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The orphan nuclear receptor Nur77 is an immediate-early
response gene that based on tissue and cell context is impli-
cated in a plethora of cellular processes, including prolifera-
tion, differentiation, apoptosis, metabolism, and inflammation.
Nur?77 has a ligand-binding pocket that is obstructed by hy-
drophobic side groups. Naturally occurring, cell-endogenous
ligands have not been identified, and Nur77 transcriptional
activity is thought to be regulated through posttranslational
modification and modulation of protein levels. To determine
whether Nur77 is transcriptionally active in hematopoietic cells
in vivo, we used an upstream activating sequence (UAS)-GFP
transgenic reporter. We found that Nur77 is transcriptionally
inactive in vivo in hematopoietic cells under basal conditions,
but that activation occurs following cytokine exposure by
G-CSF or IL-3. We also identified a series of serine residues
required for cytokine-dependent transactivation of Nur77.
Moreover, a kinase inhibitor library screen and proximity
labeling-based mass spectrometry identified overlapping kinase
pathways that physically interacted with Nur77 and whose in-
hibition abrogated cytokine-induced activation of Nur77. We
determined that transcriptional activation of Nur77 by G-CSF
or IL-3 requires functional JAK and mTor signaling since their
inhibition leads to Nur77 transcriptional inactivation. Thus,
intracellular cytokine signaling networks appear to regulate
Nur77 transcriptional activity in mouse hematopoietic cells.

Nuclear receptor subfamily 4 group A member 1 (NR4A1;
also termed Nur77/TR3/NGFIB) is an orphan member of the
nuclear receptor superfamily. Nur77 has the typical structure
of a nuclear receptor: an N-terminal transactivation domain, a
conserved DNA-binding domain (DBD), and a C-terminal
ligand-binding domain (LBD) with a C-terminal helix that
provides ligand-dependent coactivator interactions (the AF2
domain) (1, 2). The transcriptional activity of most nuclear
receptors depends on the presence versus absence of small-
molecule ligands (3). However, the Nur77 ligand-binding
pocket is filled by hydrophobic amino acid side chains,
which should inhibit internal binding of a small molecule (2).
Endogenous  natural ligands that regulate Nur77
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transcriptional activity have not been found, even if some
studies have identified compounds (i.e., cytosporone B, celas-
trol) that act as Nur77 agonists by binding to external surfaces
on the LBD or antagonists (i.e., diindolylmethane derivatives)
by directly interacting with Nur77 LBD pocket (4—6). Because
Nur77’s ligand-binding pocket is largely obstructed, alternative
mechanisms may be relevant to provide natural, intracellular,
temporal, and spatial control of Nur77 activity, and it is un-
known in which tissues and under which conditions Nur77
might be transcriptionally active versus transcriptionally silent.

Nur77 is an immediate-early gene and an important
transcription factor implicated in a plethora of cellular pro-
cesses in response to different stimuli such as mitogens, cy-
tokines, metabolic, and apoptotic signals (7—10). Nur77 has
been implicated in autoimmunity, regulation of T cell (Treg)
differentiation, and T cell metabolism (11-13). Nur77 also
plays central roles in the differentiation and survival of
Ly6C- monocytes, and this subset of cells are absent in
Nur77-deficient mice (14). In cancer cell lines and in stim-
ulated thymocytes, phosphorylation of Nur77 induces exit
from the nucleus and transfer to the mitochondria, where it
promotes apoptosis by associating with Bcl-2 (15). Nur77 has
been associated with mixed roles in oncogenesis. In blood-
derived tumors (i.e., leukemia and in lymphoma), Nur77
has been proposed as a tumor suppressor influencing key
cellular processes such as inflaimmation and apoptosis
(16, 17). In addition, murine deletion of the genes encoding
for Nur77 and its homolog NR4A3 led to acute myeloid
leukemia development (18). Conversely, in several solid tu-
mors (i.e., breast, colon, kidney, melanoma, and pancreas), it
is overexpressed, and it acts as pro-oncogene promoting cell
proliferation, survival, and migration/invasion while its
inactivation by antagonists binding has shown to reduce
tumor growth and survival (19-22).

The molecular mechanisms that modulate Nur77 tran-
scriptional activity remain poorly defined. In the present study,
we aimed to define the in vivo distribution of active versus
inactive Nur77. Surprisingly, we find that Nur77 is transcrip-
tionally inactive in reporter assays in vivo in hematopoietic
cells under basal conditions, but that transcriptional activation
is induced by G-CSF. We show that cytokine-dependent
transcriptional activation of Nur77 requires JAK and mTor
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Cytokine-mediated Nur77 transactivation

signaling, and we identify a series of serine residues required
for this activation in primary mouse hematopoietic cells,
suggesting that intracellular signaling networks may modify
Nur77 activity via posttranslational modification.

Results

Gal4-Nur77 reporter transcriptional activity is regulated by
G-CSF in vivo and in vitro

We evaluated the expression of nuclear receptors in human
AML bone marrow samples and noted that NUR77 is one of
the highest expressed nuclear receptors (Fig. S1A) (23). In
addition, during human hematopoietic maturation, NUR77
undergoes differential expression, with high expression in
CD34+ stem/progenitor cells and low expression in promye-
locytes, neutrophils, T-cells, and B-cells, but retained expres-
sion in monocytes (Fig. S1B). Similar patterns of expression
could be observed in mouse hematopoietic cells, with
expression in stem cells, reduced expression in progenitor
cells, and the re-expression during neutrophil and monocyte
maturation (Fig. S1, C-E) (24, 25). These patterns of differ-
ential expression across different hematopoietic cell types
suggest that NUR77 may contribute to hematopoietic function
and phenotypes in different hematopoietic cell types.

