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Machine-learning models of music often exist outside the worlds of musical performance

practice and abstracted from the physical gestures of musicians. In this work, we

consider how a recurrent neural network (RNN) model of simple music gestures

may be integrated into a physical instrument so that predictions are sonically and

physically entwined with the performer’s actions. We introduce EMPI, an embodied

musical prediction interface that simplifies musical interaction and prediction to just one

dimension of continuous input and output. The predictive model is a mixture density

RNN trained to estimate the performer’s next physical input action and the time at which

this will occur. Predictions are represented sonically through synthesized audio, and

physically with a motorized output indicator. We use EMPI to investigate how performers

understand and exploit different predictive models to make music through a controlled

study of performances with different models and levels of physical feedback. We show

that while performers often favor a model trained on human-sourced data, they find

different musical affordances in models trained on synthetic, and even random, data.

Physical representation of predictions seemed to affect the length of performances. This

work contributes new understandings of how musicians use generative ML models in

real-time performance backed up by experimental evidence. We argue that a constrained

musical interface can expose the affordances of embodied predictive interactions.

Keywords: musical performance, interface, mixture density network (MDN), recurrent neural network (RNN),

creativity, predictive interaction, embodied performance

1. INTRODUCTION

It is well-known that music is more than just what you hear. Movements, or gestures, also
contribute to musical communication (Jensenius et al., 2010). Most acoustic music performance
involves control gestures to operate instruments, but performers also use expressive auxiliary
gestures to communicate musical expression (Broughton and Stevens, 2008). In contrast, machine-
learning models of music often exist outside the world of physical performance with music
represented symbolically or as digital audio, both forms abstracted from musicians’ physical
gestures. If these models are to be applied in real-time musical performance, then it is crucial
to know whether performers and listeners understand predicted musical information and how
they use it. In this work, we consider how a recurrent neural network (RNN) model of simple
music gestures may be integrated into a physical instrument so that predictions are sonically and
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FIGURE 1 | The Embodied Music Prediction Interface (EMPI) prototype. The

system includes a lever for a performer’s physical input (left side) and a

motor-controlled lever for physical output, a speaker, and Raspberry Pi. This

system represents a minimum set of inputs and outputs to experiment with

embodied predictive interaction. A demonstration video can be viewed in the

Supplementary Material.

physically entwined with the performer’s actions. Our system,
the embodied musical prediction interface (EMPI, see Figure 1),
includes a lever for physical input from a performer, and a
matching motorized lever to represent predicted output from the
RNN model. We use this interface to investigate how performers
can make use of musical machine-learning predictions in real-
time performance, and whether physical representations might
influence their understanding of such an instrument.

Rather than predicting symbolic music, such as MIDI notes,
our RNN model predicts future musical control data—the
physical positions of the EMPI’s lever—in absolute time. These
predictions can thus be represented both through the sound
produced by predicted movements as well as through physical
actuation of these control elements. The goal is to train
a machine-learning model that can improvise on a musical
instrument directly, rather than compose notes. To examine
the potential of this idea, our EMPI system simplifies musical
interaction to the barest requirements: just one dimension of
continuous input and output which both control the pitch
of a synthesized sound. By reducing the musical prediction
problem, we seek to expose the performers’ understanding of and
adaptation to a musical ML system.

The EMPI system includes a single-board computer for
machine-learning calculations and synthesis, one lever for
physical input, one for actuated physical output, and a built-in
speaker. It is completely self-contained, with power supplied by
a USB power bank. The machine-learning model is a mixture
density RNN trained to predict the performer’s next physical
input action and the time at which this will occur (Martin and

Torresen, 2019). The system includes three different models:
one trained on a corpus of human-sourced performance data;
one trained on synthetically produced movements; and one
trained on noise, or movements that are uncorrelated in time.
Although multiple interaction designs could be possible, we
focus here on applying predictions to continue a performer’s
interactions (Pachet, 2003), or to improvise in a call-and-
response manner.

Embedded and self-contained instruments are important
current topics in digital musical instrument design (Moro
et al., 2016); however, these instruments usually do not
include predictive capabilities. On the other hand, musical
AI is often focused on composition using high-level symbolic
representations (e.g., Sturm and Ben-Tal, 2017), and not the
interactive or embodied factors (Leman et al., 2018) of music
perception and creation. In this work, an embedded instrument
design is combined with a novel, embodied approach to musical
AI. This combination of embodied musical prediction with
interaction allows us to explore musical AI within genuine
performance environments, where movement is entangled with
sound as part of musical expression.

We evaluated the success of this system through examination
of generated data from these trained models as well as through
a study of 72 performances made with this system under
controlled conditions with 12 performers. This evaluation sought
to identify whether the actions of the different predictive models
are understandable to the performers, and whether they perceive
useful musical relationships between their control gestures, and
the model’s response. We also investigated whether embodied
interactions with this system’s physical output improves or
distracts from these understandings.

