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Abstract

The most efficient method to expand limbal stem cells (LSCs) in vitro for clinical transplanta-

tion is to culture single LSCs directly on growth-arrested mouse fibroblast 3T3 cells. To

reduce possible xenobiotic contamination from 3T3s, primary human adipose-derived stem

cells (ASCs) were examined as feeder cells to support the expansion of LSCs in vitro. To

optimize the ASC-supported culture, freshly isolated limbal epithelial cells in the form of sin-

gle cells (SC-ASC) or cell clusters (CC-ASC) were cultured using three different methods:

LSCs seeded directly on feeder cells, a 3-dimensional (3D) culture system and a 3D culture

system with fibrin (fibrin 3D). The expanded LSCs were examined at the end of a 2-week

culture. The standard 3T3 culture served as control. Expansion of SC-ASC showed limited

proliferation and exhibited differentiated morphology. CC-ASC generated epithelial cells

with undifferentiated morphology in all culture methods, among which CC-ASC in 3D culture

supported the highest cell doubling (cells doubled 9.0 times compared to cells doubled 4.9

times in control) while maintained the percentage of putative limbal stem/progenitor cells

compared to the control. There were few cell-cell contacts between cultured LSCs and

ASCs in 3D CC-ASC. In conclusion, ASCs support the growth of LSCs in the form of cell

clusters but not in single cells. 3D CC-ASC could serve as a substitute for the standard 3T3

culture to expand LSCs.

Introduction

The integrity of human corneal epithelial cells is maintained by limbal stem cells (LSCs) [1–

5], which are located at the basal limbal epithelium and surrounded by niche cells including

limbal mesenchymal cells [6–8], melanocytes [9], and N-cadherin-expressing cells [10]. Loss

of LSCs or their dysfunction may lead to limbal stem cell deficiency (LSCD) which present

with corneal opacity, vascularization and conjunctivalization. Transplantation of ex vivo
expanded LSCs to the LSCD eye has been reported as a successful therapy to treat LSCD [5, 11,

12]. A comprehensive review showed that the overall success rate is 76% from 583 patients

[13].
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The standard method to culture LSCs on 3T3 feeder cells that have been used in clinical

study is cultivating single LSC directly on top of the growth-arrested 3T3 feeder cells [14].

Once sufficient amount of LSCs is achieved, the cultivated LSCs are transplanted onto the

patient’s cornea after removing the abnormal epithelium and pannus. Although 3T3 fibroblast

cells are growth-arrested and theoretically are not populated in patients, there are concerns

about the mouse origin of the 3T3 feeder cells in clinical applications including contamination

from xenogenic molecules, immuno-rejection, and potential interspecies viral transmission. It

has been reported that human embryonic stem cells co-cultured with animal-derived serum

and feeder cells express immunogenic nonhuman sialic acid [15]. Retinal pigment epithelial

cells and iris pigment epithelial cells co-cultured on mitomycin C-treated 3T3 fibroblasts were

found to express mouse collagen type I [16]. 3T3 cells have an endogenous retrovirus contain-

ing a 3600-bp region of xenotropic murine leukemia virus-related virus (XMRV) which are

associated with human prostate cancer and chronic fatigue syndrome [17].

To replace the mouse fibroblast feeder cells, human amniotic membrane and human-

derived feeder cells have been examined for their potential to support the growth of LSCs

in vitro. Both intact and denuded amniotic membrane have been shown to support the

growth of LSCs either in the form of tissue explants or cell suspension [13, 18–24], although

donor variation exists [25, 26]. Human amniotic epithelial cells might support the growth of

LSCs that contained uniformly p63-positive epithelial progenitor cells [27]. Human limbal

mesenchymal cells and limbal melanocytes [28, 29], and bone marrow-derived mesenchy-

mal stem cells (BM-MSCs) [9], have been reported to serve as feeder cells to culture LSCs in
vitro.