To determine whether Nur77 activity might be transcrip-
tionally active versus inactive in different cell types in vivo, we
used a previously characterized in vivo nuclear receptor re-
porter assay using UAS-GFP transgenic mice (3, 26). Briefly,
UAS promoter sequences are recognized by the yeast Gal4
transcription factor and are not activated by mammalian
proteins. We generated a retrovirus expressing the recombi-
nant protein Gal4-Nur77 where the modular Gal4 DBD
(Gal4-DBD) is fused to the Nur77 LBD (Nur77-LBD) (MSCV-
Flag-Gal4 DBD-Nur77 LBD-IRES-mCherry). UAS-GFP bone
marrow Kit+ cells were transduced with Gal4-Nur77 and then
transplanted into lethally irradiated recipient mice (Schema
Fig. 1A). Using this system, the reporter specifically responds
when intracellular ligands or other stimuli are present that
enable transactivation by Nur77-LBD. Six weeks after trans-
plantation, the recipient mice were sacrificed and bone
marrow, peripheral blood, spleen, thymus, and peritoneal
macrophages were collected and analyzed by flow cytometry.
We did not observe GFP*mCherry"® cells in any of these five
tissue types, suggesting that under basal conditions, Nur77
may be transcriptionally inactive (or potentially repressive) in
hematopoietic cells in vivo (Fig. 1B with summary data in
Fig. 1G). We evaluated the effect of hematopoietic stress on
Nur77 transcriptional activity in vivo. We treated transplanted
mice (UAS-GFP x Gal4-Nur77) with granulocyte-colony
stimulating factor (G-CSF) to induce granulopoiesis, phenyl-
hydrazine (PHZ) to induce hemolytic anemia, and subsequent
erythropoiesis or 5-fluorouracil (5FU) to induce myeloablation
and subsequent stem/progenitor expansion. We further eval-
uated a myeloid malignant stressor, the engraftment of
MLL-AF9 leukemia cells (27). Following these stressors, the
mice were sacrificed and reporter activity compared with the
mice engrafted under basal conditions. We observed an
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increase in the proportion of GFP+mCherry+ cells in total
bone marrow cells following G-CSF treatment, but not
following treatment with other stressors (Fig. 1, C—F and H).
Gal4-Nur77 reporter activity was not uniform across all cell
types following G-CSF treatment, and GFP+mCherry+ cells
were enriched in Grl+CDI11b+, CD71+Terl19+, and
CD71+Ter119-cells (Fig. 11). Thus, Gal4-Nur77 appears to be
broadly transcriptionally inactive in normal and malignant
hematopoietic cells under basal conditions, but it becomes
transcriptionally active during G-CSF-induced granulopoiesis.

G-CSF and IL-3 regulate Gal4-Nur77 transcriptional activity
via JAK1/JAK2 pathways in vitro

We assessed the effect of G-CSF on Gal4-Nur77 reporter
activity in vitro using UAS-GFP BM Kit+ cells transduced with
Gal4-Nur77. UAS-GFP BM Kit+ cells were grown in two
different cytokine cocktails: a minimal media containing only
stem cell factor (SCF) and in a supplemented transplant media
(TM) containing SCF, interleukin-3 (IL-3), thrombopoietin
(TPO), and fms-related tyrosine kinase 3 ligand (FLT3). We
observed that Gal4-Nur77 reporter activity was augmented by
G-CSF under both conditions and that basal reporter activity
was greater in the cytokines-enriched TM compared with
minimal media (Fig. 2A4). To determine whether a particular
cytokine was responsible for reporter transactivation by Gal4-
Nur77, UAS-GFP BM Kit+ cells were transduced with Gal4-
Nur77, cultured in minimal media, and exposed to individual
cytokines (IL-3, IL-4, IL-6, IL-7, receptor activator of nuclear
factor kappa-B ligand-RANKL, erythropoietin-EPO, FLT3L
and TPO). Complete TM and G-CSF were used as positive
controls. In addition to G-CSF, we found that IL-3 augmented
Gal4-Nur77 reporter activity (Fig. 2B).

Both G-CSF and IL-3 are activators of the Janus Kinase
(JAK)-Signal Transducers and Activator of Transcription
(STAT) signaling pathway and regulate hematopoietic pro-
genitor cell proliferation and differentiation (28). The JAK
family is composed of four members (JAK1, 2, 3, and TYK2)
with differential association with specific cytokine receptors
(29). To assess whether G-CSF and IL-3 regulation of Gal4-
Nur77 reporter activity involve overlapping JAK signaling,
JAK inhibitors were administrated to UAS-GFP BM Kit+ cells.
Ruxolitinib (iJAK1/2), baricitinib (iJAK1/2), and INCB039110
(iJAK1) inhibited IL-3 and G-CSF mediated reporter trans-
activation by Gal4-Nur77 (Fig. 2C), whereas CP690550 (iJAK3)
was not effective. Thus, in hematopoietic cells, Gal4-Nur77
transcriptional activity is regulated via IL-3, in addition to
G-CSF, and depends on signaling through JAK1 and/or JAK2.

Gal4-Nur77 mutational analysis and effects on transcriptional
activity

We evaluated whether specific posttranslational modifica-
tion sites were necessary for Gal4-Nur77 transcriptional ac-
tivity. We generated a series of mutations in the Nur77 LBD at
sites previously implicated in Nur77 posttranslational modifi-
cation. These included: S351, which can be phosphorylated by
Akt and is crucial for Nur77 tumor suppression activity
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Figure 1. Gal4-Nur77 transcriptional activity in vivo. A, schema for stem cell transplant procedure. B-E, Kit+ UAS-GFP bone marrow cells were transduced
with MSCV-3xFlag-Gal4-Nur77 LBD-IRES-mCherry retroviruses and engrafted into sublethally irradiated recipient mice. Six weeks later, recipient mice were
treated as indicated (G-CSF, PHZ, 5FU), and reporter activity was assessed (the ratio of mCherry+GFP+ versus total mCherry+ cells). F, Kit+ UAS-GFP bone
marrow cells were transformed with MLL-AF9 retrovirus, transduced with Gal4-Nur77 retrovirus, and engrafted into recipient mice. G, summary ratios of
GFP+mCherry+ cells relative to total mCherry+ cells in the bone marrow cells, peripheral blood, spleen, and peritoneal macrophages from mice trans-
planted with UAS-GFP bone marrow Kit+ cells transduced with Gal4-Nur77 (n = 5 recipient mice). H, ratio of GFP+mCherry+ cells relative to total mCherry+
cells in bone marrow cells from mice transplanted with UAS-GFP bone marrow Kit+ cells transduced with Gal4-Nur77 and treated as indicated (n = 5
recipient mice per group). /, reporter activity was evaluated by flow cytometry in hematopoietic subpopulations as indicated. *p < 0.05. **p < 0.01.