Our survey findings show that, of the three models, the
performers assessed EMPI’s humanmodel as most related to their
performance, most musically creative, more readily influenced
and more influential on their playing than the other models.
However, interviews with participants revealed they also saw
value in the synthetic and even noise model based on their
interactive affordances and musical styles. While performers
were split on opinions regarding the physically embodied
response lever, the length of improvisations suggests that the
lever did effect their perceptions of the model’s actions. Our
study has demonstrated that a constrained, ML-enabled musical
interface can afford a variety of creative performance styles. The
performer’s understanding of the different ML models seems to
have a significant bearing on how they interact with the interface.
We argue that physically actuated indicators, although potentially
distracting for some performers, can expose the actions of an
embodiedmusicmodel, and encourage users to explore newways
of performing.

2. BACKGROUND

Musical instruments are not typically predictive; instead,
definitions of interactive music systems focus on behavior in
reaction to gestural input (Rowe, 1993). The advent of electronic
musical instruments including powerful computers has allowed
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experiments with instruments that are able to make intelligent
use of the musical context in which they are used. This has
been discussed since at least the early 1990s (Pressing, 1990),
but has been extended in recent years with the development
and popularity of accessible machine learning frameworks for
understanding physical gestures in performance (Fiebrink, 2017).
Artificial intelligence techniques can imbue a musical interface
with a kind of self-awareness (Lewis et al., 2016; Nymoen et al.,
2016), allowing them to act predictively, rather than in reaction
to a performer.

The question of how to make best use of musical predictions,
particularly from a performance perspective, remains open.
Present work in musical deep neural networks is often focused
on symbolic music generation (Briot et al., 2020), on the
modification (Roberts et al., 2018) or in-filling (Huang et al.,
2017) of given musical sequences, and creating musical digital
audio (Engel et al., 2019). Examples of these neural networks have
recently been embedded into digital audio workstation software
to aid users during music composition (Roberts et al., 2019).
Predictions are therefore used to make more music, or better
music. We do not stray far from this characterization in the
present work, but rather consider musical data to include gestural
feedback, as well as more typical notes and sounds. Where a
typical musical interface maps gestures into sounds, a predictive
interface can also map current gestures into future gestures and
represent these gestures themselves as well the sounds they might
produce (see Figure 2).

Music has many representations, including lead sheets, scores,
and recorded audio with varying levels of specificity over the
musical work recorded (Davies, 2005). The machine learning
models mentioned above have focused on generating music
represented either symbolically (e.g., as MIDI notes), or as digital
audio, a more-or-less finalized representation. In this work, we
use control gestures to represent musical performance; a format
that is more open than digital audio, but more specific than
MIDI notes, especially in terms of precise expression. As argued
in section 1, control and auxiliary gestures are important parts
of musical performance (Jensenius et al., 2010). Further, an
embodied view is required to understand how we perceive and
perform music (Leman et al., 2018). Some machine learning
models do predict embodied representations of artistic data. For
instance, SketchRNN predicts pen movements to draw images
(Ha and Eck, 2017), and SPIRAL generates instructions for a
paint program to generate realistic images (Ganin et al., 2018).
This concept has also been applied to musical sketches in
RoboJam (Martin and Torresen, 2018), and the IMPS system
(Martin and Torresen, 2019), which applied similar mixture
density RNNs as in the present research to predict movements on
a touchscreen or of arbitrary numbers of control values through
time. One field where embodied music is crucial is musical
robotics (Bretan andWeinberg, 2016), although physical motions
in this field are usually not the direct predictions of anML system,
but programmed in response to decisions to actuate certain notes
on an acoustic instrument.

The EMPI system in this work is an example of an embedded
and self-contained computer music interface. Handheld and
self-contained electronic instruments, such as Michel Waisvisz’

CrackleBox (Waisvisz, 2004), the toy Stylophone (McNamee,
2009), or Korg’s more recent monotron synthesizers have been
popular since the late 1960s. While most computer music
instruments involve a laptop computer externally connected
to a controller interface, Berdahl and Ju (2011) argued that it
was advantageous to embed a single-board computer (SBC),
such as a Raspberry Pi inside the musical instrument to create
an integrated and portable musical instrument. The resulting
Satellite CCRMA system used a Raspberry Pi with a USB-
connectedmicrocontroller (Berdahl et al., 2013). The Bela system
(Moro et al., 2016) developed this idea, with an integrated
hardware extension to the Beaglebone Black platform providing
an embedded instrument platform with high audio and sensor
performance (McPherson et al., 2016).

Apart from technical advantages, embedded instrument
designs can be artistically advantageous in terms of enabling
exploration through physical manipulation (Reus, 2011) and
even live hardware hacking (Zappi and McPherson, 2014).
Self-containment can also enable new research methodologies.
Gurevich et al. (2012) explored a constrained self-contained
musical interface. In this case, the self-contained nature of the
device allowed it to be distributed to participants and explored
by them on their own terms.