Human adipose-derived stem cells (ASCs) are an easily accessible autologous stem cell

source, have a higher frequency of mesenchymal stem cells than BM-MSCs [30], and have

been shown to support the growth of many types of stem cells including human embryonic

stem cells [31, 32], induced pluripotent stem cells [31], and LSCs [33]. ASCs could support the

in vitro expansion of LSCs with a lower clonogenic capacity than 3T3 and the expanded LSCs

express some putative limbal stem/progenitor cell markers [33]. However, the comparison

between the ASC and 3T3 is limited to the colony-forming efficiency (CFE) and there is lim-

ited comparison on the stem cell phenotypes of cultured LSCs, which is crucial for pre-clinical

development. In addition, only direct co-culture method was used and ASCs do not show

superior capacity in supporting the growth of LSCs than 3T3 [33]. We previously reported that

a 3 dimensional (3D) culture system, in which the LSCs and the 3T3 feeder cells were cultured

on the opposite sides of a porous membrane, supported the growth of LSCs and significantly

increased the cell proliferation of LSC cultured in the form of cell clusters [34]. Whether the

3D culture system can facilitate the ASC-supported culture was examined in this study. Fibrin

gel, which has been used as a carrier for epithelial cell propagation in vitro and human trans-

plantation [14, 35], was coated on the porous membrane. The cultured LSCs on fibrin could

be directly transplanted into patients’ eyes without extra retrieving steps from culture surface.

In this study, the potency that ASCs support the growth of LSCs was compared to the standard

culture on 3T3 cells, including cell doubling, expressions of putative stem cell markers includ-

ing ATP-binding cassette sub-family G member 2 (ABCG2) [36], N-terminally truncated tran-

scripts of p63 (ΔNp63) [14, 37], N-cadherin [10] and cytokeratin (K) 14 [38], maturation

marker K12 [39], and proliferation marker Ki67 [40]. Different forms of seeded LSCs and dif-

ferent culture methods were examined using ASC feeder cells to investigate which approach

was the most optimal. The culture method using 3T3s that has been successfully used in clini-

cal study, which is single LSCs cultured directly on 3T3 feeder cells, served as the control in all

experiments.
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Materials and methods

Human sclerocorneal tissue

Human sclerocorneal tissue was from the Lions Eye Institute for Transplant and Research

(Tampa, FL) and the Illinois Eye Bank (Watson Gailey, Bloomington, IL). Tissue donors were

aged from 20 to 65 years old. Experimentation on human tissue adhered to the tenets of the

Declaration of Helsinki. The experimental protocol was evaluated and exempted by the Uni-

versity of California, Los Angeles Institutional Review Boards. The donors from whom the tis-

sues were used in this study provided informed consent to being included of the study.

The tissues were preserved in Optisol (Chiron Ophthalmics, Inc., Irvine, CA), and the

death-to-preservation time was less than 8 hours.

Isolation, culture, and characterization of the primary ASCs

ASCs at passage 1 and 2 were a generous gift from Prof. Bruno Peault (Professor of Orthopedic

Surgery, University of California, Los Angeles). The protocol of ASC isolation was described

previously [41]. In brief, the lipoaspirate were incubated in RPMI 1640 (Cellgro, Corning, NY)

containing 3.5% bovine serum albumin (Sigma-Aldrich, St. Louis, MO) and 1 mg/ml collage-

nase type II (Sigma-Aldrich) for 30 min at 37˚C. After centrifugation, the adipocytes were dis-

carded and the pellet was further incubated in red blood cell lysis buffer (eBioscience, San

Diego, CA) to remove erythrocytes. The remaining cells were cultured in MEM-α (Gibco,

Grand Island, NY) supplemented with 10% FBS (Invitrogen, Carlsbad, CA) and penicillin/

streptomycin (Invitrogen), which are primary ASCs at passage 0. ASCs were subcultured at 1:6

ratio at around 80% confluence. ASCs at passage 4–6 were used for experiments.

Primary ASCs were characterized by the positive expression of MSC markers CD90 [42–

44] and CD105 [42–44], negative expression of endothelial and hematopoietic stem/progenitor

cell markers CD31 [45, 46] and CD34 [42–44] and negative expression of differentiation mark-

ers adiponectin [44, 47] (a marker of adipogenesis) and osteocalcin [44, 48] (a marker of

osteogenesis).

