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Programmable Potentials: 
Approximate N-body potentials 
from coarse-level logic
Gunjan S. Thakur1, Ryan Mohr2 & Igor Mezić2

This paper gives a systematic method for constructing an N-body potential, approximating the true 
potential, that accurately captures meso-scale behavior of the chemical or biological system using 
pairwise potentials coming from experimental data or ab initio methods. The meso-scale behavior is 
translated into logic rules for the dynamics. Each pairwise potential has an associated logic function 
that is constructed using the logic rules, a class of elementary logic functions, and AND, OR, and 
NOT gates. The effect of each logic function is to turn its associated potential on and off. The N-body 
potential is constructed as linear combination of the pairwise potentials, where the “coefficients” of the 
potentials are smoothed versions of the associated logic functions. These potentials allow a potentially 
low-dimensional description of complex processes while still accurately capturing the relevant physics 
at the meso-scale. We present the proposed formalism to construct coarse-grained potential models 
for three examples: an inhibitor molecular system, bond breaking in chemical reactions, and DNA 
transcription from biology. The method can potentially be used in reverse for design of molecular 
processes by specifying properties of molecules that can carry them out.

Multi-body interactions are ubiquitous in nature and happen at all scales from atomic (quantum description) to 
molecular (classical approach) to macro scales. A systematic analysis these interactions may unfold the funda-
mental principles governing a given system. For example, understanding the biophysics of protein folding gives 
insight into disease pathologies1. This understanding can be leveraged to develop new vaccines and drug thera-
pies. Engineering these new products requires accurate and computationally tractable models.

Systems having multibody interactions, in fundamental physics, are often formulated as a “N-body potential” 
problem. In order to fully understand these systems a large number of experiments are needed. Conducting 
experiments may be expensive and at times even impossible. Another approach is to analyze the N-body potential 
governing the system dynamics. However, at the quantum level, it may be difficult to determine these potentials 
from first principles due to the complexity of the system. The computational complexity for ab initio methods 
can scale exponentially in the number of electrons, limiting the practical size of the system to a few thousand 
atoms2–4. Even if the detailed potential is determined, it may not be immediately useful. Such is the case when 
the properties or behaviors of interest are at a coarser level than that of the detailed potential and simulating the 
detailed dynamics is too expensive. Very coarse approaches such as those of master equation5 lack predictability 
on molecular spatial and time scales due to the assumptions with which they are derived. A potential that models 
the system is required if one is to make predictions about the system.

It is profitable to restrict one’s efforts to considering approximate potentials that respect known behavior. Such 
coarse-level descriptions may be determined from experimental observation and may correspond to trajectories 
in some transformed (reaction) coordinate system. For example, consider a signal transduction mechanism6–10, 
hierarchical self-assembly11–20, Kinesin motor protein translocation on a microtubule21,22, or hydrogen combus-
tion H2/O2

23,24. These systems transition from one stable configuration to another on the occurrence of some trig-
ger event which may comprise of an external stimulus or the system reaching a special configuration. An external 
stimulus could be an input of energy that initiates hydrogen combustion, leading to a larger release of energy by 
the reaction itself. A special configuration could be a signaling molecule binding to an active receptor site. These 
stable configurations can be considered as fixed points in a transformed (reaction) coordinate system. The fixed 
points, the events, and their associated transitions are the coarse-level descriptions that are to be captured in the 
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approximate N-body potential. However, it is still a challenge to construct a N-body Hamiltonian potential in a 
systematic manner that encodes the known coarse-level behaviors into a mathematical formulation and success-
fully predicts intermediate-scale transition events.

This article introduces a method of encoding coarse-level dynamical behavior into logic functions that are 
used to “stitch” together pairwise interaction potentials into an N-body potential. In this method, the practitioner 
uses experimentally observed coarse-level behavior to derive logic tables that capture various rules of interaction 
in the system. The qualitative logic tables are turned into a collection of quantitative logic functions associated 
with pairwise interaction potentials. The logic functions are then turned into smooth encoding functions via a 
replacement procedure which in turn are used to modify the pairwise potentials. The effect of an encoding func-
tion multiplying a pairwise potential is to smoothly turn the potential on or off when a precise set of conditions 
are met. The combination of the modified potentials gives an N-body potential that approximates the true poten-
tial governing the system.