**¥p < 0.001, t test with Welch's correction.

(30, 31); L449W, which affects optimal occupation of an acyl
chain in the bulky binding pocket and is required for the
optimal trihydroxybenzene potency (32); S533, which can be
phosphorylated by Akt2 (32); S553A, which alters the native
surface feature of the LBD (33); and K577A, which alters a
canonical SUMOylation consensus motif within the LBD (34).
In addition, we generated the phosphorylation mutant S495A
based on its strategic position within the structure of Nur77
LBD, and two deletion mutants of the ligand-dependent acti-
vation function 2 (AF-2) domain (S550* and D589*). The
protein expression of the mutants was verified on Western blot

SASBMB

(Fig. S2A). UAS-GFP BM Kit+ cells were again transduced
with Gal4-Nur77, and transcriptional activation was evaluated
after culture in TM for 24 h with and without G-CSF treat-
ment by the percentage of mCherry+GFP+ cells (Fig. 3, A and
B). In addition, UAS-GFP bone marrow cells transformed with
MLL-AF9 (which maintain a monocytic morphology) retro-
virus can be cultured ex vivo in media containing IL-3. These
cells are highly dependent on IL-3 for growth and survival and
exhibited consistent reporter transactivation by Gal4-Nur77
under ex vivo conditions (Fig. 3, C and D). In both cellular
contexts, S495A augmented Gal4-Nur77 reporter activity, and
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Figure 2. JAK1/JAK2 pathway regulates Gal4-Nur77 transcriptional activation in vitro. A-C, ratio of GFP+mCherry+ cells relative to total mCherry+ cells
in UAS-GFP bone marrow Kit+ cells transduced with Gal4-Nur77 and treated as indicated for 24 h. C, the JAK1/JAK2 inhibitors were used at the following
concentrations:Ruxolitinib 0.2 uM, Baricitinib 0.2 uM, TG101348 0.3 uM, INCB039110 0.2 uM, CP690550 20 nM and AZD1480 1 uM. Each experimental point
was performed in triplicate. **p < 0.05. **p < 0.01. ***p < 0.001, t test with Welch's correction.
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Figure 3. Analysis of transcriptional activity of Nur77 mutants in vitro. A and B, UAS-GFP bone marrow Kit+ transduced with Gal4-Nur77 or indicated
mutations were treated without and with G-CSF and mCherry+GFP+ cells quantified. C, UAS-GFP MLL-AF9 cells transduced with Gal4-Nur77 or indicated
mutations and treated as indicated for 24 h. D, representative data showing GFP and mCherry intensity in UAS-GFP MLL-AF9 cells transduced with Gal4-
Nur77 or Gal4-Nur77 S550*. Each experimental point was performed in triplicate. **p < 0.01. ***p < 0.001, t test with Welch'’s correction.

both AF2 deletions abrogated Nur77 reporter activity. S533A
was hyperactive, and S351A, L449W, S553A, and K577A did
not result in significant differences compared with wild-type
Gal4-Nur77 in either cell context.

We assessed the effect of JAK inhibitors on the activity of
Gal4-Nur77 LBD WT, S351A, S495A, K577A, and D589*
mutations in MLL-AF9 leukemia cells. Ruxolitinib and bar-
icitinib were again effective at reducing the reporter activity,
with greater effect on the median fluorescence intensity
(MFI) of GFP than the proportion of GFP+ cells, as might be
expected in a system with high basal GFP expression (Fig. S2,
B-F). This inhibition was observed with S351A, S495A, and
K577A mutations (Fig. S2, C-E), and activity was again

SASBMB

absent with D589* (Fig. S2F). Thus, the AF2 domain appears
necessary for Gal4-Nur77 transactivation, and S495 and S533
both augment Gal4-Nur77 activity, but it retains sensitivity
to JAK inhibitors. In addition, we performed a nuclear/
cytoplasmic fractionation in MLL-AF9 cells expressing Gal4-
Nur77 to determine if JAK inhibitors sensitivity could be
caused by a shift in Gal4-Nur77 reporter cellular localization.
We observed that Gal4-Nur77 47 kDa band was present in
both the nucleus and cytosol, while the presence of addi-
tional Gal4-Nur77 33 kDa and 20 kDa truncated bands were
nuclear exclusive. JAK inhibitors administration did not alter
the baseline patterns of cytosolic and nuclear localization
(Fig. S2G).
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We examined variant distribution within the human pop-
ulation as represented in the gnomAD database (gnomad.
broadinstitute.org). Within Nur77 (P22736), there are 69 ser-
ines, 18 of which are found in the LBD. However, of the 346
reported variants involving serine residues, only 12 occur
within the LBD (p < 0.001) (S380P: 1; S454L: 3; S498G: 6;
S546T: 2). Likewise, of 27 total lysine residues, 11 are found in
the LBD but only 32 of 414 variant lysine alleles are found in
LBD lysines (p < 0.001). This suggests that additional LBD
serine and lysine positions may be biologically relevant and
preferentially conserved.

