociation
constants (Kd values) were found to be predictive of pharmacokinetics in vivo. Compared to 68Ga-1, 68Ga-4 and 68Ga-7 resulted in
decreased tumor uptake but enhanced blood pool clearance and reduced residence time in the kidney. The study highlights the
importance of maximizing protein binding affinity during radiotracer optimization.
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Introduction

Prostate-specific membrane antigen (PSMA; also known as

glutamate carboxypeptidase II [GCPII] or N-acetyl-L-aspar-

tyl-L-glutamate peptidase I [NAALADase I]) is an important

class II membrane-bound zinc metalloenzyme that catalyzes

the hydrolysis of N-acetylaspartylglutamate (NAAG) to gluta-

mate and N-acetylaspatate (NAA).1 The PSMA has emerged as

a valuable preclinical and clinical biomarker of prostate cancer

(PCa). Many prostate cancers, as well as other cancers that

exhibit neoangiogenesis, express high levels of PSMA. Lower

levels are found in physiologically normal tissues such as the

kidneys, salivary glands, and small intestine.2 Consequently,

differential PSMA expression in PCa has led physicians and

radiochemists to explore the use of PSMA as a target for deli-

vering a wide range of diagnostic and radiotherapeutic

nuclides.3-5

Worldwide, at least 50 clinical trials have investigated

PSMA-targeted imaging or therapy in different populations

of patients with PCa (source: www.clinicaltrials.gov). The

two most important classes of drugs targeting PSMA are

small-molecule urea-based inhibitors4,6-12 and anti-PSMA
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antibodies.13-18 In terms of molecular imaging with

positron-emission tomography (PET), the urea-based 68Ga-

HBED-CC-PSMA19-24 (68Ga-1; Figure 1) and antibody-based
89Zr-DFO-J59115-18 have shown promise for characterizing

PSMA profiles in humans. For small-molecule PSMA inhibi-

tors, the excellent clinical performance of 68Ga-labeled agents

for PET also prompted multicenter studies which demonstrated

that 177Lu-labeled analogues can be used to advance a novel

“theranostic” (combined diagnostic imaging and radiotherapy)

regimen.25,26

The synthesis and biological evaluation of a large number of

Glu-NH-C(O)-NH-Lys inhibitors of PSMA have been

reported.6,27 Many radiolabeled analogues are also studied in

vivo. Selected examples include work using the radionuclides

fluorine-18,28-31 copper-64,11,32 gallium-68,19,20,23,33 techne-

tium .99m,7,9,34 and various radiohalogens.4,6,35 While recent

studies have demonstrated that the performance of at least two
18F-radiolabeled agents,18F-DCFPyL23 and 18F-PSMA-6,24

and the more recent compound 18F-PSMA-1007,36 compare

favorably to that of 68Ga-1; this 68Ga-radiotracer remains the

most well-characterized radiometal-based agent for PET ima-

ging of PSMA. The radiosynthesis of 68Ga-1 is well estab-

lished—essentially quantitative radiolabeling can be achieved

upon reacting the precursor HBED-CC-PSMA (compound 1)

with 68Ga in sodium acetate buffer at pH 4.5 for 10 minutes at

95�C.19,20 Interestingly, the use of the HBED chelate has been

suggested to lead to the potential formation of two diastereo-

mers as resolved by high-performance liquid chromatography

(HPLC).20 The composition ratio of these two species depends

on the pH and reaction temperature—data confirming that one

isomer is thermodynamically more stable in aqueous solution

and that intramolecular hydrogen bonding is likely to influence

complex stability. Experimental studies in cells also showed

that the two species have identical binding properties toward

PSMA.20 However, the formation of two isomers (in a variable

ratio20) is unsatisfactory from the perspective of quality control

(QC) in a clinical setting.

In this work, we synthesized and evaluated two new 68Ga-

labeled PSMA inhibitors bearing the tris-hydroxamic acid che-

late desferrioxamine B (DFO). Two bifunctional versions of

DFO (DFO-Nsucc [2] and DFO-pNCS-Bn [5]; Figure 2) with

varying lipophilic character of the linker/spacer group were

conjugated to Glu-NH-C(O)-NH-Lys-Ahx starting materials

(compounds 3 and 6) to generate the radiolabeling precursors

4 and 7, respectively (Figure 2). Saturation binding assays in

LNCaP cells, ex vivo protein binding and stability measure-

ments, and PET imaging were used to compare the two new

radiotracers 68Ga-DFO-Nsucc-PSMA (68Ga-4) and 68Ga-DFO-

pNCS-Bn-PSMA (68Ga-7), to the clinical radiotracer 68Ga-1.

Results found that targeting of PSMA using urea-based radio-

metal complexes is highly sensitive to the chemical nature of

the chelate and linker/spacer groups.

Materials and Methods

Standard laboratory techniques were employed throughout.