So far, there are few examples of embedded computer music
interfaces that include music prediction ANNs. This is despite
significant interest in ML-prediction on internet of things (IoT)
or edge computing platforms (Ananthanarayanan et al., 2017).
In one of the only present examples, Næss and Martin (2019)
demonstrated an LSTM-RNN-driven embeddedmusic generator
based on a Raspberry Pi. This work showed that RNN prediction
is practical on an embedded system, and the resulting self-
contained interface allows the music generation system to be
examined by musicians. In the present research, we also use
a Raspberry Pi as the embedded computing platform for an
RNN-based musical prediction system. This work goes further
by exploring musical predictions at the gestural, rather than
symbolic level of representation. Our system embeds a predictive
model in a system with physical, as well as sonic output. This
allows us to examine both musical expression and predictive
interaction in a real-time performance situation.

3. SYSTEM DESIGN

Our Embodied Musical Predictive Interface (EMPI), shown
in Figure 1, is a self-contained musical interface. EMPI is a
highly constrained musical interface, with only one dimension of
continuous input. The EMPI’s matching physical output allows it
to represent the embodied predictive process to a human user.
Its self-contained form-factor allows musicians to explore and
integrate predictive musical interaction into different scenarios.

The physical design of EMPI is focused on hand-held and
self-contained interaction. The 3D-printed enclosure includes a
Raspberry Pi model 3B+, one lever for input, a speaker and
servo-controlled lever for physical output. A 5,000 mAh USB
power bank is attached to the base of the enclosure. The input
and output levers are interfaced to the Raspberry Pi through
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FIGURE 2 | Typical musical instruments translate physical gestures into musical sounds. A predictive instrument can guess future gestures and use this knowledge to

provide continuous sonic output and physical feedback to the performer.

FIGURE 3 | Hardware layout of our self-contained interface. A Raspberry Pi

computer provides sound synthesis, model predictions and manages the

interactive configuration. Physical input and output is provided by a

potentiometer and servo interfaced via a microcontroller. A speaker for audio

and USB battery are also included.

its USB ports and a small ATmega 32U4 microcontroller board.
The speaker and a small amplifier is connected directly to the
Raspberry Pi’s audio output. A system diagram shows these
components in Figure 3.

The software aspects of the system providemusical interaction
and prediction capabilities. The most important of these is a
low-level internal model of performer interactions: a sequence
of real-valued potentiometer positions, along with a time-delta
value. To model this data, we use a 2D mixture density RNN
that predicts the position, and the time, of the next user input.
Various trained models can be used with this network based on
either real-world or synthetic training data. It should be noted
that RNN predictions are computed by the EMPI’s Raspberry Pi,
not an external system.

The prediction model is implemented in Python using
TensorFlow, and applies a special case of our Interactive Music
Prediction System (IMPS) which has been previously described
(Martin and Torresen, 2019). The IMPS system contains the
predictive MDRNN model, and communicates with Pure Data
over OSC to receive user interactions and send sound and
servo commands. Pure Data synthesizes the sound output and
communicates with the microcontroller using MIDI over USB.
This system is configured for call-and-response performance.
When the performer is playing, their interactions are used to

condition the MDRNN’s memory state. If they stop playing
(after a threshold of 3 s), the MDRNN attempts to continue
where they left off, generating more interactions until the
performer plays again. The EMPI’s hardware design and software,
including trained models, are open source and can be found
online (Martin, 2019a).

3.1. Predictive Model
The EMPI uses a mixture density recurrent neural network to
predict future input on the lever. This architecture combines a
recurrent neural network with a mixture density network (MDN)
(Bishop, 1994) that transforms the output of a neural network
to the parameters of a mixture-of-Gaussians distribution. Real-
valued samples can be drawn from this distribution, and the
number of mixture components can be chosen to represent
complex phenomena. The probability density function (PDF) of
this distribution is used as an error function to optimize the
neural network. In contrast, the softmax layer used in many
music RNNs parameterizes a categorical distribution between a
set number of discrete classes.

The expressive capacity of MDRNNs has been previously
exploited to generate creative data, such as handwriting (Graves,
2013) and sketches (Ha and Eck, 2017). This architecture has only
recently been applied to musical interaction data, for instance in
RoboJam to continue musical touchscreen interactions (Martin
and Torresen, 2018), and in IMPS as a general model for musical
interaction data (Martin and Torresen, 2019). For the EMPI
interface, anMDRNNmodel has the advantage of delivering real-
valued samples for lever position and time, as well as a tuneable
learning capacity in terms of the RNN configuration (width and
number of LSTM layers) and the number ofmixture components.
This allows us to generate movements in absolute time and to
potentially learn complex behaviors from the lever movements.

EMPI’s MDRNN is a special case of the one described in IMPS
(Martin and Torresen, 2019), and is illustrated in Figure 4. The
neural network has two inputs. One input is for the current
lever position (xt), and the other for the time since the previous
movement (dtt). These inputs are fed through two layers of long
short-termmemory (LSTM) units and into theMDN layer which
outputs the mixture parameters. Each of the K components of
the mixture is a bivariate Gaussian distribution with a diagonal
covariate matrix with centers (µxk,µtk) and scales (σxk, σtk).
A set of mixing parameters (π1, . . . ,πK), forms a categorical
distribution between the mixture components. In our case, we
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FIGURE 4 | The EMPI’s internal model uses a 2D mixture density recurrent neural network (MDRNN) with one dimension predicting the input value and the second

predicting time deltas between each movement.