The method generates a potential that respects what is currently known about the system; it is not claimed 
that this method results in the unique potential governing the real system. The method does this by leveraging the 
existing experimental data and the coarse-level behavior that can be derived from it. If more experimental data 
becomes available, the same procedure can be used to generate a new potential that better models the system. 
This is equivalent to a refinement of the logic functions and ultimately a refinement of the generated potential. 
The resulting potential can have a much smaller dimension than the true potential and still accurately capture the 
relevant physics.

This article begins with a motivating example which is used as an impetus for our modeling framework. In the 
Methodology section, we define the major components of the framework — logic functions, permissible logical 
operations, and the translation to the associated encoding functions — and specify how they combine with the 
pairwise potentials to define the approximate potential. The procedure is depicted in Fig. 1.

The procedure is applied to three examples of increasing complexity to showcase the modeling framework. The 
first is a simple model of an inhibitor molecule mechanism. It shows how one would go from known coarse-level 
behavior to an approximate global potential that captures that behavior by explicitly constructing the logic tables, 
the associated logic functions, and the smooth encoding functions. The inhibitor molecule mechanism has more 
complicated logic than the motivating example and more effectively demonstrates the modeling procedure.

The second example shows how to model a simple, kinetically controlled, bond breaking chemical reaction 
using this framework. It shows that bond breaking events, and more generally chemical reactions requiring acti-
vation energy, can be naturally modeled in the framework. The general procedure for modeling a bond breaking 
event and how to account for the activation energy is shown. Furthermore, the derived potential is used with 
LAMMPS25 to numerically simulate the chemical reaction. By changing the relative dissociation energies, the 
reaction can be biased in a particular direction.

As opposed to our method, many force fields have trouble capturing bond breaking events26. An exception is 
the ReaxFF potential2 that was developed to model reactions of hydrocarbons. The derivation of ReaxFF is based 
on using interatomic distances to compute the bond order between two atoms and then using the bond order 
to obtain the bond energy. Corrections to the bond order are dependent on the valency and the deviation of the 
uncorrected bond order of an atom with its valency. Corrections to the bond energy, in the form of energy pen-
alties (e.g. for over-/under-coordination) are added to get the system energy. This is contrasted with our method 
where bond weakening and breaking is due to the encoding function which is derived from coarse-level observed 
behavior.

The final example is a simple model of DNA transcription. It is shown that after the binding of RNA poly-
merase to the promoter region we can sequentially add the complementary base nucleotides to the DNA strand 
that is to be transcribed. DNA transcription is a complex process involving the interaction of many different 
molecules27,28. This example shows that we can model such a complex process with a relatively low-dimensional 
potential that captures the observed mesoscale behavior. To the authors’ knowledge there is no other other cur-
rent potential accomplishing this task.

Motivating Example
There are a number of examples in biology where chemical reactions occurring within a cell are initiated by some 
signal or stimulus, followed by an ordered sequence of biochemical reactions. Often the term signal transduction 
is used to refer to such processes. One such example is the epidermal growth factor (EGF) signaling9,10. Motivated 
by this example, we construct a hypothetical system to demonstrate how the proposed formulation can be used to 
construct a Hamiltonian potential for it. Assume a system of three species, A, B and C, has an evolution dictated 
by the chemical equation + → → + .A B AB A B

C
 The sequence in which these reactions happen define logical 

“interaction rules” used to design the potential. Specifically, these rules are (1) when molecules A and B are close, 
and C is far, then A and B bond; and (2) If C approaches the AB complex, then A and B dissociate. This mecha-
nism is visualized in Fig. 2.

Each of the species in this system can be modeled as a rod having two sites of interaction at the end points; 
atoms {1, 2} on A, atoms {3, 4} on B, and atoms {5, 6} on C (Fig. 2). Let us write the force field energy for this 
system. In general, it is composed of the bonded energies formed from the stretch, bending, and torsional terms, 
the non-bonded van der Waals and electrostatic terms, and the coupling terms26. We can split the potential as

∑∑= Φ +
>

U higher order terms
i j i

i j( , )
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where Φ​(i,j) denotes a pair-wise interaction potential between two atoms i and j. These 2-atom terms encompass 
the stretching, torsional, van der Waals, and electrostatic terms and the higher order terms include the bending 
energies and all the k-atom (k ≥​ 3) coupling terms.