Unless otherwise stated, all solvents and reagents were

used as received from the supplier (SigmaAldrich [Darmstadt,

Germany], TCI Deutschland [Eschborn, Germany], Acros

[Geel, Belgium]). The HBED-CC-PSMA (also known as

DKFZ-11) was purchased from ABX (Radeberg, Germany).

Low-resolution electrospray ionization mass spectrometry

((þ)-LR-ESI-MS) was performed on a PerkinElmer Flexar

SQ 300 MS Detector (Waltham, MA). High-resolution electro-

spray ionization mass spectra ((þ)-HR-ESI-MS) were mea-

sured by the Mass Spectrometry Service at the University of

Zurich. HPLC was conducted on an Agilent 1260 Infinity Sys-

tem equipped with an Agilent 1200 DAD UV detector (UV

detection at 220 nm) (Santa Clara, CA) equipped with Raytest

radiation detector (Raytest GmbH, Straubenhardt, Germany)

and a Chromolith Performance RP-18e 100-4.6 mm column

(Merck, Billerica, MA). Typically, a water/acetonitrile gradient

elution method (1.0 mL/min; 5 minutes; 5%-60% MeCN; UV

detection at 220 nm and 320 nm) was used for analytical mea-

surements (Chromolith method). Samples were lyophilized

using a Christ Alpha 1-2 LD plus lyophilizer. All instruments

measuring radioactivity were calibrated and maintained in

accordance with previously reported routine QC procedures.37

Radioactivity measurements were made using a calibrated

Activimeter ISOMED 2010 (Nuklear-Medizintechnik, Dres-

den, Germany). For accurate quantification of radioactivity,

experimental samples were counted for between 30 seconds

Figure 1. Structure of the HBED-CC- prostate-specific membrane antigen (PSMA) ligand (compound 1).
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and 1 minute on a calibrated PerkinElmer 2480 Automatic

Wizard2 Gamma Counter (Perkin Elmer, Waltham, Massachu-

setts). A dynamic energy window of 400 to 600 keV was used

for 68 Ga (511 keV emission) detection.

Synthesis

The DFO-Nsucc-PSMA (4). The DFO was reacted with succinic

anhydride in accordance with previously reported methods to

give the reagent DFO-Nsucc (2).38 The tris-tBu-protected urea

(3) was purchased from ABX and used as received. The tris-

tBu-protected urea (3; 5.2 mg, molecular weight [MW] 600.8

g/mol, 9.07 mmol) was dissolved in DMF (200 mL). DFO-

Nsucc (2; 6.60 mg, MW 661.7 g/mol, 10.0 mmol) is only spar-

ingly soluble in DMF and was dissolved in dimethyl sulfoxide

(DMSO; 200 mL). 1-[Bis(dimethylamino)methylene]-1H-

1,2,3-triazolo[4,5-b]pyridinium-3-oxide hexafluorophosphate

(HATU; 4.0 mg, 1.16 equivalent) was dissolved in DMF

(200 mL) to which N, N-diisopropylethylamine (DIPEA; 3.3

mL, 1.9 mmol, 2.1 equivalent) was added. The HATU/DIPEA

mixture was added to the solution of compound 2 and then the

resulting mixture was added to the solution of compound 3. The

reaction was stirred at room temperature for 24 hours and

progress was monitored by (þ)-LR-ESI-MS. Then the DMF

was evaporated and the crude product was deprotected by reac-

tion with a trifluoroacetic acid/triisopropylsilane/water (TFA/

TIS/H2O; 95/2.5/2.5 v/v ratio) mixture (100 mL) for 2 hours at

room temperature. The crude product was then precipitated by

slow addition of diethyl ether, separated from the supernatant

by centrifugation, and dissolved in 30% MeCN/H2O. The crude

product was purified by preparative HPLC on a Macherey-

Nagel Nucleosil reverse phase C18 column (Oensingen, Ger-

many) with a 10% to 45% MeCN/H2O (0.1% TFA v/v added to

both solvents) gradient over 12 minutes. On this HPLC system,

the product eluted with a retention time (Rt) of 6.6 minutes. The

product was lyophilized to give compound 4 as a white amor-

phous powder (1.6 mg, 1.5 mmol, 16%). The (þ)-LR-ESI-MS m/

z (30% MeCN/H2O) 1076 (50%; [MþH]þ ¼ C47H84N10O18
2þ)

and 539 (100%; [Mþ2 H]2þ ¼ C47H84N10O18
2þ). The (þ)-HR-

ESI-MS m/z (30% MeCN/H2O) found 538.2981 (100%; [Mþ2

H]2þ) calculated for C47H84N10O18
2þ ¼ 538.2977.