FIGURE 5 | Detail of the EMPI’s MDN layer. Three parallel dense layers transform the output of the LSTM units into the parameters of a mixture of bivariate Gaussian

probability distributions.

set the number of mixture components K = 5 following previous
work (Martin and Torresen, 2019).

The MDN layer is provided by the Keras MDN Layer
(v0.2.1) library (Martin, 2019b). This layer transforms the
outputs of the LSTM layers into appropriate parameters to
form the mixture distribution (see Figure 5). The outputs of
the LSTM layers are fed into parallel dense layers that output
the centers, scales, and weights of the mixture distribution,
respectively. No activation function is used for the centers and
weights. The exponential linear unit (ELU) activation function
(Clevert et al., 2016) is used for the scales, with the output
offset by 1 + 10−7. This ensures that the scales are positive
and non-zero while providing gradients at very small values
(as recommended by Brando, 2017). To train this neural
network, the PDF of the mixture model is constructed using
Mixture and MultivariateNormalDiag distributions
from the TensorFlow Probability library (Dillon et al., 2017) to
provide a likelihood function that the training target was drawn
from the mixture distribution predicted by the neural network.
The negative log of this likelihood can be used as a loss value
for gradient descent to optimize the neural network’s weights.
Further discussion of this procedure can be found in Bishop’s
work (Bishop, 1994).

To sample from the parameters output by the MDRNN, first,
a mixture component is chosen by sampling from the categorical
distribution. Then, this chosen mixture component is sampled to
produce an output value. Similarly to other generative RNNs, the
sampling diversity, or temperature, can be altered to draw more
or less conservative choices. The πk form a categorical model
that can be adjusted with the usual temperature modification
in the softmax function (Hinton et al., 2015, see Equation 1).
The covariance matrix can also be scaled to produce a similar
effect. This process yields a sample (xt+1, dtt+1), representing

a prediction of the next lever position and time at which it
could occur. By feeding this sample back into the MDRNN, a
continuous stream of lever movements can be generated.

3.2. Sound Design
The digital synthesis routine for EMPI runs in Pure Data so a
variety of mappings between lever motion and output sound are
possible. In our configuration, Pure Data receives one value from
the input lever (its position as a MIDI continuous control value),
and one from the predictive model’s virtual lever. This data is
only sent when either lever’s position changes, this is similar to
the implementation of a fader on a MIDI control surface. We
chose to use the lever positions to control pitch. The amplitude
of the sound is controlled by an envelope that is only sustained
as long as the lever continues to move. This means that rhythmic
performance is possible (albeit with small glissandi) by tapping
the lever slightly while allowing the sound to diminish in between
each movement.

We experimented with controlling a variety of sounds from
the levers, such as simple tones, plucked strings (reminiscent of a
harp glissando), sample playback, and formant synthesis. For this
research, we settled on a simple 4-operator FM synthesis routine
with a slight change to the tone controlled by having separate
envelopes on modulation and carrier oscillators. Similarly, while
it is possible to have dramatically different sounds on the input
and output levers, we used the same synth routine (separate
voices), with the EMPI’s virtual lever tuned one octave lower. This
arrangement allows the sounds to be distinguished as different
voices, but recognized as coming from the same source.

3.3. Data
We have experimented with models based on three sources of
training data: (1) a collection of solo improvised recordings using
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FIGURE 6 | Excerpt from a 10-min human-sourced improvisation with the input lever. This performance was part of the training data for the EMPI’s MDRNN model.

the EMPI; (2) synthetic data generated from simple waveforms;
and (3) uniform noise. The human-sourced data was collected
on the EMPI hardware in “human only” mode where the human
input was directly linked to a synthesized sound with no input
from the internal model. The improvised performances were
completely unconstrained and included data from the entire
input range of the lever, periods of no interaction (rests), as well
as sweeps and movements in different speeds and rhythms. The
improvisation was performed by the first author and an excerpt
example from the data is shown in Figure 6. This training dataset
is available as part of the EMPI source code (Martin, 2019a).

The synthetic data was generated to represent plausible lever
motions in repetitive patterns. To generate these, a sequence of
time-steps was drawn stochastically from a normal distribution
with mean and standard deviation identical to the human-
sourced improvisation1. This sequence of time-steps was then
fed through sine, square, and triangle wave functions with
frequencies at five steps between 0.1 and 1.1 Hz to generate
the input values. In total, 10,000 datapoints were generated for
each function and frequency resulting in 150,000 total datapoints.
The noise data associated a uniformly sampled random number
(between 0 and 1) for each of 30,000 time-steps drawn by the
same method. Excerpts from the data generated by sine, square,
and triangle waves, as well as noise, are shown in Figure 7.

The three sources of data were used to train separate models
for the EMPI that are used in the experiments described
in section 4. The rationale for using three different models
was to explore the creative utility of models based on both
human-sourced and synthetically generated data. While the
synthetic data is a simple behavior it could potentially represent
an appealing and recognizable movement to a performer. In
contrast, the noise dataset was not intended to be appealing,
rather it was intended to have no recognizable behavior.