We examined the structure of the Nur77 LBD (PDB 2QW4)
and defined three clusters of external-facing possible post-
translational modification sites: cluster 1 (S367, S375, S378,
S$385, and S466), cluster 2 (K381, K386, K397, K456, and
K361), and cluster 3 (S485, S492, S495, S550, and S553)
(Fig. 4A, clusters 1 and 3 represent serine residues along two
different shared surfaces, and cluster 2 was a combination of
externally facing lysines). Expected expression and retained
nuclear/cytoplasmic localization patterns of each cluster
mutant were verified on Western blot (Fig. S3, A and B). The
cluster mutants were transduced in UAS-GFP MLL-AF9 cells
and the transcriptional activation was evaluated at 24 h by the
percentage of mCherry+GFP+ cells. Cluster 1 and 3 mutants
abrogated transactivation by the Gal4-Nur77 reporter in both
MLL-AF9 cells and in Kit+ bone marrow cells, whereas cluster
2 retained some activity (Figs. 4B and S3C). To define which
specific residues within clusters 1 and 3 were responsible for
Gal4-Nur77 transcriptional activity, we generated a series of
single and combination mutants, and protein expression of
these mutants was verified on Western blot (Fig. S3, D and E).
These mutants were transduced in UAS-GFP BM Kit+ and
UAS-GFP MLL-AF9 cells, and the transcriptional activation
was evaluated at 24 h by the percentage of mCherry+GFP+
cells. Cluster 1 was fractionated into seven different vectors
(S367A, S375A, S378A, S385A, S466A, S385A/S466A, and
S378A/S385A/S466A). Although S367A and S375A inhibited
transactivation in Kit+ cells, they had little effect in MLL-AF9
cells. In both contexts, S378A, S385A, S466A, and S378A/
S385A/S466A decreased reporter transactivation, and S385A/
S466A abrogated activity, suggesting a role for these two
phosphorylation sites within the Nur77-LBD (Fig. 4, C and D).
Cluster 3 was deconvoluted using five different vectors
(S492A/S495A, S550A/S553A, S550A, S492A, and S485A). All
the mutants from cluster 3 displayed reduced reporter trans-
activation in both cell types, and no single mutation
completely abrogated Gal4-Nur77 reporter activity (Fig. 4, E
and F).

Kinase inhibitor screening and Gal4-Nur77 transcriptional
activity

To determine whether and which specific kinases might be
involved in cytokine signal transduction that regulate Gal4-
Nur77 activity, we performed a screening assay using a
library of 436 kinase inhibitors. Compounds were organized by
principle pathways. We again noted effects by broad JAK

6 . Biol. Chem. (2021) 297(5) 101240

inhibitors, with limited effects observed among compounds
with weak JAK2 activity and no effects in JAK3 specific in-
hibitors (Fig. 54). The MLL-AF9 leukemia cells are highly
dependent on IL-3, and it is not surprising that viability
declined to some extent among compounds in this class.
However, in this assay, reduced cell viability was not synony-
mous with reduced reporter activity, as diverse inhibitors of
Aurora, polo-like, Rho, and ROCK kinases lead to reduced cell
viability without reduced GFP output (Fig. 5B). Multiple in-
hibitors of the mTor pathway inhibited reporter activity
(Fig. 5C). PI3K and ATR inhibitors also were active, although
generally, these were compounds with cross-inhibitory effects
on mTor and not compounds with ATR specificity (Fig. 5D).
The multikinase inhibitor R406 and its prodrug fostamatinib
were both active, whereas ERK, JNK, and MEK inhibition
showed minimal effects (Fig. 5, E and F). Inhibition of other
pathways did not inhibit Gal4-Nur77 reporter activity (ABL,
ALK, ATM, BTK, CDK, EGFR/HER2, FAK, IGFR/PDGEFR,
Kit/Mek, NFkB, TGFb, VEGEFR, Figs. S4, A—F and S5, A-F).
Thus, multiple kinases and pathways of kinases appear to
intersect with cytokine-induced signal transactivation of Gal4-
Nur77.

TurbolD-based proximity labeling

To identify proteins that bind to and might modify Nur77 to
induce cytokine-dependent Nur77 activity, we used proximity
labeling. A promiscuous biotin ligase (TurboID) was fused to
Gal4-Nur77 to enable biotinylation of proximal proteins
(~10 nm, schema Fig. 64) (35). The TurboID-Gal4-Nur77
fusion was transduced into UGN x MLL-AF9 leukemia cells
and GFP+ cells were sorted and expanded. These cells were
then treated with ruxolitinib versus control and excess biotin
was added. After 16 h of incubation, biotinylated proteins were
captured by streptavidin-based affinity purification followed by
mass spectrometry (MS) analysis (Fig. 6A4). An aliquot of
biotinylated proteins was analyzed by immunoblotting to
confirm their usability for subsequent MS analysis (Fig. S6A).
Cells expressing TurboID-IRES-mCherry were compared to
identify nonspecific biotinylation, and the peptide counts from
these samples were subtracted as background from the Tur-
bolD-Gal4-Nur77 samples. We examined the reproducibility
of the data and found high Pearson correlation values among
the biological replicates of both datasets (Nur77 r > 0.98 and
Nur77+ruxolitinib r > 0.94). We designated proteins as
enriched interactors of Gal4-Nur77 if they had a quantitative
value (Normalized Total Spectra) greater than 10 after the
control background subtraction and a p value <0.01. These
analyses identified 433 Gal4-Nur77-enriched interactors, 398
Gal4-Nur77-enriched interactors in presence of ruxolitinib,
and 174 that were present in both conditions (Fig. 6B). Results
were organized by protein molecular function using the GO
enrichment analysis tool (36). Broad sets of transcription fac-
tors were enriched in the Gal4-Nur77 samples. Of these, all
but Nur77 and Cnotl were reduced with ruxolitinib treatment
(Fig. 6C). We identified a series of kinases that were enriched
in Gal4-Nur77. Nearly uniformly, these were depleted in
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Figure 4. Analysis of transcriptional activity of Gal4-Nur77 phosphorylation cluster mutants, in vitro. A, structure of the Nur77 ligand-binding domain
(PDB 3V3E). Serines mutated in clusters 1 and 3 are highlighted in red, lysine mutated in cluster 2 is green, and the AF2 domain from D589 is highlighted in
blue. B, ratio of GFP+mCherry+ cells relative to total mCherry+ cells in UAS-GFP MLL-AF9 cells transduced with Gal4-Nur77 or cluster mutations. C and E,
ratio of GFP+mCherry+ cells relative to total mCherry+ cells in UAS-GFP bone marrow Kit+ and D and F, UAS-GFP MLL-AF9 cells transduced with Gal4-Nur77,
or the indicated mutants. Each experimental point was performed in triplicate *p < 0.05. **p < 0.01. ***p < 0.001, t test with Welch’s correction.
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Figure 5. Kinase inhibitors library screening. UAS-GFP MLL-AF9 cells were transduced with Gal4-Nur77 and immediately treated with 1 uM concen-
trations of each compound for 24 h in duplicate. Cell viability determined by Hoechst 33342 staining. Compounds were organized by pathways: (A) JAK, (B)