Test labeling reactions conducted in water at room tempera-

ture using compound 4 and nonradioactive natGa(NO3)3 gave

the desired product natGa-DFO-Nsucc-PSMA (natGa-4) in solu-

tion, with a single peak in reverse-phase (RP) HPLC (10%-45%
MeCN/H2O gradient. Rt ¼ 10.2 minutes; >98%), (þ)-LR-ESI-

Figure 2. Coupling reactions used in the synthesis of desferrioxamine B (DFO)-Nsucc-prostate-specific membrane antigen (PSMA; compound
4) and DFO-pNCS-Bn-PSMA (compound 7).
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MS m/z (30% MeCN/H2O) 571 (100%; [Mþ2 H]2þ), (þ)-HR-

ESI-MS m/z (30% MeCN/H2O) found 571.2491 (100%; [Mþ2

H]2þ), calculated for C47H81N10O18Ga2þ ¼ 571.2488. Addi-

tional test reactions labeling compound 4 with natFeCl3 gave an

instantaneous and intense color change from colorless to a deep

brown/orange solution, indicating the formation of an Fe-DFO

complex of orange/brown with a known broad electronic absorp-

tion maximum at 430 nm (e430 ¼ 2216 + 49 mol/dm3/cm).16

The DFO-pNCS-Bn-PSMA (7). Urea (6) was isolated by prepara-

tive HPLC after TFA/TIS/H2O deprotection of tris-tBu-

protected urea (3).19 Urea (6; 1.2 mg, MW 432.5 g mol-1, 2.8

mmol) was dissolved in DMF (250 mL). Separately, DFO-

pNCS-Bn (5; Macrocyclics, Dallas, Texas; 2.3 mg, MW

752.8 g/mol, 3.1 mmol, 1.1 equivalent) was dissolved in DMSO

(150 mL), and DIPEA (1.1 mL, 0.8 mmol, 2.2 equivalent) was

added. Then the solution of compound 5 was added to the

solution of compound 6, and the reaction was stirred for 24

hours at room temperature. Reaction progress was monitored

by (þ)-LR-ESI-MS. The crude reaction was then diluted with

2.1 mL H2O, and the product was purified by preparative HPLC

on a Macherey-Nagel Nucleosil reverse phase C18 column with

a 10% to 45% MeCN/H2O (0.1% TFA v/v added to both sol-

vents) gradient over 25 minutes. On this HPLC system, the prod-

uct eluted with a retention time Rt of 13.0 to 13.8 min. The

product was lyophilized to give compound 7 as a white amor-

phous powder (2.5 mg, 2.1 mmol, 76%). (þ)-LR-ESI-MS m/z

(50% MeCN/H2O) 1186 (30%; [MþH]þ ¼ C51H85N12O16S2
þ)

and 594 (100%; [Mþ2 H]2þ ¼ C51H86N12O16S2
2þ), (þ)-HR-

ESI-MS m/z (50% MeCN/H2O) found 593.2877 (100%; [Mþ2

H]2þ) calculated for C51H86N12O16S2
2þ 593.2863.

Test labeling reactions conducted in water at room tempera-

ture using compound 7 and natGa(NO3)3 gave the desired prod-

uct natGa-DFO-pNCS-Bn-PSMA (natGa-7) in solution with a

single peak in RP-HPLC (10-45% MeCN/H2O gradient, Rt ¼
10.2 min; >98%), (þ)-LR-ESI-MS m/z (30% MeCN/H2O) 626

(100%; [Mþ2 H]2þ ¼ C51H83GaN12O16S2
2þ).

Radiochemistry
68Ga-radiolabeling experiments were conducted either manu-

ally or using the Modular-Lab PharmTracer automated synth-

esis module (Eckert&Ziegler, Berlin, Germany). Briefly, the
68Ge/68Ga-generator (Eckert&Ziegler, Model IGG100

Gallium-68 Generator) was eluted with HCl (0.1 M, 7 mL) in

accordance with the manufacturer’s protocol. The eluate

(*600 MBq) was loaded onto a cation exchange column

(Strata-XC [SCX]; Phenomenex, Torrance, California), and
68Ga was eluted from the SCX cartridge with 800 mL of a

mixture of 0.13 mol/L HCl in *5 mol/L NaCl(aq). For all

automated syntheses, the 68Ga eluate was transferred into the

reaction vial containing the appropriate buffer and radiolabel-

ing precursor (vide infra).

Radiosynthesis of 68Ga-HBED-CC-PSMA (68Ga-1). 68Ga-HBED-

PSMA (68Ga-1)19 was prepared in 10 minutes at 95�C, using

the Modular-Lab PharmTracer module by Eckert & Ziegler

(Berlin, Germany). The 68Ga eluate (*600 MBq) was trans-

ferred into a preheated reaction vial containing sodium acetate

(2 mL, *1 mol/L, pH4.5), HCl (*0.18 mol/L), ascorbic acid

(20 mL, 100 mg/mL), and HBED-CC-PSMA (compound 1; 10

mg). The crude reaction mixture was loaded onto a SepPak

Light C-18 cartridge (Waters Corporation, Milford, Massachu-

setts) and then washed with water (10 mL) to remove uncom-

plexed radiometal ions and polar impurities. The radiotracer

was eluted in *0.5 mL 50% EtOH/H2O, and the product was

analyzed by RP-HPLC (Chromolith method: Rt ¼ 2.33 (25%)

and 2.38 (75%) min.; specific activity As ¼ 42.2 GBq/mmol).