4. EVALUATION

Our evaluation of EMPI is focused on the generative potential
of the ML models embedded in the device, and the experience
of human performers who interact with it. We first discuss
the ML models in the abstract and then describe the results

1The human data above was found to have a mean time-delta of 0.045 s

with S.D. 0.184.

of a human-centered experiment with the EMPI where twelve
participants each perform six improvisations under different
experimental conditions.

4.1. Machine Learning Models
In this section we evaluate the performance of the mixture
density RNN architecture and three models applied in the EMPI
system. We performed a small training experiment to ascertain
an appropriate size of model for the datasets that we used,
and generated unconstrained performances from each model to
observe what its behavior might be like in performances.

4.1.1. Training
Previous research has suggested that smaller MDRNNs—i.e.,
with 64 or even 32 LSTM units in each layer, might be
most appropriate for modeling small amounts of musical data
for integration into an interactive music system (Martin and
Torresen, 2019). We trained EMPI’s MDRNN models with 32,
64, 128, and 256 units in each LSTM layer to ascertain the
best accuracy in terms of reproducing held-out examples from
the dataset. Each candidate model used two layers of LSTM
units and was trained on sequences that were 50 datapoints in
length. Training was conducted using the Adam optimizer with
a batch size of 64 and with 10% of training examples held out for
validation. For each model, the number of mixture components
was held static at 5.

The human dataset contained 75,262 interaction events,
corresponding to 65 min of interaction with the EMPI system.
The noise dataset included 30,000 interaction events, and the
synth dataset included 150,000 interaction events to allow for
10,000 points with each of the 15 signal variations.

The training and validation set loss over this training process
for the human dataset are shown in Figure 8. Over the 100
epochs of training on human-sourced data, the 32-unit MDRNN
produced the lowest validation loss. For this reason, and also
out of concern for speed of computation on the Raspberry Pi,
this size of MDRNN was chosen for our experiments below.
The noise and synth models used the same size MDRNN. To
avoid overfitting, for each dataset we selected the model with
the lowest validation loss achieved during these 100 epochs of
training. These models were used for the generation experiments
below and in our performer study.

Frontiers in Artificial Intelligence | www.frontiersin.org 6 March 2020 | Volume 3 | Article 6

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Martin et al. Understanding Musical Predictions

FIGURE 7 | Excerpts from a synthesized data corpus created using stochastically sampled time steps. The function generators are sine, square, and triangle at 0.1

Hz and uniform noise. These data were used as an alternative training data source for the EMPI’s MDRNN model.

FIGURE 8 | Training data loss and validation data loss while training the human-sourced EMPI model with different size MDRNN architectures. The 32-LSTM-unit

MDRNN produced the lowest validation loss and this architecture was used for all EMPI models.

4.1.2. Generation
To demonstrate the potential output of the RNN models we
generated sample performances in an unconstrained manner—
starting with an uninitialized memory state and random first
value, and linking output to input for 500 prediction steps.
Temperature settings of 1.1 for the categorical distribution and
0.1 for the multivariate Gaussian’s covariate matrix were chosen
by trial-and-error. The results of this experiment are shown
for each of the three models (human, synthetic, and noise) in
Figure 9.

The output of the human model seems comparable with the
human-sourced dataset (see Figure 6). The MDRNN captures
a mix of behaviors, such as full back-and-forth motions,

small fast movements, and stepping motions with pauses in
between movements. The synth model produced output that,
similarly to the training data, moves back-and-forth through
the whole range of motion with the ability to change its rate
of movement. The wave shape seems to change somewhat, but
does not deviate from a roughly sinusoidal pattern. The noise
model produces unpredictable patterns as expected. Rather than
generate uniformly random outputs over the range of themotion,
it seems to alternate between the upper and lower extremes with
random movements around the middle.

One notable difference between the models is that the human
model produces movements at a finer temporal granularity.
While 500 samples yields 70 s of movement from the noise and
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FIGURE 9 | 500 Datapoints from the 32-unit MDRNN models in generation mode starting with an uninitialized memory state and a random starting point. The

human-, synthetic-, and noise-based models are shown from top to bottom.

FIGURE 10 | 4,500 Datapoints from the 32-unit MDRNN trained on human data resulting in 180 s of performance.

synth models, only 20 s is produced from the human model.
This difference becomes apparent in performance with these
models as the human model moves much more smoothly than
the other two. A longer performance with the human model,
produced by sampling 4,500 datapoints, is shown in Figure 10.
This shows that the model often focuses on particular areas of the
control range for around 10 s before changing to back-and-forth
behaviors or moving to a different location. While the long-term

structure of the real human performance is not represented, the
local structure seems to be reasonably convincing even with this
small MDRNNmodel.