Aurora/PLK/Rho/Rock, (C) mTOR, (D) P38/SRC/SYK, (E) PI3K/ATR, (F) ERK/JNK/MEK.

ruxolitinib-treated samples, with the exception of the kinases identified, three of which (Ppp6r3, Ankrd28, Ankrd52) were
Phkb and Pgkl, which were enriched in the presence of rux- enriched in the Gal4-Nur77 group and depleted in ruxolitinib,
olitinib (Figs. 6D and S6B). Only five phosphatases were whereas Inpp5d and Ankrd44 were more abundant in the
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Figure 6. Proximity labeling of Gal4-Nur77 in the presence versus absence of Ruxolitinib. A, schema of TurbolD mechanism in UAS-GFP MLL-AF9 cells.
B, Venn diagram showing the interactors of Gal4-Nur77 identified in presence versus absence of ruxolitinib; all interaction proteins had a quantitative Value
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presence of ruxolitinib (Fig. S6C). Three members of mTOR
pathway were specifically enriched in Nurr77 and depleted in
the presence of ruxolitinib: mTOR (Serine/threonine-protein
kinase mTOR), Rictor (Rapamycin-insensitive companion of
mTOR), and Rptor (Regulatory-associated protein of mTOR)
(Fig. 6E). Unexpectedly, diverse members of the centrosome
complex, myosin complex, and ubiquitin complex were iden-
tified and again were broadly reduced in the ruxolitinib-treated
samples (Figs. 6F and S5, D and E). Conversely, members of
14-3-3, chaperone and ribosome family were enriched in the
presence of ruxolitinib (Fig. S6, F-H).

Kinases identified in proximity labeling were examined for
overlap with results from the kinase inhibitor screen (Fig. 5).
Overlap was identified in mTor pathway and in the SYK/pol-
ykinase inhibitor R406 (potential R406 targets identified in the
proximity labeling include Mylk, Ikbke, Pak2, Lrrk2, Slk,
Ripkl, Sik2, and Gak). Compounds with target specificity were
sought, and three compounds were selected for further vali-
dation: GDC-0349 (mTor inhibitor), HG-9-91-01 (SIK1/SIK2
inhibitor), and R406 (SYK/polykinase inhibitor). These three
compounds each inhibited the transcriptional activity of the
Gal4-Nur77 reporter, albeit at higher concentrations than
might be required for simple enzyme inhibition (Fig. 6G). We
further evaluated cytosolic versus nuclear localization of Gal4-
Nur77 during treatment with these compounds. Interestingly,
we observed a reduction of Gal4-Nur77 protein expression in
the nuclear compartment upon R406 administration, sug-
gesting that Gal4-Nur77 sensitivity to this SYK inhibitor may
be related to shifts in the intracellular localization of Gal4-
Nur77 (Fig. 6H).

Discussion

Nur77 has been proposed as a true orphan nuclear receptor.
Unlike most other nuclear receptors, Nur77 does not appear to
bind to natural ligands. Rather, control of its transcriptional
effects has been proposed to occur through regulation of
expression, protein degradation, and subcellular localization
(37). In addition, multiple posttranslational modifications have
been described in diverse cell types, including phosphoryla-
tion, acetylation, and SUMOylation (37-40). Sites of post-
translational modification have been identified in both the
N-terminal transactivation domain, the DBD, and the LBD.
Moreover, multiple enzymes have been identified that can
posttranslationally modify Nur77, including AKT1 (with spe-
cific activity at S351), MAPK, CK2alpha, and Pinl (41-44).

In our study, we applied retroviral expression of a widely
used UAS/Gal4 nuclear receptor transactivation reporter
assay. This assay reads out isolated Nur77-LBD transactivation
activity in the context of a chimeric fusion with the Gal4-DBD.
This has the advantage of isolating and specifically interro-
gating the function and regulation of the Nur77-LBD in pri-
mary murine hematopoietic cells, but it does not integrate the
intracellular regulation of the Nur77-DBD or the local pro-
moter/enhancer chromatin contexts of Nur77 target genes.
Unexpectedly, we found that under basal conditions, the Gal4-
Nur77 was transcriptionally inactive across broad tissue types
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in vivo, but that stimulation with myeloid cytokines led to
Gal4-Nur77 transcriptional activation. The overlapping JAK-
dependent effects of G-CSF and IL-3 suggested post-
translational effects involving signal transduction kinases. We
tested a series of previously defined phosphorylation sites but
found mutations at these sites had little effect on transcrip-
tional activation of Gal4-Nur77 (S351A, L339W, S553A,
K577A). In particular, AKT1 and MAPK had been implicated
as kinases at S351 (39, 45). However, a mutation at this site did
not alter transactivation, and we did not observe consistent
effects of AKT or MAPK/ERK/MEK inhibitors in a kinase
screen (Figs. 3 and 5). Using a screening approach, we iden-
tified a series of serines that appear necessary for Gal4-Nur77
activation by G-CSF and IL-3 that have not been previously
implicated in the regulation of Nur77.