Note two species (potentially diastereomers) are formed in an

approximate ratio of 1:3. These two species are shown to

behave in an identical manner toward PSMA binding in vitro

and in vivo.20 Typical decay-corrected radiochemical yields

(RCYs; including both species) were >98% (n ¼ 5) with radio-

chemical purity (RCP) >98% (n ¼ 5).

Radiosynthesis of 68Ga-DFO-Nsucc-PSMA (68Ga-4). 68Ga-DFO-

Nsucc-PSMA (68Ga-4) was prepared within 10 minutes at

room temperature by manual synthesis and using the

Modular-Lab PharmTracer module by Eckert & Ziegler (Ber-

lin, Germany). The 68Ga eluate (*600 MBq) was transferred

into a reaction vial containing ammonium acetate buffer (2.0

mL, 0.5 mol/L, pH5.2) and DFO-Nsucc-PSMA (compound 4;

10-20 mg). After reaction, the crude mixture was loaded onto a

SepPak Light C18 cartridge (Waters Corporation) and washed

with water (10 mL) to remove uncomplexed radiometal ions

and polar impurities. The radiotracer was eluted in *0.5 mL

30% EtOH/H2O, and the product was analyzed by RP-HPLC

(Chromolith method: Rt ¼ 2.39 min. (100%); specific activity

[As] ¼ 27.4 GBq/mmol). Typical decay-corrected RCYs were

>98% (n ¼ 8) with RCP >99% (n ¼ 8).

Radiosynthesis of 68Ga-DFO-pNCS-Bn-PSMA (68Ga-7). 68Ga-DFO-

pNCS-Bn-PSMA (68Ga-7) was prepared using the same proce-

dure describe for 68Ga-4 (vide supra). The 68Ga-7 radiotracer

was eluted from the Sep-Pak Light C18 cartridge in *0.5 mL

30% EtOH/H2O, and the product was analyzed by RP-HPLC

(Chromolith method: Rt ¼ 2.57-3.13 minutes (100%); As ¼
23.8 GBq/mmol). Typical decay-corrected RCYs were >96%
(n ¼ 8) with RCP >98% (n ¼ 8).

Lipophilicity (LogD) measurements

The lipophilicity values of the 68Ga-radiotracers are reported as

LogD (n-octanol/phosphate-buffered saline [PBS] pH7.4) and

were determined using the standard “shake-flask” method.39,40

Cells and Tissue Culture

The PSMA-positive LNCaP cells (ATCC, Manassas, Virginia)

were cultured at 37�C in a 5% CO2 atmosphere (RPMI Medium

1640 GlutaMAX containing 1% fetal bovine serum [FBS], 100

U/mL penicillin, 100 mg/mL streptomycin, and sodium–pyru-

vate 1 mmol/L).

4 Molecular Imaging



Saturation Binding Experiments In Vitro

For receptor saturation analysis, PSMA(þ) LNCaP cells were

seeded at a density of 0.8 to 1 million cells per well in 6-well

poly-L-lysine (PLL)-coated plates and incubated overnight

with medium (RPMI Medium 1640 GlutaMAX containing

1% FBS, 100 U/mL penicillin, 100 mg/mL streptomycin, and

1 mmol/L sodium pyruvate). After 24 hours, the medium was

removed, the cells were washed and incubated for 1 hour at

37�C with fresh binding buffer (RPMI Medium 1640 Gluta-

MAX containing 1% FBS, 100 U/mL penicillin, 100 mg/mL

streptomycin, 50 mmol/L HEPES, 50 mg/mL bacitracin, and

0.5% bovine serum albumin). Then the plates were placed on

ice for 30 minutes, followed by incubation with increasing

concentrations of 68/natGa-radiotracers in PBS-binding buffer

(pH7.4) for 120 minutes at 4�C. Nonspecific binding was deter-

mined in the presence of excess 2-(phosphonomethyl)pentane-

1,5-dioic acid (PMPA; 1 mmol/L). The cells were washed twice

with ice-cold PBS and then lysed with 1 mol/L NaOH. The

cell-associated radioactivity was measured using a gamma

counter. Specific binding was plotted against the total molar

concentration of the added radiotracer. The Kd/nM values and

the concentration of the radiotracers required to saturate the

receptors (Bmax/nM) were determined by nonlinear regression

analysis. In all cellular experiments, the calculated values were

normalized to the number of cells per well (typically 1 � 106

cells). Data reported are from 2 independent experiments with

triplicate data points in each experiment.

Xenograft Models

All animal experiments were conducted according to the reg-

ulations of the University Medical Center of Freiburg, Ger-

many, and in accordance with the principles of the 3Rs and

the Guide for the Care and Use of Laboratory Animals. Normal

athymic Balb/c nude mice (17-20 g, 4-6 weeks old, n ¼ 12)

were obtained from Janvier SAS (St Berthevin Cedex, France).