Performance with the three models (see video in
Supplementary Material) shows that the noise model produces
a consistent but unpredictable pattern, unaffected by any user
input. The synthmodel starts where the user stops, and continues
back-and-forth motion. This model can be controlled somewhat
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by feeding in particularly fast or slow movements, which are
matched by the MDRNN model. The human model generates
smoother movements that sounds most like normal user inputs.
Although it starts in the same location as the user, it seems more
difficult to control with different styles of playing than the synth
model. All three models appear to be stable and computationally
tractable for extended performances on the EMPI’s Raspberry Pi.

4.2. Performer Study
A study with performers was undertaken to ascertain the
effects of the three different models and the absence or
presence of physical feedback on their perception of the musical
interaction experience. The study took the form of a structured
improvisation session where participants performed six short
improvisations with the EMPI system under different conditions.

Two independent factors were explored in this study. The first
was themodel that the EMPI device used to make predictions; the
three models tested were trained with either human-, synthetic-,
or noise-sourced data. The second factor was the feedback with
the physically-actuated arm either enabled or disabled. These
conditions were combined leading to six instrument states and
each participant improvised under each of these. The study can
be characterized as a two-factor within-groups experiment.

4.2.1. Participants
Participants for the study were recruited from the music
and computer science communities at the Australian National
University. Twelve respondents (six female, six male) were
chosen to participate based on availability and experience with
musical performance.

4.2.2. Procedure
The study sessions took the structure of research rehearsals
(Martin and Gardner, 2019) in that the participants were asked
to perform six short improvisations with each one followed
by a written survey and the whole session concluded with an
interview. The study environment is shown in Figure 11. The
improvisations were finished when the performer determined
that they wanted to stop by signaling the researcher, or at a
maximum length of 5 min. Each participant’s six improvisations
was performed with one of the instrument states. The exposure to
different states was ordered following aWilliams (1949) design to
ensure balance with respect to first-order carryover effects. This
required six different orderings, each of whichwas replicated with
two different participants.

The collected data consisted of audio, video, and interaction
data recordings of the session, a semi-structured interview at the
end of the session, and a short written Likert-style survey after
each improvisation. The written surveys had 8 questions with
each recorded on a 9-point rating scale with labels only on the
extremes and midpoint: “Strongly Disagree” (1), “Neutral” (5),
“Strongly Agree” (9). The survey questions were as follows:

1. I understood the ML model’s responses (understood).
2. The responses were related to my performance (related).
3. The responses had a high musical quality (quality).
4. The responses showed musical creativity (creativity).
5. The responses influenced my playing (inf-play).

6. My playing influenced the responses (inf-resp).
7. The ML model enhanced the performance (enh-perf ).
8. The ML model enhanced my experience (enh-exp).

4.2.3. Survey Results
The distributions of responses to each question are
shown in Figure 12 and the data can be found in the
Supplementary Material. Responses to the survey questions
were analyzed with an aligned rank transform (ART) and
two-way mixed-effects ANOVA procedure. This procedure was
used to establish significance of main and interaction effects
due to the two factors (model and feedback). The ART-ANOVA
was performed in R using the ARTool library v0.10.6 (Kay
and Wobbrock, 2019). This procedure was used as it has been
recommended as appropriate for factorial HCI studies with
non-parametric data (Wobbrock and Kay, 2016), such as this
experiment. Post-hoc testing via Holm-corrected paired t-tests
were performed to establish significant differences between
responses to individual conditions.

The ART-ANOVA procedure revealed that the ML model had
a significant effect on responses to five of the eight questions;
these are shown in Table 1. The model had a significant effect
on how participants rated the relation between responses in
their performance, the musical creativity of responses, whether
responses influenced their playing and vice-versa, and whether
the ML model enhanced the performance.

The presence or absence of the servo-actuated lever did not
have any significant effects on the survey results. For Question 6,
“My playing influenced the responses,” a minor effect [F(1, 55) =
2.93, p < 0.1] was observed. The distribution of responses here
(see Figure 12) show that participants seemed to perceive that
they had more influence over the response when the physical
actuation was present.

As we detected significant effects of the ML model using the
ART-ANOVA procedure, post-hoc Holm-corrected paired t-tests
were used between the results for each MLmodel to reveal which
had led to significantly different responses to these questions.
For Question 2, participants reported that the responses were
more related to their performance with the human model than
the synth model and that the noise model was least related. The
differences were significant (p < 0.05) for all three models for
this question with the human model rated as most related, then
synth, then noise. The musical creativity (Q4) of responses was
rated significantly higher with the human model than for the
other two (p < 0.05). The participants reported significantly
more influence (Q5) from the human model than from the synth
model (p < 0.01), but the noise model’s influence was not
rated significantly differently to the other two. The performers
rated their own degree of influence over the human model (Q6)
significantly more highly than both the synth and noise models.
The noise model was also rated as providing significantly less
enhancement (Q7) to the performances than with the human
model (p < 0.05).

The survey results tell us that performers perceived the ML
model as making significant impacts on their performances while
the physical feedback only had a minor effect on the participants
perception of influence over the responses. The post-hoc tests
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FIGURE 11 | A participant performing with the EMPI during a study session.