Isolation of limbal epithelial cells

LECs were isolated from corneoscleral rims as previously described [49]. In brief, the iris,

endothelium, residual blood vessels, Tenon’s capsules, and conjunctiva were removed

mechanically, followed by the digestion in 2.4 U/ml Dispase II (Roche, Indianapolis, IN) in

SHEM5 growth medium (DMEM/F12 medium) (Gibco) supplemented with N-2 (Gibco), 2

ng/ml epidermal growth factor (EGF; Gibco), 8.4 ng/ml cholera toxin (Sigma-Aldrich), 0.5 μg/

ml hydrocortisone (Sigma-Aldrich), 0.5% dimethyl sulfoxide (DMSO; Sigma-Aldrich), 5%

fetal bovine serum (FBS, Invitrogen), penicillin/streptomycin (Invitrogen) and gentamicin/

amphotericin B (Invitrogen) for 2 hours at 37˚C. Epithelial cell sheets were mechanically

scraped from the limbus and pipetted for several times to break the cell sheets into smaller cell

clusters, which were usually a mixture of mainly single cells and some small cell clusters

(around 2 to 20 cells/cluster, as shown in S1 Fig). Some cell clusters were further digested with

0.25% trypsin and 1 mM EDTA (Gibco) for 10 min at 37˚C to obtain single-cell suspension.

LECs, either in the form of cell clusters (composed of both single cells and small cell clusters)

or single-cell suspension, were seeded at a density of 300 cells/cm2.

Cell culture of LSCs

The direct and 3D culture methods were following the protocol as previously described [34].

In brief, in the direct culture method, the LECs were seeded and cultured directly on the feeder
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cells. In the 3D culture method, the LECs were cultured on the top side of a 1μm pore polyeth-

ylene terephthalate (PET) membrane and the feeder cells were cultured on the bottom side of

the membrane [34]. In the fibrin 3D culture method, a 1 to 2mm-thick layer of fibrin gel (Bax-

ter, Deerfield, IL) was coated on top of the porous membrane; the feeder cells were seeded at

the bottom side of the membrane and the LECs were seeded on top of the fibrin gel. Subcon-

fluent murine 3T3 cells (from Howard Green, Harvard Medical School, Boston, MA, USA)

were growth-arrested with 4 μg/ml of mitomycin C (Sigma-Aldrich) for 2 h, and plated at 3 x

104 cells/cm2 as feeder cells. Subconfluent ASCs were treated with 4 μg/ml of mitomycin C

(Sigma-Aldrich) for 2 h, and plated at 5 x 103 cells/cm2 (an optimized density to support epi-

thelial growth) as feeder cells. The LECs from the same donor were used for culture in different

conditions for each experiment to minimize donor variation. The cells were cultured in

SHEM5 growth medium for 14 days before harvest. The growth medium was refreshed every

2–3 days. The cell doubling was calculated as log2(number of epithelial cells harvested at day

14/ number of cells seeded).

Collection of expanded LSCs at the end of 14-day culture

For 3T3 SC control, SC-ASC, and CC-ASC culture, in which LSCs and feeder cells were grown

on the same side of plates/plate inserts, the LSCs and the feeder cells were incubated in Versene

(Gibco) for 3 min; then the feeder cells were washed away by pipetting and the epithelial colo-

nies remained attached to the plates/plate inserts. For 3D SC-ASC, 3D CC-ASC, and fibrin 3D

CC-ASC culture, in which LSCs and feeder cells were grown on the opposite sides of plate

inserts, the feeder cells were removed by mechanical scraping with a cell scraper (Fisher Scien-

tific) and the epithelial colonies remained attached on the top side of plate inserts. The remain-

ing epithelial cells were incubated in 0.25% trypsin and 1 mM EDTA (Gibco) for 5 to 8 min at

37˚C and collected for further analysis.

Success rate of culture

The success rate of culture, which was to examine whether the culture supported a consistent

growth of LSCs from different donors, was presented as the number of donors showing LSC

growth out of the total number of donors examined.

RNA isolation, reverse transcription and quantitative real-time PCR

RNA was extracted from harvested LECs (RNeasy Mini Kit, Qiagen, Valencia, CA), treated

with DNase (DNA-free kit, Ambion, Austin, TX), and reverse-transcribed into cDNA (Super-

Script II, Invitrogen) according to the manufacturers’ protocols. mRNA transcripts were

quantified by using the Kapa Sybr Fast qPCR kit (Kapa Biosystems, Woburn, MA). Cycle con-

ditions were as follows: the reactant was denatured for 20 s at 95˚C; amplified for 40 cycles

(temperatures in each cycle were 95˚C for 3 s, 60˚C for 20 s, and 72˚C for 8 s); and subjected

to a melting curve program to obtain the dissociation curves. The primers used in quantitative

real-time PCR (qRT-PCR) were listed in S1 Table.