For this system, the bonded energy terms are composed of the stretch energies between the atom-atom pairs 
(1, 2), (3, 4) and (5, 6), which we can group into a term Ub. Assume that the only non-negligible non-bonded 
energy terms are the two van der Waals interactions between atoms 2 and 3 and atoms 2 and 5, and the coupling 
term between atoms 2, 3, and 5. Denoting these three terms by Φ​(2,3), Φ​(2,5), and Φ​(2,3,5), respectively, we get the 
force field energy of the system as

= Φ + Φ + Φ +U Ubsignaling (2,3) (2,5) (2,3,5)

The inclusion of the 3-atom potential Φ​(2,3,5) is required in order to capture the transition of the pair (2, 3) being 
in a stable (bounded) configuration when atom 5 is not present to being in an unstable (free) configuration in the 
presence of the signaling atom 5.

Figure 1.  Flow chart of procedure. Using experimentally observed data and quantum calculations (red), we 
extract coarse-grain behavior (orange) namely: interactions rules and pairwise interaction potentials. This 
information is used to obtain an N-body potential (blue) for the system by employing the proposed formalism 
(green).
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While in general it may be hard to get the correct forms for the coupling term and other higher-order terms in 
the expansion, and thus the full potential, we know from the above observations that the effect of the potentials Φ​(2,5)  
and Φ​(2,3,5) is to basically to turn off Φ​(2,3) when 5 is close to 2. Rewriting the potential as

= Φ




+
Φ + Φ

Φ





+U U1 ,bsignaling (2,3)

(2,5) (2,3,5)

(2,3)

this means that term in parentheses is approximately 1 whenever atoms 2 and 5 are far and approximately 0 
whenever atoms 2 and 5 are close. Instead of attempting to find the exactly functional forms of Φ​(2,5) and Φ​(2,3,5), 
we approximate the potential as

≈ Φ +U S U , (1)bsignaling (2,3) (2,3)

where S(2,3) is an encoding function that acts as a switch turning Φ​(2,3) on and off. In this example, the encoding 
function is only function the distance between atoms 2 and 5. The encoding function takes values between 0 and 
1, it is approximately 0 when atoms 2 and 5 are close, and approximately 1 when atoms 2 and 5 are far; thus it 
encodes the logic of the coarse-level observed behavior of the system. It is an approximation of the other terms:

≈ +
Φ + Φ

Φ
.S 1(2,3)

(2,5) (2,3,5)

(2,3)

In the rest of the article, we make this approximation idea (Eq. (1)) precise and derive approximate N-body 
potentials from simple pairwise interactions that respect observed coarse-level behavior. We give a systematic 
procedure to construct the encoding functions which allows us to handle systems with more complex interaction 
rules. We will demonstrate the procedure with three examples. We also use molecular dynamics simulations using 
the derived potentials that show we can accurately capture the relevant physics.

There are a few items to keep in mind as motivation for the abstract concepts to follow. The basic building 
blocks for the N-body potential are pairwise interaction potentials (denoted by Φ​(2,3) and Φ​(2,5) for the above 
example). The explicit form of these potentials can be inferred from the experimental data or ab initio calcula-
tions. We approximate the effect of the un-modeled potentials by modifying the relevant pairwise potentials with 
an encoding function. The encoding function only turns the corresponding potential on and off. The functional 
form of the potential does not change; it is only scaled between 0 and 1. The logic contained in the encoding func-
tions is obtained from experimental observations or ab initio simulations and the logic only depends on pairwise 
distances between particles, except the pairwise distance used in the associated potential function; e.g. the logic 
corresponding to Φ​(2,3) cannot depend on the distance between atoms 2 and 3.

Methodology
It is assumed that there are M interacting entities in a domain , where ⊆ d , for d =​ 1, 2, or 3. Each entity is 
modeled by a finite number of particles with constraint forces between the particles; the totality of these particles 
over all the entities are labeled from 1 to N. This allows us to treat point particles as well as rigid and and non-rigid 
bodies. The configuration space is C D= N . A particular system configuration, ∈x , takes the form 
= …x x x( , , )N1 , where ∈x j  describes the position of particle j in the domain .