We previously noted activation of the UAS-GFP reporter by
G-CSF in vivo in bone marrow cells transduced with Gal4-
RXRA (3), raising the possibility of nonspecific activation of
the UAS-GEP reporter by cytokine signal transduction. During
initial characterization of the UAS-GFP reporter, we observed
that AF2 deletions in Gal4-RARA and Gal4-RARG abrogated
in vitro and in vivo responses to all-trans retinoic acid (26) and
that deletion of the Gal4-RXRA AF2 domain abrogated in vivo
response to both bexarotene and G-CSF signaling, suggesting
reporter specificity and dependence of the AF2 domain among
retinoid receptors. Likewise, in the case of Gal4-Nur77, we
again observed signal reduction with AF2 deletion (Fig. 3C), in
addition to effects seen with a series of point mutations (Figs. 3
and 4). Several differences also are noted in cytokine-
dependent effects on UAS/Gal4 reporters. In vitro, Gald-
RARA and Gal4-RXRA are inactive in MLL-AF9 cells grown
in IL-3 containing media (27), whereas Gal4-Nur77 is
consistently active (Fig. 3). In vivo, both G-CSF and PHZ
stressors induced Gal4-RXRA reporter activity, whereas ac-
tivity of Gal4-RARA was absent, and Gal4-Nur77 was not
induced following PHZ (Fig. 1, D and H) (46). Leukocytosis is
noted during recovery from PHZ hemolytic anemia, and this
may provide a potential mechanism of shared effects between
G-CSF and PHZ stressors. The mechanism of Gal4-RXRA
activation by G-CSF and PHZ appears to be via noncell
intrinsic increases in serum natural ligands (C24:5 and DHA),
whereas G-CSF-induced activation of Gal4-Nur77 appears to
be cell-intrinsic and involves intracellular JAK and mTor
signaling. Thus, multiple nonresponsive mutations have been
inactive in the UAS-GFP reporter, suggesting specificity, and
RXRA and Nur77 appear to respond to overlapping cytokine
signals via unrelated mechanisms.

Not all studies have found that Nur77 transactivation de-
pends on the AF2 domain. For example, Nur77 transcrip-
tional activation by the mutant Ca**/CaM-dependent protein
kinase kinase (CaMKIV) was AF2 independent, and
replacement with the thyroid receptor AF2 domain retained
similar activity (47). In contrast, G-CSF/IL-3-dependent
cellular signaling was abrogated by deletions of AF2
(Fig. 3), suggesting necessary interactions with more canon-
ical coactivator machinery. However, proximity labeling
studies identified interactions with proteins involved in

SASBMB



mRNA transcription (Eif4g2, Eif4enif, Eif4b, Gigyf2, Ankhdl,
Elp3, Ttf2) and several helicases (Ascc3, Dna2, Helz), but no
clear interactions with canonical coactivator/corepressors
that typically interact with nuclear receptors via the AF2
domain (e.g.;, SWI/SNF components, p300, CBP, Ncorl, or
Ncor2).

Although several kinases have been previously implicated in
Nur77 posttranslational modifications (e.g., Aktl, Mapk, Pinl,
Ck2alpha), we did not observe interactions with members of
these kinase families in a kinase inhibitor screen or during
proximity labeling. Kinase inhibition and proximity labeling
displayed overlapping phenotypes. Of note, we could validate
effects of JAK, mTor, and Sik using inhibitors with high
specificity (baricitinib, INCB039110, HG-9-91-01, and GDC-
0349), suggesting that multiple signal transduction pathways
may converge to regulate Nur77 transactivation in response to
cellular stimuli. Nur77 has not been implicated in centrosome
function. Its localization is canonically nuclear, and trans-
location to the cytoplasm and mitochondria is associated with
apoptosis (48). During proximity labeling, we identified in-
teractions with multiple centrosome proteins (Nin, Dock2,
Cep350, Cepl192, Cepl70, Cepl31l, Cepl52, Cep97, Cepl35,
Cep72). In a database of proximity labeling studies (https://
reprint-apms.org/) these proteins are rarely detected; all but
Cepl70 being reported in fewer than 7% of studies. Therefore,
it is unclear whether this represents an unexpected effect of
the TurboID-Gal4-Nur77 construct or a cellular function of
Nur77. These interactions are unlikely to modulate the
transactivation potential of Nur77 and therefore, were not
pursued further as part of this study. Our proximity labeling
study also identified members of 14-3-3 family as Nur77
interactors, and a recent publication confirmed that Nur77
binds 14-3-3 to facilitate 14-3-3-dependent YAP ubiquitina-
tion/degradation and to activate the Hippo signaling pathway
(31). In summary, using a nuclear receptor reporter assay, we
find that the LBD of Nur77 is transcriptionally inactive across
diverse hematopoietic cell types under basal conditions in vivo,
but that cytokines with overlapping signal transduction path-
ways (G-CSF and IL-3) lead to transcriptional activation of
Nur77 in multiple myeloid cell types. We implicate JAK,
mTor, and Sik signaling in these pathways, find that multiple
Nur77 serine sites may be sites for posttranslational regulation,
and that this signaling requires the AF2 domain. This adds
additional kinases and serine sites to the already long list of
sites modified on Nur77 and further suggests that Nur77 ac-
tivity may be regulated by posttranslational modification and
not simply by control of mRNA and protein levels.