Immunocytochemistry and quantitation

Cells were cytospined onto slides by a cytocentrifuge (Cytofuge; Fisher Scientific, Hampton,

NH) and stored at -80˚C until use. Cytospin slides were fixed with 4% paraformaldehyde at

room temperature for 10 min and washed 3 times with phosphate-buffered saline (PBS). Sam-

ples were blocked and permeabilized in PBS containing 1% BSA and 0.5% Triton X-100

(Sigma-Aldrich) for 30 min at room temperature and incubated with the primary antibody
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diluted in PBS containing 1% bovine serum albumin (BSA) and 0.1% Triton X-100 overnight

at 4˚C in a moist chamber. Slides were washed 3 times with PBS, incubated with the secondary

antibody diluted in PBS containing 1% BSA and 0.1% Triton X-100 at room temperature for 1

h, and washed with PBS for three times. Nuclei were labeled with Hoechst 33342 (4 μg/ml;

Invitrogen) at room temperature for 15 min, washed 5 times with PBS, and mounted in Fluor-

omount medium (Sigma). The primary antibodies and their dilution ratios are listed in S2

Table.

Images were taken by a confocal microscope (Confocal Laser Scanning Microscopy; Olym-

pus, San Jose, CA) and an image capture system (Fluoview FV10-ASW 3.1 Viewer; Olympus).

The nuclear intensity of p63α was analyzed by the Definiens Tissue Studio software (Larch-

mont, NY).

Analysis of cell-cell contact in the 3D CC-ASC culture by high resolution

light microscopy and electron microscopy

At the end of the 3D CC-ASC culture, membranes with cells were carefully removed, fixed

with 2% glutaraldehyde (Electron microscope Sciences, Hatfield, PA) and 2% paraformalde-

hyde (Electron microscope Sciences) in 0.1 M cacodylate buffer, washed with 0.1 M cacodylate

buffer, osmicated for 1 h, washed extensively and embedded in Epon resin (Momentive Spe-

cialty Chemicals, Houston, TX). Tissue was sectioned at 1 μm and stained with toluidine blue

(Sigma) for light microscopy. The number of the pores showing no visible cell extension,

showing cell extension from epithelial cells (non-contacting extension), showing cell extension

from ASC feeder cells (non-contacting extension), or showing extension throughout pores

connecting epithelial cells to ASC feeder cells (contacting extension) were manually counted.

For electron microscopy, tissue was sectioned at 60 nm and stained in 8% uranyl acetate (Ted

Pella Inc., Redding, CA) for 15 min followed by a solution of 0.4% lead citrate (Ted Pella Inc.)

and 0.4% sodium hydroxide (Fisher Scientific) for 2 min. The images were taken by a JEOL

JEM1200-EX transmission electron microscope (JEOL, Peabody, MA).

Statistical analysis

Student’s t-test was performed to analyze the data. Error bar represent the standard error of

the mean (SEM) from 3–5 experiments. P values� 0.05 were considered statistical significant.

Results

Characterization of the ASCs

Human primary ASCs expressed the mesenchymal stem cell (MSC) markers including Cluster

of Differentiation (CD) 90 and CD105 (Fig 1). The cells showed negative expression of endo-

thelial and hematopoietic stem/progenitor cell markers, CD31 and CD34, respectively (Fig 1).

There was no detectable expression of adiponectin, a differentiation marker of adipogenesis or

osteocalcin, a differentiation marker of osteogenesis (Fig 1).

Optimization of the cell density of ASCs as feeder cells

LSCs in single cell suspension were cultured directly on gradient densities of ASCs, i.e. 2.5 x

103, 5 x 103, 1 x 104, and 2 x 104 cells/cm2, for 2 weeks. The densities of 5 x 103 and 1 x 104

ASCs/cm2 supported epithelial growth (Fig 2B), although the cultured LSCs were not as cuboi-

dal and compact as the LSCs cultured on 3T3 cells (Fig 2A). The lower density of 2.5 x 103

ASCs/cm2 and the higher density of 2 x 104 ASCs/cm2 failed to support epithelial expansion

and favored the growth of fibroblast-like cells instead (Fig 2B). Between the two densities, 5 x
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103 and 1 x 104 ASCs/cm2, the former density seemed to support slightly better epithelial

growth and was chosen for the following experiments.