FIGURE 12 | Distribution of responses to the eight survey questions divided by ML model and the presence or absence of the physical lever movement. Outliers are

shown as diagonal markers.

TABLE 1 | Survey questions with significant effects due to the ML model.

Question F Significance

2. The responses were related to my performance 12.42 p < 0.001

4. The responses showed musical creativity 6.87 p < 0.01

5. The responses influenced my playing 6.23 p < 0.01

6. My playing influenced the responses 6.51 p < 0.01

7. The ML model enhanced the performance 3.66 p < 0.05
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showed that the human ML model’s performances were rated as
significantly more related to the performers’ actions, significantly
more creative, and significantly more able to be influenced than
the other models. It also influenced the performers’ playing
significantly more than the synth (but not noise) model. This
suggests that the human model had learned enough human-like
behavior to interact with the human performers in a natural way.
The synthmodel was rated as performing significantly less related
actions than the human model, but was significantly better than
the noise model. While the noise model was rated as providing
significantly less enhancement to the performances, it did draw
some positive ratings, and in particular, was not significantly
more or less influential over the player’s performance than the
other two models.

4.2.4. Interview Results
The interviews following each session were structured around
the performers favorite/least favorite condition, whether they
preferred the servo on or off, which model they preferred, how
they found the interface, and whether they had suggestions
for improvement.

Almost all of the participants identified one of the human or
synth conditions as their favorite, with physical actuation either
on or off. They often reported that these conditions had felt most
responsive to their different inputs. Two participants seemed to
favor the noise model due to its interesting rhythmic pattern and
the fact that it was consistent. Six of the participants indicated
that one of the noise conditions had been their least favorite;
their main complaint was that they couldn’t figure out what the
noise model was doing. The other participants chose a human or
synth condition as their least favorite. One mentioned disliking
the smooth movement of the human model and others disliked
the repetitive gestures of the synth model.

Six of the twelve participants preferred to have physical
actuation, three preferred not to have actuation, and three had
no preference. Some participants preferred to have the visual
reinforcement of the model’s responses, one noted that it was
fun to have it moving, and another that it was similar to eye
contact in an ensemble. The servo-detractors felt that it drew
their attention away from the sound. One participant even closed
their eyes when the servo was turned on.

In general, the participants were able to identify the three
distinct models in performance without having been told
explicitly during the session. They commented on the idea of
exploring the influence they had over the responses as well
as taking influence from it. Several participants attempted to
lead the models and commented that the synth model seemed
to respond most clearly to different kinds of inputs. Some
participants were frustrated that themodels weremost influenced
by their training data, rather than the current performance.
One suggested implementing something more like a looper.
While several participants noticed that the noise model did not
respond to their performances, some enjoyed the distinct sound
of its performance. Several noted that the human model was
distinguished by its “slidy” sound, and one participant thought
this made it more expressive than the other models.

In general, participants seemed to enjoy using the EMPI, and
several noted that it was “cute” and fun to interact with. Most of
the participants commented that they could only “glide” between
notes with the lever, rather than skip pitches. In general, this
was seen as a limitation when compared with the ability of the
ML model to skip between notes. One participant, however,
mentioned that they felt they had improved over the session.
The participants also saw the focus on pitch control as a
limitation and one envisaged controlling other parameters by
moving the input lever in other directions. Others suggested
extra sounds or controls to fine-tune their input. Although the
EMPI was generally seen as unique, one participant compared
the EMPI to a flex-a-tone (a novelty percussion instrument) and
another to a hurdy gurdy (a string instrument with a crank-
driven frictionwheel). Several participants saw the strict call-and-
response interaction as a limitation, and wanted responses that
could overlap with their performance. One suggested reducing
the gap between their input and the response to allow for
continuous sound.

4.3. Discussion
The results of our study reveal variations in how performers
perceive the EMPI’s machine learning models and interface. The
ML model used in each performance had a significant effect
on responses to five of the eight survey questions covering the
relationship between performance and response, the musical
creativity of responses, the amount of influence between the
participants’ performance and the responses, and the extent to
which responses enhanced performances. The human model
seemed to produce responses that were most related to the
participants’ performance and were most creative. This model
seemed to influence the performers and receive their influence
most readily. On the other hand, several participants reported
that the synth model was their favorite in interviews. One
participant even favored the noise model.

A complication of this comparison is that the synth and noise
models sounded distinct from the participants’ performances,
primarily due to their quite different temporal behavior. In
contrast, the human model sounded more similar to what the
performers played. As a result, the human model may have been
less memorable at the end of the session. In terms of interaction
with the ML models, some participants were concerned with
exploring responses, discovering ways to exert control over what
the model would do. Others reported drawing inspiration from
the ML model’s performances, particularly those based on the
noise and synth models.

Several participants expressed a desire for the responses to
be more directly related to their own performances, perhaps
more like a looper, or reflexive instrument (Pachet et al., 2013).
In contrast, our MDRNN model (similarly to other RNN-
based music systems) has only limited capacity to reflect the
performer’s input material, and the relationship to the training
dataset is much more clear. These participants may have been
more interested in ML-systems with on-line training capability.
Our study seems to have shown that the performers distinguish
between the three models, and see advantages of each one, so a
compromise may be to give them control over which ML model
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FIGURE 13 | Distribution of performance lengths by experiment condition.