The dynamics of the system is driven by a potential gradient and external forces. Specifically, the functional 
form of the dynamics is

= −∇ +
 ̈ x xm x U F t( ) ( , ), (2)xi i ii

Figure 2.  Simple signaling molecule mechanism, + → → +A B AB A B
C

, modeled by three rods. When C 
is not present, A and B form a complex. When C is present, A and B dissociate and diffuse apart. Molecule C is 
free to diffuse away from molecule A. This behavior is captured with the following rules. When atom 5 is far 
from atom 2, the potential between atoms 2 and 3 is on. When atom 5 is close to atom 2, the potential between 
atoms 2 and 3 is turned off allowing molecules A and B dissociate and diffuse apart. Atom 5 can diffuse away 
from atom 2.
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where mi is the mass of atom i; ∇xi
 is the gradient operator in the configuration space  with respect to the the 

position xi of atom i; xF t( , )i  collects the external forces on particle i such as external electric or magnetic fields as 
well as stochastic effects or boundary constraints; and the approximate potential is defined as

∑ ∑= Φ .
∈ ∈

  

m

x x xU S( ) ( ) ( )
(3)p p

p p
j

j j
( )

, ,


The notation in this equation is as follows.

 , set of interacting pairs of atoms.    defines which pairs of atoms interact. For example, if p =​ (2, 3) is 
in  , then there exists a pairwise potential between atoms 2 and 3. Since not every pair of atoms in the system has 
to interact,   can be a strict subset of {1, …​, N} ×​ {1, …​, N}.

⋅( )m , multiplicity function.  The multiplicity function  →m:  determines how many potentials that 
atom pair p =​ (p1, p2) interacts through. Often m p( ) will be 1 for every atom pair p. However, non-unit values 
become important when a pair ∈p   interacts through multiple different potentials, each with its own encoding 
function. For example, a non-unit multiplicity is useful when modeling bond-breaking chemical reactions. 
Initially, two atoms interact through their bond potential; when this bond is broken, another potential is required 
to model the electron-electron repulsion between the atoms.

Φp,j, pairwise interaction potential.   Φ →:p j,  is the jth interaction potential for the pair of atoms 
= ∈p p p( , )1 2 . The index j is runs from 1 to m p( ). For →= …x x x( , , )N1 , it takes the form

φ π π φΦ = − ≡ −
  ‖ ‖ ‖ ‖x x x x x( ) ( ( ) ( ) ) ( ), (4)p p pj j p p j p p, , ,1 2 1 2

where for every i ∈​ {1, …​, N}, the coordinate map C Dπ →:i  extracts the position xi of atom i from the configu-
ration vector = …x x x( , , )N1 ; the norm ⋅  denotes the normal Euclidean norm; and  φ →+:p j,  is the jth 1D 
pairwise interaction potential through which the pair p interacts. This potential could be, for example, a 
Lennard-Jones or Morse potential; it can also be different for different interaction pairs. The form given for the 
potential shows that it is only a function of the distance between x p1

 and x p2
. When =m p( ) 1, we drop the j index 

from Φ​p,j and write it as Φ​p.

Sp,j, encoding function.   →S : [0, 1]p j,  is the encoding function associated with the potential Φ​p,j. It 
encodes the coarse-level interaction rules and it is a function of pairwise distances between particles, except for 
the particle pair p to which it corresponds. That is, for the interaction pair = ∈p p p( , )1 2 , the encoding func-
tion Sp,j is not a function of the distance −‖ ‖x xp p1 2

. The effect of Sp,j is to smoothly turn its associated potential 
function on and off based on the configuration of the system. Since the encoding functions and potentials are 
functions of relative distances only, Equation (2) defines a Hamiltonian system29 when we neglect the forces xF ( )i . 
When =m p( ) 1, we drop the j index from Sp,j and write it as Sp.