ASCs do not support the growth of LSCs in single cell suspension

Single cell suspension of LSCs were cultured on ASCs using the direct (SC-ASC) and 3D meth-

ods (3D SC-ASC) for 2 weeks. Single LECs cultured directly on 3T3 feeder cells (SC-3T3)

served as the control. The LECs in the control group had a consistent growth (100%, 3 out of 3

donors) and a compact and cuboidal undifferentiated epithelial morphology (Fig 3B). SC-ASC

and 3D SC-ASC cultures did not grow consistently that 67% of the culture (2 out of 3 donors)

Fig 1. Characterization of primary ASCs. The expression of CD90, CD105, CD31, CD34, adiponectin, and

osteocalcin was examined by immunocytochemistry in the primary ASCs at passage 4–6. Scale bar = 100 μm.

https://doi.org/10.1371/journal.pone.0186238.g001
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Fig 2. Optimization of the cell density of ASCs as feeder cells. (A) Representative morphology of LSCs cultured on 3 x 104 3T3 cells/cm2 for 2

weeks. (B) Representative morphology of LSCs cultured on gradient densities of ASCs for 2 weeks. The density of feeder cells was labeled at the top

right corner of each image. Scale bar = 100 μm.

https://doi.org/10.1371/journal.pone.0186238.g002

Fig 3. Single-cell suspension of limbal epithelial cells cultured on ASCs. (A) Cell morphology of cultured

LSCs. The images for SC-ASC and 3D SC-ASC were from the 33% culture which supported epithelial

expansion. (B) Cell morphology of cultured LSCs. The images for SC-ASC and 3D SC-ASC were from the 33%

culture which supported epithelial expansion. (C) Cell doubling of limbal epithelial cells. *: p<0.05 in comparison

with results of control. Ctl: control. SC-ASC: single cell suspension of LECs cultured directly on ASCs. 3D

SC-ASC: single cell suspension of LECs cultured on ASCs using the 3D method. Scale bar = 100 μm.

https://doi.org/10.1371/journal.pone.0186238.g003
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failed to grow and only 33% culture (1 out of 3 donors) showed epithelial growth. The

expanded epithelial cells from the 33% culture formed small colonies (Fig 3A) and showed an

uneven, flattened, and differentiated morphology (Fig 3B). Cell doubling in the SC-ASC and

3D SC-ASC cultures were significantly lower than the control (Fig 3C). There was no differ-

ence in cell doubling between the SC-ASC and 3D SC-ASC cultures. Due to the inconsistent

growth and differentiated morphology, single LSCs cultured on ASCs were abandoned from

further investigation.

ASCs support the growth of LECs in cell clusters

We have previously shown that LSCs grew better in the form of cell clusters than single cells in

3T3-supported culture [34]. Cell clusters of LSCs were then cultured on ASCs using the direct

(CC-ASC), 3D (3D CC-ASC) and fibrin 3D (fibrin 3D CC-ASC) methods. CC-ASC and 3D

CC-ASC supported a consistent (100%, 5 out of 5 donors) cell growth and produced a compact

and cuboidal epithelial morphology, which was comparable to that in the control (SC-3T3 cul-

ture) (Fig 4A). However, the cells cultured in fibrin 3D CC-ASC did not always proliferate well.

33% culture (1 out of 3 donors) of fibrin 3D CC-ASC grew well and 67% culture (2 out of 3

donors) barely had proliferation. 3D CC-ASC had the consistently highest cell doubling, in

which cell were doubled 9.0 times, compared to cells doubled 4.9 times in control (p<0.05), 4.9

times in CC-ASC (p<0.05), and 3.9 times in fibrin 3D CC-ASC (p<0.05) (Fig 4B). There was no

difference on cell doubling among CC-ASC, fibrin 3D CC-ASC, and fibrin 3D CC-ASC (Fig 4B).

The stem cell phenotype of cultured LECs was characterized by qRT-PCR. Compared to the

control (SC-3T3 culture), LECs cultured on ASCs expressed a similar mRNA level of ABCG2,

ΔNp63 and N-cadherin (putative LSC markers) in all three culture methods, a significantly

lower level of K14 (a putative LSC marker) in 3D and fibrin 3D methods (decreased by 54% and

72%, respectively, p<0.05) and a significantly lower level of K12 (a differentiation marker) in

Fig 4. Cell clusters of limbal epithelial cells cultured on ASCs. (A) Cell morphology of cultured LSCs. The

image for fibrin 3D CC-ASC was from the 33% culture which supported epithelial expansion. (B) Cell doubling

of limbal epithelial cells. *: p<0.05 in comparison with results of control, CC-ASC, and fibrin 3D CC-ASC

cultures. Ctl: control. CC-ASC: cell clusters of LECs cultured directly on ASCs. 3D CC-ASC: cell clusters of

LECs cultured on ASCs using the 3D method. Fibrin 3D CC-ASC: cell clusters of LECs cultured on ASCs

using the fibrin 3D method. Scale bar = 100 μm.

https://doi.org/10.1371/journal.pone.0186238.g004
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the direct, 3D and fibrin 3D methods (decreased by 65%, 85% and 90%, respectively, p<0.05)

(Fig 5). There was no difference on the mRNA level of Ki67 (a proliferation marker) between

the control and the three culture methods using ASCs as feeder cells (all p>0.05, Fig 5).