Experimental procedures
Reagents and constructs

Anti-FLAG antibody (M2) was from Sigma-Aldrich, HDAC2
(2540S) was from Cell Signaling, and GAPDH Antibody (FL-
335) was from Santa Cruz Biotechnology. PHZ and 5-FU were
from Sigma-Aldrich. G-CSF was from Amgen. Cytokines were

purchased from R&D Systems. The following antibodies were
used for flow cytometry: CD11b (BD Biosciences, Clone M1/70),
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Gr1 (eBioscience, Clone RB6-8C5), and (BD Biosciences, Clone
AL-21). Fluorescence was detected on a ZE5 Cell Analyzer
(Biorad) CD71 (eBioscience, Clone R17217), Sca-1 (eBioscience,
clone D7) Terl19 (eBioscience, TER119), c-Kit (eBioscience,
clone 2B8). Biotin was from Sigma-Aldrich (B4501). Ruxolitinib,
baricitinib, TG101348, INCB039110, CP690550 and AZD1480
were a gift from Jaebok Choi’s laboratory. All the constructs
MSCV-3xFlag-Gal4-Nur77 LBD-Ires-mCherry, MSCV-3xFlag-
Gal4-Nur77 LBD(S351A)-Ires-mCherry, MSCV-3xFlag-Gal4-
Nur77 LBD(L449W)-Ires-mCherry, MSCV-3xFlag-Gal4-Nur77
LBD(S495A)-Ires-mCherry, MSCV-3xFlag-Gal4-Nur77
LBD(S533A)-Ires-mCherry, MSCV-3xFlag-Gal4-Nur77 LBD
(§550%)-Ires-mCherry, MSCV-3xFlag-Gal4-Nur77 LBD(S553A)-
Ires-mCherry, MSCV-3xFlag-Gal4-Nur77 LBD(K577A)-Ires-
mCherry, MSCV-3xFlag-Gal4-Nur77 LBD(D589%)-Ires-
mCherry, MSCV-3xFlag-Gal4-Nur77 LBD (S367A/S375A/
S378A/S385A/S466A)  -Ires-mCherry, MSCV-3xFlag-Gal4-
Nur77 LBD  (K381A/K386A/K397A/K456A/K461A)-Ires-
mCherry, MSCV-3xFlag-Gal4-Nur77  LBD(S485A/S492A/
S495A/S550A/S533A)-Ires-mCherry, MSCV-3xFlag-Gal4-
Nur77  LBD(S367A)-Ires-mCherry, MSCV-3xFlag-Gal4-
Nur77 LBD(S375A)-Ires-mCherry, MSCV-3xFlag-Gal4-Nur77
LBD(S378A)-Ires-mCherry, MSCV-3xFlag-Gal4-Nur77 LBD
(S385A)-Ires-mCherry, MSCV-3xFlag-Gal4-Nur77 LBD
(S466A)-Ires-mCherry, MSCV-3xFlag-Gal4-Nur77 LBD(S385A/
S466A)-Ires-mCherry, MSCV-3xFlag-Gal4-Nur77 LBD(S378A/
S385A/5466A)-Ires-mCherry, MSCV-3xFlag-Gal4-Nur77
LBD(S492A/S495A)-Ires-mCherry, MSCV-3xFlag-Gal4-Nur77
LBD(S550A/S553A)-Ires-mCherry, MSCV-3xFlag-Gal4-Nur77
LBD(S550A)-Ires-mCherry, MSCV-3xFlag-Gal4-Nur77 LBD
(S492A)-Ires-mCherry, MSCV-3xFlag-Gal4-Nur77 LBD
(S485A)-Ires-mCherry, MSCV-TurboID and MSCV-TurbolD-
3xFlag-Gal4-Nur77 LBD were generated in our laboratory.

Retrovirus production and transduction

7 x 10° 293T/17 cells were seeded in a 150 cm? dish in
DMEM (high glucose) + 10% FBS +1% Glutamax, 18 to 24 h
before transfection and grown to 80% confluence. In total,
90 pl DNA 1 pg/pl, 64.5 pl DNA EcoPac (Retro pkg), 1 pg/pl,
and 3.75 ml DMEM were mixed. In total, 120 pl LE3K or LF2K
(Lipfectamine) and 3.75 ml DMEM were mixed. The two
mixtures were incubated for 5 min, then mixed together and
incubated for 15 min. In total, 2.5 ml of the mixture was
dropped-wise onto the 293T/17 cells. Fresh medium was
changed after 18 to 24 h transfection. Virus was collected at
48 h and 72 h and concentrated with Lenti-X Concentrate
(PEG-Salt soln.) to filtered virus. The Virus was resuspended in
DMEM and stored at —-80 °C.

Mice

Mice were maintained in a specific pathogen-free barrier
facility maintained on a 12 h light—dark cycle. Upon weaning,
all mice were group housed, up to five mice of the same sex per
cage. Food and water bottle were provided in a recess of the
metal wire lid at the top of the cage. Cages were changed once
every week. Six to ten week (C57Bl/6 background) old mice
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were typically used for experimentation. Equal numbers of
male and female mice were used, no gender biases were noted.

Hematopoietic cell culture

UAS-GFP mice bone marrow Kit+ cells were isolated using
an Automacs Pro (Miltenyl Biotec) per manufacture’s proto-
col. Kit+ cells were plated in progenitor expansion medium
(RPMI1640 medium, 15% FBS, Scf (50 ng/ml), IL3 (10 ng/ml),
FIt3L (25 ng/ml), Tpo (10 ng/ml), L-glutamine (2 mM), so-
dium pyruvate (1 mM), HEPES buffer (10 mM), penicillin/
streptomycin (100 units/ml), B-mercaptoethanol (50 puM)).
UAS-GFP x MLL-AF9 cells were produced as described and
cultured in vitro using similar media, but without FIt3L, or
Tpo.

Immunoblot and nuclear/cytosolic extraction

Total protein extracts were lysed in RIPA buffer (Cell
Signaling) including 1x cocktails of protease and phosphatase
inhibitors (Sigma Aldrich). Gel electrophoresis was performed
in a SDS polyacrylamide gel and proteins transferred to a
Hybond-P membrane (Millipore). Nuclear and cytosolic frac-
tions were isolated using NE-PER Nuclear and Cytoplasmic
Extraction Kit according to the manufacturer’s protocol
(Thermo Scientific). Binding of each antibody was visualized
using the ECL detection system (Thermo Fisher). The images
were acquired by myECL Imager (Thermo Fisher) or Chem-
iDoc XRS (Bio-Rad).

UAS/Gal4 assay

UAS-GFP x MLL-AF9 cells were transduced with retrovi-
ruses MSCV-Gal4 (DNA binding domain, DBD)-NUR77
(ligand binding domain, LBD)-IRES—mCherry. Gal4 is a yeast
transcription factor, and the UAS sequence is not recognized
by mammalian transcription factors. Fluorescence was detec-
ted on ZE5 Cell Analyzer (Biorad).