A majority of the rest of the paper develops the encoding functions and their properties and shows how one 
would go from coarse-level interaction rules to encoding functions using a few examples. It is assumed that the 
coarse-level, interaction rules and the interaction potentials  φ →+:j  are known. These come from analyzing 
experimental data or ab initio simulations and are thus application specific and beyond the scope of this article. 
Ultimately, the encoding function Sp,j will be a smoothed version — which is made precise later — of a logic func-
tion →L : {0, 1}p j,  , which assigns 0 or 1 to each configuration x. The logic function Lp,j will be the constructed 
from a finite number of logical operations applied to elementary logic functions from a Boolean algebra. More 
precisely, the logic function will be an element of the Boolean sub-algebra generated by elementary logic func-
tions. Thus to define the logic functions, it is required to know the specific definitions of the logical operators 
AND, OR, and NOT (symbolically denoted, ∧​, ∨​, ¬​) and what Boolean functions are used as the elementary logic 
functions.

A function →b: {0, 1} , which assigns either 0 or 1 to each configuration vector x is called a Boolean func-
tion on  and the set of such all such functions on  is denoted as . It is easy to see that the functions that are 
identically 1 and 0 on  are Boolean functions. On , define for all ∈f g,  the two binary logical operations 
AND (∧​) and OR (∨​) and the unary logical operation NOT (¬​) by

∧ = ∨ = + − ∧
¬ = − .

      

 

x x x x x x x
x x

f g f g f g f g f g
f f

( )( ) ( ) ( ), ( )( ) ( ) ( ) ( )( ),
( )( ) 1 ( )

These three logical operations will be applied to specific elements of the set of all Boolean functions  on  to 
generate a Boolean sub-algebra. The logic functions Lp,j will be elements of this sub-algebra.

Proximity functions are used to define the elementary logic functions. A proximity function  →+P : {0, 1}R  
has the form PR(r) =​ χ[0,R)(r), for some R satisfying 0 ≤​ R ≤​ ∞​. The function  χ →+:R[0, )  is the indicator func-
tion for the semi-open interval [0, R) which takes the value 1 if the argument satisfies 0 ≤​ r <​ R and 0 otherwise. 
Note that the functions that are identically 1 or 0 are proximity functions. The elementary logic functions are 
defined as compositions of a proximity function with the coordinate functions πi from above. Specifically, the 
elementary logic function 

q R,  for atom pair = ∈q q q( , )1 2   and parameter 0 ≤​ R ≤​ ∞​ has the form
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π π χ= − ≡ − .
  

 ‖ ‖ ‖ ‖x x x x xP( ) ( ( ) ( ) ) ( ) (5)q R R q q R q q, [0, )1 2 1 2

This function is 1 when xq1
 and xq2

 are closer than distance R and 0 when not.
A logic function Lp,j is generated by applying finitely many of the logical operations ∧​, ∨​, and ¬​ to the elemen-

tary logic functions (5) for any finite set of q’s, none of which are equal to p — that is, 

 x( )p R,  cannot be part of the 
definition of Lp,j. Each logic function Lp,j is continuous almost everywhere in  since each elementary logic func-
tion is constant almost everywhere. This follows since it is composed from pairwise products and sums of elemen-
tary logic function, which themselves are continuous almost everywhere.

Once the logic function is specified, it must be translated into a smooth encoding function. Ideally, this would 
be accomplished via a convolution in the (dN-dimensional) configuration space with a smooth, nonnegative 
summability kernel (see Katznelson30 for a definition). Analytically, this is intractable, and computationally, this 
is very expensive. Instead, we individually smooth each of the 1D elementary logic functions 

 x( )p R,  in the expres-
sion for xL ( )p j, . This is done by replacing the proximity function of 

q R,  with a smoothed version. Again, this 
could be done via the convolution (now 1-dimenional) of each proximity function with a smooth, 1D summabil-
ity kernel or, alternatively, by the replacement of each indicator function with a specific functional form. We 
choose the latter approach and replace each proximity function χ[0,R)(r) with a function of the form


α

α=
+

< < ∞ ∈αh r
r

n( ) 1
1 ( / )

, (0 , ),
(6)n n, 2

and we define h0,n(r) =​ 0 and h∞,n(r) =​ 1. For example, if the logic function has the expression