The phenotype of cultured LSCs was further examined by the protein expression using

immunocytochemistry. LSC cell clusters cultured on ASCs had comparable percentages of

p63α-bright and K14+ progenitor cells in all three culture methods compared to the control

(Figs 6B, 7B and 7E). Percentage of p63α-bright cells was shown to correlate with clinical suc-

cess rate [14]. Therefore, we used percentage of p63α-bright cells to evaluate the quality of LSCs

expanded. Because 3D CC-ASC had the highest cell doubling as shown in Fig 3B, it generated

significantly higher absolute numbers of p63α-bright (4.4-folds higher, p<0.05) and K14+ cells

(13-folds higher, p<0.05) than the control (Figs 6C and 7C). There was no significant difference

in the absolute number of K12+ cells between the control and all ASCs cultures (Fig 7F).

Few direct cell-cell contacts between the LSCs and the ASC feeder cells

in 3D CC-ASC culture

To study whether there was any direct cell-cell contact between the LSCs and the ASC feeder

cells, 3D CC-ASCs were fixed, sectioned across the pores in the PET membrane, stained and

counted. Over 400 pores were examined and 0.5% of the pores showed direct cell-cell contact

Fig 5. Relative mRNA levels of the putative stem cell markers and maturation marker in cultured LEC cell clusters with ASCs as

evaluated by qRT-PCR. The expression of each marker was normalized to the expression of housekeeping gene GAPDH and the value of

the control group was designated 1. *: p<0.05 in comparison with results of the control group. Ctl: control. CC-ASC: cell clusters of LECs

cultured directly on ASCs. 3D CC-ASC: cell clusters of LECs cultured on ASCs using the 3D method. Fibrin 3D CC-ASC: cell clusters of LECs

cultured on ASCs using the fibrin 3D method.

https://doi.org/10.1371/journal.pone.0186238.g005
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(Fig 8A, 8B and 8C). Majority (81.5%) of the pores showed no visible cell extension from either

the epithelial or the ASC feeder cells. There were 18% pores containing cell extension either

from the epithelial cells (11.7%) or from the ASC feeder cells (6.3%) (Fig 8C); however, the

extensions failed to reach the cells on the other side of the membrane (Fig 8A).

Discussion

ASCs can be easily harvested in large quantity from white adipose tissue through minimally

invasive liposuction procedure [50, 51] and are well characterized [52–54]. ASCs could serve

as feeder cells for many cell types including neuronal cells [55], melanocytes [56], and various

types of epithelial stem cells including LSCs [33]. Our results showed that ASCs did not sup-

port the growth of LSCs in the form of single cell suspension as evident by the differentiated

morphology and poor and inconsistent cell expansion. However, ASCs supported the growth

of LSCs in the form of cell clusters. To access the quality of our culture, cell morphology, cell

doubling, and expression of putative stem cell markers and maturation marker were exam-

ined. CFE was not quantitatively analyzed in this study because holoclones formed from limbal

stem cells could not be distinguished from meroclones by colony size or shape [57]. Instead,

the expression of p63α, which has been well characterized to predict holoclones [37] and

shown to correlate with clinical success [14], was examined. LSC cell clusters cultured with

ASCs were compact and small in size, and contained comparable percentages of p63α-bright,

K14+, and K12+ cells in all three culture methods compared to the 3T3 culture (control)

although there was a reduced expression of K14 and K12 in mRNA levels. The discrepancies

between the data from immunocytochemistry and those from qRT-PCR on K12 and K14

expression indicate a poor correlation between the mRNA and protein expressions. The poor