Kinase screening

5000 UAS-GFP x MLL-AF9 cells/well were transduced with
Gal4-Nur77 and immediately treated with 1 uM concentra-
tions of each compound for 24 h in duplicate. Each
96-multiwell plate contained 16 control wells, and the activity
and viability of treated samples were compared with the
control cells treated with DMSO. Reporter activity was
assessed by mCherry+GFP+ intensity and cell viability assessed
by Hoechst 33342 staining. Fluorescence was detected on ZE5
Cell Analyzer (Biorad).

TurbolD sample preparation for MS analysis

For each TurboID-fused construct and drug treatment
(MSCV-TurboID and MSCV-TurboIlD-3xFlag-Gal4 DBD-
Nur77 LBD), two biological replicates were performed and
analyzed via MS. In UAS-GFP x MLL-AF9 cells transduced
with MSCV-TurbolD-3xFlag-Gal4-Nur77, GFP+ cells were
sorted and expanded in vitro. MSCV-TurboID was used as
negative control. In total, 50 pM of biotin was added to the
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media for 16 h; 0.2 mM ruxolitinib in DMSO was added 2 h
prior biotin, as indicated. Twenty million cells for each
experimental point were collected in lysis buffer (25 mM Tris-
HCI, 150 mM NaCl, 1% TritonX100, pH 7.2, and protease
inhibitor cocktail). The lysate was sonicated at setting 3.5, 8 s x
3. The lysate was incubated on ice for 10 min and spun down
10 min at >13,000 RPM at 4 °C. After lysate was spun down,
20 ml of lysate was aliquoted for Western blot to verify bio-
tinylation/protein expression using streptavidin-HRP antibody
(Catalog). To enrich biotinylated proteins from the protein
extracts, 80 ml of high-capacity streptavidin agarose resin
(Thermo Scientific 20359) was washed twice with lysis buffer,
the lysates contained were then incubated with the equili-
brated beads on a rotator overnight at 4 °C. The beads were
sequentially washed once with 1 ml buffer I (1% SDS in PBS),
twice with lysis buffer, and once with washing buffer (50 mM
Na2HPO4, 500 mM NaCl, 1% TritonX100, pH 7.4). To
completely remove the potential detergent, the beads were in
PBS and were resuspended in 300 ml of PBS. The beads were
sent immediately on the dry ice for LC-MS/MS analysis. Bio-
tinylated proteins enriched with streptavidin beads were pro-
cessed into peptides via on-bead digestion and analyzed by
LC-MS/MS.

Mass spectrometry data analysis

The streptavidin beads were washed with ammonium bi-
carbonate and bound proteins were eluted with SDS buffer.
Proteins were reduced in dithiothreitol and heated to 95 °C for
10 min. The reduced samples were mixed Tris-Urea buffer and
spun in 30,000 MWCO cutoff spin concentrators. Retained
proteins were alkylated with Iodoacetamide, then spun and
washed to remove unreacted Iodoacetamide. Retained proteins
were treated with bicarbonate buffered LysC to relax the
protein structure, then digested overnight with sequencing-
grade Trypsin. Following digestion, the filters were spun and
washed to collect the peptides in the flow through, and
remaining detergent was removed using ethyl acetate extrac-
tion. Peptides were desalted using porous graphite carbon
micro-and the peptides were eluted with acetonitrile in 0.1%
TFA and dried, then dissolved in acetonitrile/water in prepa-
ration for analysis by Mass spectrometry. The peptides were
analyzed using a nano-Elute chromatograph coupled online to
a hybrid trapped ion mobility-quadrupole time of flight mass
spectrometer (timsTOF Pro, Bruker Daltonics) operated in
PASEF mode. Peptides were loaded onto a 75 pm i.d. x 25 cm
Aurora Series using constant pressure and eluted over a 2-h
gradient. MS1 and MS2 spectra were recorded from m/z 100
to 1700 selecting suitable precursor ions for PASEF-MS/MS in
real time from TIMS-MS survey scans, and a polygon filter was
applied to the m/z and ion mobility plane to select features
most likely representing peptide precursors rather than singly
charged background ions. Data from the mass spectrometer
were converted to peak lists using Data Analysis and MS2
spectra with charges +2, +3, and +4 were analyzed using
Mascot software. Searches were performed against a Mouse
UniProt protein database, using trypsin as the digestion
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enzyme with a maximum of four missed cleavages allowed.
The searches were performed with a fragment ion mass
tolerance of 50 ppm and a parent ion tolerance of 25 ppm.
Carbamidomethylation of cysteine was specified in Mascot as a
fixed modification. Deamidation of asparagine, deamidation of
glutamine, formation of pyro-glutamic acid from N-terminal
glutamine, acetylation of protein N-terminus, and oxidation of
methionine were specified as variable modifications. Peptides
and proteins were filtered at 1% false discovery rate (FDR) by
searching against a reversed protein sequence database
(Table S1). The proteomic experiments were performed at the
Washington University Proteomics Shared Resource (WU-
PSR) (R Reid Townsend MD, PhD, Director, and Robert
Sprung, PhD, Co-Director). Isobaric labeling-based relative
quantitation was used to score for high-confidence proximity
interactors (Table S2).

Data analysis

Statistical analysis was performed using Prism (Graphpad). ¢
test and ANOVA tests were performed, as appropriate. Error
bars represent standard deviation. Data points without error
bars have standard deviations below Graphpad’s limit to
display. Proteomic data were validated using Scaffold 4 (Pro-
teome Software).

Study approval

All animal procedures were approved by the Institutional
Animal Care and Use Committee of Washington University.

Data availability

All the mass spectrometry data have been deposited in a
publicly accessible repository ProteomeXchange Consortium
(49) via the MassIVE partner repository with the dataset iden-
tifier PXD028130 and ftp://massive.ucsd.edu/MSV000088022

Supporting article  contains
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