Mice were provided with food and water ad libitum. The

LNCaP tumors were induced on the right shoulder by subcu-

taneous (sc) injection of 5.0 million cells in a 100-mL cell

suspension of a 1:1 v/v mixture of media with reconstituted

basement membrane (GFR BD Matrigel; Corning BV, Amster-

dam, Holland). After an average of 4 weeks, the tumor size

reached *200 to 300 mg (estimated by caliper measurements),

and the animals were then used for PET imaging studies.

Blood Plasma Protein Binding Studies and Metabolism
In Vivo

Mice (n ¼ 2/group) were administered with appropriate for-

mulations of the 3 68Ga-radiotracers (7.3-11.1 MBq, 0.3-0.4

nmol in 0.2 mL PBS) via intravenous tail vein injections. Mice

were killed 15 minutes post-radiotracer administration. Blood

was collected in heparinized tubes and centrifuged (5 minutes,

1700 g) for plasma isolation. Plasma samples (300 mL) were

transferred to an ultrafiltration device (Vivacon 500; 30 kDa

molecular weight cutoff [Sartorius Stedium Biotech GmbH,

Germany]), and centrifuged (10 minutes, 9660 g) to separate

proteins. Samples of the filtrate and protein fraction were mea-

sured in the gamma counter. In addition, aliquots of the eluate

from ultrafiltration were analyzed by RP-HPLC to assess the

extent of radiotracer metabolism in the soluble blood

component.

Small-Animal PET Imaging

The PET imaging experiments were conducted on a micro-

PET Focus 120 scanner (Concorde Microsystems, Knoxville,

Tennessee).41 For static scans, mice were administered 68Ga-

radiotracer formulations (15.4-18.7 MBq, *0.56-0.68 nmol

in 200 mL sterile filtered PBS pH7.4 [Note: the ethanol con-

tent was <8% for all formulations]) via intravenous tail vein

injection. For dynamic scans, a higher dose of radioactivity

(*28 MBq, *0.9-1.0 nmol) was administered to ensure ade-

quate counting statistics during reconstruction of compara-

tively short timing windows (from between 20 seconds and

5 minutes). Approximately 5 minutes prior to recording PET

images, mice were anesthetized by inhalation of 2% to 3%
isoflurane/oxygen gas mixture, fitted with an intravenous

catheter (dynamic scans), and placed on the scanner bed in

the prone position. Anesthesia was maintained using 1% to

2% isoflurane. The PET images were recorded at various time

points between 0 and 3 hours postinjection. Dynamic scans

were recorded for 3500 seconds postradiotracer administra-

tion and temperature was maintained using a heating pad.

List-mode data were acquired using a g-ray energy window

of 350 to 650 keV and a coincidence timing window of 6

nanoseconds. The PET sinograms were reconstructed using

a 2-dimensional ordered subset expectation maximization

algorithm. Image counts per second per voxel were calibrated

to activity concentrations (Bq/g) by measuring a 3.5-cm cylin-

der phantom filled with a known concentration of radioactiv-

ity and mass. For quantification of tumor radioactivity uptake

in the PET scans, small 3-dimensional volumes-of-interest

(VOIs) were drawn manually using AMIDE Medical Image

Data Examiner software,42 and the decay corrected mean per-

centage injected dose per gram (%ID/g) in various tissues was

determined.

Competitive inhibition (blocking) studies were also per-

formed in vivo using static PET imaging to investigate the

specificity of the 68Ga-radiotracers for PSMA. Non-

radiolabeled PMPA (20 nmol/mouse) was coinjected with the
68Ga-radiotracers (n ¼ 3).43

Statistical Analyses

Statistical analyses were performed using GraphPad Prism 5.01

(GraphPad Software, Inc, San Diego, California) and Microsoft

Excel (Version 15). Data were analyzed using the unpaired, 2-

tailed Student t test. Differences at the 95% confidence level (P

< .05) were considered to be statistically significant.
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Results and Discussion

Synthesis and Radiochemistry

Ligands 4 and 7 were synthesized using standard amide bond or

thiourea chemistries in 16% and 76% yield, respectively. A

summary of the in vitro characterization data is presented in

Table 1. Both compounds gave single peaks in RP-HPLC with

>98% chemical purity. The chemical composition of com-

pounds 4 and 7 was confirmed using both low- and high-

resolution electrospray ionization mass spectrometry. For

compounds 4 and 7, peaks corresponding to the monoproto-

nated molecular ion [MþH]þ and the diprotonated species

[Mþ2 H]2þ were identified in (þ)-LR-ESI-MS. In (þ)-HR-

ESI-MS only peaks corresponding to the [Mþ2 H]2þ ions (at

m/z 538.2981 and 593.2877, for 4 and 7, respectively) were

found. Subsequent nonradioactive reactions between ligands

4 and 7 with Ga(NO3)3 gave the expected peaks at m/z 571 and

626 (100%; [Mþ2 H]2þ), respectively. Furthermore, a test

reaction between an aqueous solution of ligand 4 and FeCl3
gave an instantaneous color change from colorless to an intense