Fig 6. Expression of p63α in cultured LEC cell clusters with ASCs evaluated by immunocytochemistry. (A) Representative images

showing the expression of p63α in cultured LECs. (B) The percentages of p63α-bright cells in cultured LECs. (C) The absolute numbers of p63α-

bright cells in cultured LECs. The absolute number of p63α-bright cells = the percentage of p63α-bright cells x (number of cells harvested/number

of cells seeded). *: p<0.05 in comparison with results of control. Ctl: control. CC-ASC: cell clusters of LECs cultured directly on ASCs. 3D

CC-ASC: cell clusters of LECs cultured on ASCs using the 3D method. Fibrin 3D CC-ASC: cell clusters of LECs cultured on ASCs using the fibrin

3D method. Scale bar = 100 μm.

https://doi.org/10.1371/journal.pone.0186238.g006
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correlation is observed genome-widely in both bacteria and eukaryotes. Approximately 60% of

the variation in protein concentration cannot correlate to the mRNA abundance [58]. The

weak correlation between mRNA and protein levels reflects the precise control on gene expres-

sion at multiple levels, including transcript stability, post-translational modification, intracel-

lular trafficking and packaging, and/or pathway-specific degradation. The transcriptional

profile, translational profile, and even the discrepancies between them, may distinguish a type

of cells from other populations and serve as cell signatures.

Fig 7. Expression of K14 and K12 in cultured LEC cell clusters with ASCs evaluated by immunocytochemistry. (A) Representative

images showing the expression of K14 in cultured LECs. (B) The percentages of K14+ cells in cultured LECs. (C) The absolute numbers of

K14+ cells in cultured LECs. (D) Representative images showing the expression of K12 in cultured LECs. (E) The percentages of K12+ cells in

cultured LECs. (F) The absolute numbers of K12+ cells in cultured LECs. The absolute number of K14+ or K12+ cells = the percentage of

K14+ or K12+ cells x (number of cells harvested/number of cells seeded). *: p<0.05 in comparison with results of control. Ctl: control.

CC-ASC: cell clusters of LECs cultured directly on ASCs. 3D CC-ASC: cell clusters of LECs cultured on ASCs using the 3D method. Fibrin 3D

CC-ASC: cell clusters of LECs cultured on ASCs using the fibrin 3D method. Scale bar = 100 μm.

https://doi.org/10.1371/journal.pone.0186238.g007

Human ASCs support the growth of LSCs

PLOS ONE | https://doi.org/10.1371/journal.pone.0186238 October 11, 2017 11 / 17

https://doi.org/10.1371/journal.pone.0186238.g007
https://doi.org/10.1371/journal.pone.0186238


Compared to the human limbal mesenchymal cell-supported culture and human bone mar-

row stromal cell-supported culture which generate similar or 3-fold more LSCs respectively

than the 3T3 culture at their optimized conditions [59, 60], 3D CC-ASC supported a remark-

ably high cell doubling of LSCs, in which cells were doubled 9 times compared to the cells dou-

bled 4.9 times in control. In other words, 3D CC-ASC generated 14.3-fold more LSCs than

3T3 control. Meanwhile, 3D CC-ASC maintained a comparable percentage of LSC/progenitor

cell population compared to 3T3 control, which led to significantly higher absolute numbers

of p63α-bright and K14+ cells in cultured LSCs. The fact that 3D CC-ASC could support a sig-

nificantly higher cell doubling of LSCs while maintaining the percentage of LSCs/progenitor

cells is of great clinical significance, which enables the generation of sufficient amount of

expanded LSCs for ransplantation from fewer cells derived from small biopsies. There were

few cell-cell contacts between the LSCs and the ASCs in 3D CC-ASC culture thus limiting the

Fig 8. Few cell-cell contacts between the epithelial cells and the ASC feeder cells in 3D CC-ASC

culture. (A) Representative images showing an empty pore, a pore with possible cell-cell contact, a pore with

no cell-cell contact but with cell extension from the epithelial cells, and a pore with no cell-cell contact but with

cell extension from the ASC feeder cells, respectively. (B) An image showing the cell-cell contact between

LSCs and ASC feeder cells using electron microscopy. White arrow indicates the interface of cell-cell contact.

(C) Percentages of pores with empty content, cell-cell contact, no contact but with cell extension from

epithelial cells, and no contact but with cell extension from ASC feeder cells in the 3D CC-ASC culture. Epi:

cultured epithelial cells. Scale bar = 3 μm.

https://doi.org/10.1371/journal.pone.0186238.g008
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contamination from feeder cells. These results suggest that expanding LSC cell clusters on

ASCs using the 3D culture method may be an appropriate substitute for the 3T3 culture

method.