χ χ= − ∧ − −
 ‖ ‖ ‖ ‖x x x x xL ( ) ( ) (1 ( )),p j R q q R s s, [0, ) [0, )1 1 2 2 1 2

then the corresponding encoding function would be

= − ∧ − −α α
 ‖ ‖ ‖ ‖x x x x xS h h( ) ( ) (1 ( )),p j n q q n s s, , ,1 1 1 2 2 2 1 2

for some choices of parameters α1, α2, n1, and n2. The parameters α and n control how well hα,n approximates a 
proximity function (see Fig. 3). In particular, hα,n(0) =​ 1 for any 0 <​ α <​ ∞​ and positive n. Furthermore, 

=α→∞h rlim ( ) 0r n,  and it is strictly monotonically decreasing. On the other hand, for a fixed 0 <​ α <​ ∞​, the 
transition from 1 to 0 becomes sharper as n increases (Fig. 3(b)). To match a specific indicator function χ[0,R), 
choose α =​ R. With this choice of α, the function satisfies hR,n(R) =​ 1/2 for all n ≥​ 1;

=










<

=

> .
→∞

h r

r R

r R

r R

lim ( )

1
1
2
0

n
R n,

Examples
To show the entire process, starting from coarse, interaction rules and recovering the encoding function, we apply 
the method to three examples in increasing order of complexity. The first example is a model for an inhibitor 
molecule system and is used to exhibit the core methodology of the modeling framework. This system can be 
considered as an extension of the signaling molecule example above (Fig. 2). The second example is a model for a 
simple bond breaking chemical reaction and makes use of the multiplicity function m from the framework. It is 
shown that the bond dissociation energy is accurately captured in this framework. Numerical simulations show 
that (i) the system exhibits the same coarse-level behavior that was used to derive the potential and (ii) that biased 
chemical reactions are easily handled. The final example is a simple model for DNA transcription and is the most 
complicated of the three. This example shows that the logic, and hence potential, of real systems can be captured 
in the modeling framework in a straight-forward manner.

Figure 3.  Behavior of the hα,n function from Equation (6). (a) α controls the transition point. (b) n controls 
the sharpness of the transition.
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Simple inhibitor molecule mechanism.  This example can be thought of as a simple model for the action 
of an inhibitor molecule in a plane. Consider the three interacting molecules in Fig. 4. The configuration space for 
this example is  = ( )2 6, where ∈x  is written as = …x x x( , , )1 6 . The set of interacting atom pairs is 
 = {(2, 3), (2, 5), (3, 6)}. For this example, the multiplicity function  →m:  is identically 1. Thus we have 
the pairwise potentials Φ​(2,3), Φ​(2,5), and Φ​(3,6). It is assumed that these potentials are formed using a Morse poten-
tial (see (12)). Molecule C is an inhibitor molecule and prevents the formation of the AB complex. Without C, we 
have A +​ B →​ AB. With C present, the there are two possibilities: (i) + → +A B AC B

C
 or (ii) + → +A B A BC

C
.

This behavior is captured in the logic functions L(2,3), L(2,5) and L(3,6). The logic function L(2,3) is 0, i.e., the 
potential Φ​(2,3) is turned off, when either atom 5 is close to atom 2 or when atom 6 is close to atom 3. This is 
different from the motivational example which only turned off the potential if 2 and 5 were close and the bonds 
between 2 and 5 or 3 and 6 never formed. Additionally, if AC has formed (atoms 2 and 5 close), then BC cannot 
form, i.e., L(3,6) =​ 0 and Φ​(3,6) is off. Similarly, BC has formed (atoms 3 and 6 close), then AC cannot form. Table 1 
captures this logic. As a general rule when determining the logic, the default state for all the potentials should 
be set to “on” except when encoding a specific mechanism. In this example, this corresponds to the first row of 
Table 1 which says that the values of all the logic functions are 1 when all of the atoms are far apart. This means 
that the associated potentials are turned on. This is exactly the behavior we want since the inhibitor mechanism is 
inherently a short range phenomena and thus we do not want the mechanism to be active when all the particles 
are far apart. However, since the atoms are all far apart the long-range behavior of the potential is dominant. For a 
Lennard-Jones or a Morse potential, the means there is a weak attraction force between the pairs of atoms.