orange/brown, confirming the formation of the Fe-DFO com-

plex. Note that Fe-DFO has a known broad electronic absorp-

tion maximum at 430 nm.16

Manual and fully automated 68Ga-radiolabeling reactions

were optimized in ammonium acetate buffer (0.5 mol/L, pH

5.2, room temperature). 68Ga-radiolabeling of 4 and 7 pro-

ceeded quantitatively at room temperature in 10 to 15 minutes.

Both radiolabeled compounds 68Ga-4 and 68Ga-7 were isolated

from the reaction mixture using a Sep-Pak Light C18 cartridge

(Waters Corporation, Milford, MA). After loading the C18

cartridge, the compounds were purified from unreacted 68Ga3þ

ions by washing with water or saline, and the product was

eluted with 20% to 30% EtOH/water (v/v). The average RCYs

for 68Ga-4 and 68Ga-7 were >98% (n ¼ 8) and >96% (n ¼ 8),

with RCP >98%, and specific activities of 27.4 and 23.8 GBq/

mmol, respectively. In comparison, using a similar automated

synthesis module, 68Ga-1 was isolated with an As of 42.2 GBq/

mmol. Notably, when higher amounts of initial 68Ga-

radioactivity are used in the routine clinical preparation of
68Ga-1, Ass as high as 75 to 80 GBq/mmol can be achieved.

When the initial amount of labeling precursors 4 and 7 was

reduced from 20 mg to 10 mg, Ass of 68Ga-4 and 68Ga-7

increased accordingly and were comparable to that attained for
68Ga-1. Both radiolabeled compounds 68Ga-4 and 68Ga-7 were

found to be stable with respect to changes in RCP after

incubation in saline or PBS at 37�C for over 4 hours. These

data confirmed that no radiolysis or chemical degradation

occurred in the formulated samples used for in vitro and in

vivo studies.

Lipophilicity measurements for 68Ga-1, 68Ga-4, and 68Ga-7

gave LogD values of �4.06 + 0.10, �3.24 + 0.05, and �2.60

+ 0.02, respectively. In comparison to 68Ga-1, the new DFO-

conjugated compounds are less hydrophilic. Consistent with

the chemical structures of the linker groups, measurements

showed that the more hydrophilic succinyl linker/spacer in
68Ga-4 conveys increased water solubility compared to the

aromatic pNCS-Bn group in 68Ga-7.

Cellular Assays

Prior to conducting PET imaging in mice, the cellular dissocia-

tion constants (Kd/nM) and specificity of 68/natGa-radiotracers

1, 4, and 7 were measured using standard saturation binding

experiments in LNCaP PSMA(þ) cells (Table 1 and Figure

S1).16,44,45 Across all experiments, estimated receptor concen-

trations (Bmax values) were consistent in the range 0.27 to 0.41

nmol/L. Cellular binding data confirmed that both 68Ga-

radiotracers of ligands 4 and 7 bind specifically to PSMA

expressed on LNCaP cells. The apparent Kd values of 68Ga-4

(26.4 + 7.8 nmol/L) and 68Ga-7 (13.6 + 2.6 nM) indicate that

these compounds exhibit lower affinity toward PSMA than the

current clinical radiotracer 68Ga-7 (2.89 + 0.55 nmol/L). Typi-

cally, a lower binding affinity of a radiotracer would reduce

target tissue uptake in PET imaging. However, it is worth not-

ing that specific contrast in PET is influenced by multiple

factors including nonspecific uptake, tissue perfusion, cellular

internalization, and sequestration which influences retention/

washout, metabolic stability, and whole-body excretion. There-

fore, PET imaging in tumor-bearing mice was performed to

evaluate radiotracer pharmacokinetics.

Positron-Emission Tomography Imaging in
Tumor-Bearing Mice

A combination of dynamic (for 3500s) and static PET scans

(starting at 30 minutes, 1, 2, and 3 hours postradiotracer admin-

istration) were used to assess the pharmacokinetics and speci-

ficity of the 68Ga-radiotracers for detecting PSMA expression

in mice bearing subcutaneous LNCaP tumors on the right

shoulder. Representative static PET images recorded at 1 hour

Table 1. Summary of the In Vitro Characterization Data.