The mRNA levels of Ki67, a proliferation marker, were comparable between the SC-3T3

control culture and the three culture methods in CC-ASC cultures in Fig 5, which was not con-

sistent with the actual cell doubling in Fig 4B. One possible explanation is that the LSCs in the

3D CC-ASC culture may reach confluence at the end of 2-week culture and may stop the

highly proliferative state at the time point of cell harvesting for mRNA quantitation.

The reason why 3T3 cells support the expansion of LSCs in single cell suspension whereas

ASCs do not needs to be elucidated. One possible explanation is ASCs secret different mole-

cules. It has been reported that ASCs showed a different mRNA expression pattern of secretary

molecules that are known to regulate epithelial stem cells including pleiotrophin, cystatin C,

hepatocyte growth factor, keratinocyte growth factor, Insulin-like growth factor 1α compared

to 3T3 cells [33].

Another explanation may be the separation of LSCs from their neighboring cells and/or the

cleavage of membrane proteins of LSCs by trypsin/EDTA that are important for the survival

or attachment of LSCs. Previous reports showed that when single LECs which contained the

LSC population and the LSC niche cells were seeded at a high density (5x104 cells/cm2), the

reunion of LSCs with their niche cells occurred and promoted the propagation of LSCs in vitro
without 3T3 feeder cells [8]. However, when single LSCs were seeded at a lower density (300

cells/cm2) and single LSCs were separated sparsely from the niche cells, there was no cell

growth without 3T3 feeder cells [61]. Similar to the niche cells, 3T3 cells support the single

LSC growth under direct feeder-LSC contact, however they do not support the growth when

the LSCs are cultured separately in the overhanging cell culture inserts [62]. These findings

support the notion that LSCs need to be in direct contact or in close proximity with the niche

cells or 3T3 feeder cells to survive and proliferate in vitro. In other words, niche cells and 3T3

feeder cells provide niche factors that signal through cell-cell contact or within a short distance

to support the survival and proliferation of LSCs in vitro. This hypothesis that LSCs need to be

in direct contact or in close proximity with the niche cells or feeder cells to survive and prolif-

erate can also be used to explain the inferior performance of fibrin 3D CC-ASC culture. The

1–2 mm thick fibrin destructs the close proximity between ASC feeder cells and LSCs and may

also block the cell-cell contact between the ASCs and LSCs, thus less niche factors from feeder

cells could travel this distance through the gel and reach the LSCs to support their survival and

proliferation. Interestingly, single LSCs were able to grow into transplantable cell sheets on

denuded amniotic membrane without feeder cells [63], which suggests that amniotic mem-

brane may contain the essential niche signals for the in vitro survival and proliferation of LSCs.

In addition, trypsin, as a serine protease, cleaves outer membrane peptide chains mainly at the

carboxyl side of lysine and arginine. The process of trypsinization to make single LSCs suspen-

sion may damage some membrane or membrane-associated molecules on LSCs which in turn

impair the stem cell survival and adhesion.

In summary, human ASCs have the capacity to support the expansion of LSCs in vitro. A

fine-tuned ASC-supported culture system including seeding LEC clusters and using the 3D

culture method can achieve a significantly high cell expansion meanwhile maintaining the per-

centage of putative limbal stem/progenitor cell population with minimal cell-cell contacts

from feeder cells, which enables the generation of sufficient amount of LSCs for transplanta-

tion from fewer cells derived from small biopsies while minimizing cell contamination from

feeder cells. Therefore, 3D CC-ASC appears to be a good substitute for the standard 3T3 cul-

ture to expand LSCs in vitro for clinical application.
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were obtained by Dispase digestion of corneoscleral rim followed by mechanical scraping and

pippeting. The cell clusters of LECs were composed of mainly single cells and some small cell

clusters (usually around 2 to 20 cells/cluster). The cell clusters in dashed rectangles are

enlarged at the sides of the images. Scale bar = 100 μm.

(TIF)

S1 Table. Primers used in qRT-PCR.

(DOCX)

S2 Table. Primary antibodies used in immunocytochemistry.

(DOCX)

Acknowledgments

Human adipose-derived stem cells were a generous gift from Prof. Bruno Peault (Professor of

Orthopedic Surgery, University of California, Los Angeles).

Author Contributions

Conceptualization: Sophie X. Deng.

Formal analysis: Hua Mei, Sheyla González, Martin N. Nakatsu, Felix V. Chen.
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