The lack of physical actuation resulted in greater variation in the length of

performances for the human and synth ML models.

is active, emphasizing the strong role of the training data in what
they will hear.

The presence or absence of the servo-actuated lever did not
have a significant effect on any of the survey questions. The
interviews revealed that although half of the participants liked
having the servo turned on, the others preferred it off, or had no
preference. This split opinion could explain the negative result
in the surveys for this effect. It could be that for performers in
control of a solo instrument, the physical embodiment of gestures
are less important than for an audience watching a performance.

One objective measure of these performances, the length
(shown in Figure 13), does show some interesting results related
to the servo. For both the human and synth performance, the
interquartile range of the length is wider with the servo on
than off. For noise, the interquartile range is wider without the
servo. An interpretation of these results is that for the more
widely favored models, the presence of the servo encouraged
some performers, who played for longer, and discouraged
others, who stopped performances sooner. The random and
unyielding nature of the noise model’s performance may have
been more apparent with the servo turned on, resulting in
shorter performances. It seems that there may yet be an effect
due to physical representation of the ML model’s behavior in
terms of how quickly performers recognize and understand
boring responses. A further study could isolate this effect while
controlling for differing opinions on physical actuation.

The participants were broadly positive about the EMPI’s
interface design and interacting with theMLmodels. They agreed
in almost all performances that the ML models had enhanced
their experiences, and that the responses showed musical quality
and creativity. Although some were frustrated by constraints
of the single lever interface, they often overcame these to
some extent during performance while attempting to match the
behaviors of the ML models. Although the performers generally
tried to influence themodel’s responses, theymay have beenmore
influenced themselves. This suggests that the choice of model in
EMPI may be more important in terms of suggesting different
ways to play the instrument than in picking up the performer’s
pre-existing musical gestures. Future experiments with EMPI
could apply other RNN model architectures or datasets to
examine the musical styles they might afford performers.

5. CONCLUSIONS

In this work, we have examined musical AI through a novel,
machine-learning-enabled musical instrument, the embodied
musical prediction interface (EMPI). The EMPI system is
consciously constrained. This design choice focuses attention
toward embodied predictive interaction, where a performer
creates music in a call-and-response improvisation with an ML
model that can predict physical musical gestures. We use this
interface to investigate how different recurrent neural network
models are understood and exploited by performers. We also
ask whether the physical representation of predictions helps or
hinders the performer. While we have examined the generative
potential of our ML models, our focus has been on how this
system might be used in genuine musical performance. To this
end, we conducted a formal, controlled experiment where 12
participants created 72 improvised pieces of music.

Through this study, we found evidence that the ML model’s
training dataset affects how performers perceive the model’s
responses, the extent to which they are able to influence it and
use it as a source of inspiration. We found that the different
performers appreciated different models and that their interest
was often drawn to models that were distinct from their playing.
Although the survey results often favored the human model,
some performers expressed preferences for the model trained
on synthetic data and even the model trained on noise. We
found that the performers were split on their preference for the
physically actuated lever although analysis of the length of the
improvised performances suggests that it affects how long the
EMPI performance might hold their interest.

These findings suggest that the presence of different ML
models can change how users perform with a musical
interface. The use of an MDRNN to predict embodied gestural
data, rather than musical notes, seems to have added a
new dimension of flexibility to our instrument in terms
of creating models from synthetic data. The human model
sounded most related to the performer’s playing, but the
two models based on computer-generated data also led to
satisfying improvisations. It is entirely feasible to add more
custom-designed models to EMPI and to allow musicians to
choose which they would like to use, even during the same
performance. Our study results suggest that this could lead to
new kinds of performances both from the ML response, and the
performers’ interactions.

While the use of physical actuation was not universally
appreciated, overall, the performers reacted positively to the
EMPI instrument. Many participants continued to perform and
explore the interface and the ML responses up to the 5-min

limit of the experimental improvisations. This finding suggests

that constrained and gesture-focussed musical instruments can

benefit from generative ML interactions that, so far, have often

been limited to keyboard-style interfaces. Constrained and self-
contained electronic instruments could be an effective way to
deploy musical AI systems into broader use by musicians.
Physically actuated indicators may be controversial but have the
potential to encourage users to explore new ways of operating an
interactive music system.
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Our work has demonstrated that although simple, EMPI
supports a range of musical interactions afforded by the
presence of multiple ML models. We also found that while
physical actuation of embodied predictions can serve as both
an aid and a distraction to different performers, interacting
with embodied predictions can enhance a performer’s musical
experience. Overall, this work contributes new understandings
of how musicians use generative ML models in performance
backed up by experimental evidence. Our embodied predictive
instrument is also a contribution as an open hardware and
software system. This research has demonstrated that EMPI
can produce compelling music experiences within a lab
setting. We argue that EMPI, and future embodied predictive
instruments, hold substantial potential for enhancing and
enabling musical creativity.
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