Compound Molecular Formula MW (calcd) /g/mola Specific activity / GBq/mmol LogD (n-octanol: PBS pH7.4) Kd / nmol/L

68Ga-1 C44H58GaN6O17S2
– 1075.2561 42.2 �4.06 + 0.10 2.89 + 0.55

68Ga-4 C47H79GaN10O18 1140.4830 27.4 �3.24 + 0.05 26.4 + 7.8
68Ga-7 C51H81GaN12O16S2 1250.4591 23.8 �2.60 + 0.02 13.6 + 2.6

Abbreviations: 68Ga-1, 68Ga-HBED-CC-PSMA; 68Ga-4, 68Ga-DFO-Nsucc-PSMA; 68Ga-768, Ga-DFO-pNCS-Bn-PSMA; PSMA, prostate-specific membrane
antigen.
aExact isotopic mass.
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are shown in Figure 3. Additional PET data are presented in

Supporting Information Figures S2 to S6. Competitive inhibi-

tion studies (blocking using coadministration of PMPA [20

nmol/mouse]43) confirmed the specificity of the 68Ga-

radiotracers for PSMA expression. Time–activity curves

(TACs) of the tumor, heart/blood pool, kidney, and bladder

measured from VOI analysis of the dynamic PET data are

shown in Figure 4.

Imaging data revealed that the 2 radiotracers, 68Ga-4 and
68Ga-7, showed specific accumulation in PSMA(þ) LNCaP

tumors. In the case of 68Ga-4, peak uptake (*3-4%ID/g) was

observed within the first 5 to 10 minutes postadministration,

after which, rapid washout of the radioactivity occurred. The

tumor washout phase for 68Ga-4 correlated with decreased

activity in the heart/blood pool and excretion via the kidneys/

bladder (Figure 4). At later time points (1-3 hours), 68Ga-4

tumor uptake/retention showed higher accumulation in tumors

than the background due to perfusion (Figures S3 and S4).

However, after 3 hours postadministration, absolute tumor

uptake of 68Ga-4 remained very low (*0.8-1.2%ID/g).

In dynamic PET, 68Ga-7 showed similar peak tumor uptake

(*3.5-4.0%ID/g) to 68Ga-4 but overall had a dramatically dif-

ferent pharmacokinetic profile. Heart/blood pool activity of
68Ga-7 remained higher at each time point in the dynamic

scans, and in contrast to the rapid tumor washout observed for
68Ga-4, tumor-associated radioactivity showed slower washout

for 68Ga-7 (2.90 + 0.46%ID/g after 3500 seconds). Static PET

imaging revealed that tumor-associated 68Ga-7 activity was

specific and retained at *2.5-3.5%ID/g for up to 3 hours (Fig-

ures S5 and S6 [blocking study]).

Equivalent dynamic and static PET imaging experiments

using the standard clinical agent 68Ga-1 showed that this radio-

tracer has a longer residence time in the heart/blood pool, with

considerably higher uptake and retention of radioactivity in

both the LNCaP tumors and in the kidneys (Figure 4 and Figure

S2). In dynamic scans, 68Ga-1 tumor uptake continued to

increase to >8.0%ID/g after 3500 seconds.

Interestingly, the 3 68Ga-radiotracer studied displayed com-

pletely different pharmacokinetic uptake/excretion profiles

(see heart/blood pool, kidney and bladder TACs in Figure 4).

The TACs showed that each of the 68Ga-radiotracers was

extracted from the blood. However, 68Ga-4 was most rapidly

cleared from circulation, followed by 68Ga-7 and then 68Ga-1.

Clearance is predominantly via a urinary mechanism, and the

radiotracers showed specific binding to the kidney (which is

known to express PSMA). Kidney TACs confirmed the differ-

ences in the behavior of the 3 68Ga-radiotracers (Figure 4C).

Specifically, 68Ga-4 showed a very rapid influx and efflux from

the kidney, concordant with low affinity binding to PSMA and

a rapid clearance to the bladder. In contrast, 68Ga-7 displayed a

broader and more prolonged residence in the kidney tissue with

a peak uptake of *50%ID/g at *1400 seconds postadminis-

tration followed by a slow washout phase. The clinical radio-

tracer, 68Ga-1, displayed rapid accumulation in the kidney with

a maximum around 30%ID/g at *500 seconds postadministra-

tion which was retained for the duration of the dynamic scans.

Figure 3. Representative static positron emission tomography (PET) scans of 68Ga-HBED-CC- prostate-specific membrane antigen (PSMA)-
(68Ga-1), 68Ga- desferrioxamine B (DFO)-Nsucc-PSMA (68Ga-4), and 68Ga-DFO-pNCS-Bn-PSMA (68Ga-7) recorded at 1 hour postradio-
tracer administration in mice bearing subcutaneous LNCaP tumors (*200-300 mg). In each case, blocking studies confirmed the specificity of
the 68Ga-radiotracer for PSMA expression. Note that in the 3 sets of image data, different upper thresholds (in units of %ID/g) have been used
for visual clarity in the representation of radiotracer uptake in the tumors. T indicates tumor; K, kidney; B, bladder.
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Pharmacokinetic profiles of 68Ga-1 in kidney and bladder are

consistent with rapid and specific binding of the radiotracer to

the available PSMA. The TAC data suggest that after *500

seconds postradiotracer administration of 68Ga-1, an equili-

brium is reached between uptake and clearance in the kidney.

Bladder TACs are consistent with conclusion Figure 4D. The

tumor uptake, kidney binding, and bladder excretion profiles of
68Ga-1, 68Ga-4, and 68Ga-7 are consistent with the measured

cellular dissociation constants (Kd values; Table 1).

Plasma Protein Binding and Metabolic Stability

To address differences in the pharmacokinetic profiles

observed for the 3 68Ga-radiotracer, ex vivo plasma protein

binding and metabolite analyses were conducted using size-

exclusion and HPLC methods. Radiotracers were injected into

groups of mice and blood samples (n ¼ 2/radiotracer) were

taken at 15 minutes postradiotracer administration. Plasma pro-

teins were separated from the soluble component by ultrafiltra-

tion and radioactivity counted (Figure 5A). These data revealed

that 68Ga-1 had the highest degree of protein association (92%

+ 4%), followed by 68Ga-7 (86% + 2%) and then 68Ga-4

(82% + 7%). Statistical analysis revealed that protein binding

of 68Ga-1 was significantly different (P value <.05) when com-

pared to that of 68Ga-4 and 68Ga-7. Differences between pro-

tein binding of 68Ga-4 and 68Ga-7 were not statistically

significant (P value >.05). These data are consistent with the

heart/blood pool TACs in that increased protein binding corre-

lates with longer blood pool circulation (and consequently,

increased delivery and uptake in the LNCaP tumors).

The HPLC analysis of the radioactivity in the soluble frac-

tion of the blood pool revealed that both 68Ga-4 and 68Ga-7

remained 100% intact and chemically unchanged after 15 min-

utes in mice (Figure 5B). Chemical identity was confirmed by

comparison (and spiking) with the isolated 68Ga-4 and 68Ga-7

radiotracers. Similar to reported data for 68Ga-1, these data

demonstrated that 68Ga-4 and 68Ga-7 are metabolically stable

in mice.19,20 Therefore, differences in the tumor uptake, PSMA

binding, and pharmacokinetics are not associated with radio-

active metabolites.

The PET imaging and ex vivo data provide compelling evi-

dence for the stability, sensitivity, and specificity of these urea-

Figure 4. Time–activity curves (TACs) of the accumulation and washout of 68Ga-radioactivity in (A) the tumor, (B) the heart/blood pool, (C)
the kidneys, and (D) the bladder from 0 to 30 minutes postadministration of 68Ga-HBED-CC-PSMA (68Ga-1; black), 68Ga-desferrioxamine B
(DFO)-Nsucc-PSMA (68Ga-4; blue), and 68Ga-DFO-pNCS-Bn-PSMA (68Ga-7; red).
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based inhibitors for detecting PSMA expression. It is notable

that PSMA binding and pharmacokinetics are both highly sen-

sitive toward changes in the structure of the radiotracer (includ-

ing the chelate, linker, and spacer used to couple the nuclide to

the targeting moiety). These data highlight the importance of

the chelate and of optimizing all components of a biological

targeting construct to achieve the specific contrast.

Conclusion

Two anti-PSMA urea-based radiotracers incorporating DFO as

a chelate for coordinating 68Ga3þ ions have been synthesized,

radiolabeled, and evaluated in a series of in vitro and in vivo

experiments. Radiolabeling studies found that 68Ga3þ can be

complexed efficiently and rapidly at room temperature using

manual or automated methods that yield formulated radiotra-

cers (68Ga-4 and 68Ga-7) in high yields, purity, and specific

activity suitable for PET imaging. In contrast to the radiosynth-

esis of the clinical standard 68Ga-1, the use of DFO as a chelate

instead of HBED for 68Ga radiolabeling gives products with a

single peak in HPLC. Cellular data (Kd values) showed that
68Ga-4 and 68Ga-7 displayed lower affinity for PSMA

expressed on LNCaP cells than 68Ga-1. Dynamic and static

PET scans also revealed important differences in the pharma-

cokinetic profiles of the 3 68Ga-radiotracers. Each radiotracer

showed specific binding and high delineation of PSMA-

positive LNCaP tumors. However, in comparison to 68Ga-1,

absolute uptake values in the tumor were *10-fold and

*2.5-fold lower for 68Ga-4 and 68Ga-7, respectively. In addi-

tion, blood pool clearance, kidney retention, and urinary excre-

tion profiles were altered dramatically by changing the chelate

and linker/spacer groups. Clearance profiles were found to

correlate with both plasma protein binding and measured cel-

lular dissociation constants (Kd values) but not with complex

lipophilicity (LogD values). Collectively, these data demon-

strate that PSMA binding of small-molecule urea-based

inhibitors is particularly sensitive to changes in the entire

chemical structure from the targeting moiety, through to the

spacer group, linker, and chelate (and likely the chemical

nature of the radionuclide) employed in radiotracer design.
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