We need to specify what is meant by “close”. We assume that “close” is in this case is determined by experi-
ments to mean being within the distances R(2,5) and R(3,6), respectively. Thus, atoms 2 and 5 are close when the 
elementary logic function 

 R(2,5), (2,5)
 evaluates to 1 and not close when it evaluates to 0. Using the table, xL ( )2,3  

corresponding to the interaction potential Φ x( )(2,3)  can be written as Equation (7).

χ χ

χ χ

χ χ

χ χ

χ χ

= ¬


∨ 


= ¬


− ∨ − 


= ¬


− + −

− − ⋅ − 


= − − − −
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R R

R R

R R

R R

R R

(2,3) (2,5), (3,6),

[0, ) 5 2 [0, ) 6 3

[0, ) 5 2 [0, ) 6 3

[0, ) 5 2 [0, ) 6 3

[0, ) 5 2 [0, ) 6 3

[0, ) 5 2 [0, ) 6 3

(2,5) (3,6)

(2,5) (3,6)

(2,5) (3,6)

(2,5) (3,6)

(2,5) (3,6)

(2,5) (3,6)

The other logic functions are

Figure 4.  Inhibitor molecule example. When the inhibitor molecule, C, is not present (panel (a)), a bond 
between receptor A’s site 2 and site 3 on the active molecule B can form. When the inhibitor molecule is present, 
it can either take up the receptor site through a (2, 5) bond (panel (b)) or bind to site 3 on B with site 6 (panel 
(c)). Either of these cases prevents to active molecule B from binding with its receptor site on A.

2 and 5 “close” 3 and 6 “close” L(2,3) L(3,6) L(2,5)

0 0 1 1 1

0 1 0 1 0

1 0 0 0 1

1 1 0 0 0

Table 1.   Bond logic for the inhibitor molecule mechanism.
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χ= ¬ −
x x xL ( ) ( ) (8)R(3,6) [0, ) 5 2(2,5)

χ= ¬ − .
x x xL ( ) ( ) (9)R(2,5) [0, ) 6 3(3,6)

To turn the logic functions into an encoding function, replace each of the proximity functions, χ R[0, )p
, in (7–9) 

with their smooth versions, hR n,p p
 (Eq. (6)). The encoding function S(2,3) corresponding to L(2,3) is

= − − − −

+ − − .

x x x x x

x x x x

S h h

h h

( ) 1 ( ) ( )

( ) ( ) (10)

R n R n

R n R n

(2,3) , 5 2 , 6 3

, 5 2 , 6 3

(2,5) (2,5) (3,6) (3,6)

(2,5) (2,5) (3,6) (3,6)

The approximate potential for this system is

∑= Φ = Φ + Φ + Φ .
∈

        x x x x x x x x xU S S S S( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
(11)p

p p (2,3) (2,3) (2,5) (2,5) (3,6) (3,6)


The original configuration space was 12-dimensional. However, (11) is 8-dimensional since it only depends on 
four atoms (four unique atoms making pairs in  ). Thus we were able to reduce the dimension of the configura-
tion space and still capture the relevant physics.

Here, we are only interested in demonstrating the methodology qualitatively so we make the approximation 
that derivative of each encoding function is 0 almost everywhere (this would be the case if the logic functions 
were used in place of the encoding functions in (11). With this approximation the force only consists of terms of 
the form ∇ Φ


x xS ( ) ( )p x pp

. One realization of the inhibitor molecule system (11) simulated in LAMMPS25 with 
this approximation is shown in Fig. 5. The potentials Φ​p are formed from Morse potentials

φ = −− − − −r D e e( ) ( 2 ), (12)a r r a r r
Morse

2 ( ) ( )eq eq

where D is the dissociation energy, req is the equilibrium distance of the bond, and a is a parameter. Simulations 
are performed by solving the Langevin equations at constant temperature (i.e. NVE ensemble). The parameters 
used in the computations are given in Supplementary Table I. Initially, the AB complex is formed. Around 30 
femtoseconds C comes close enough, turns off the AB bond and BC forms and can diffuse away from A. This 
remains the case until around 450 fs, when A approaches BC, the BC bond turns off and the AC bond turns on.

Supplementary Movie 1 shows a simulation of the inhibitor molecule mechanism.

Modeling a bond breaking chemical reaction.  We model a reversible, bond breaking, chemical reac-
tion. In particular, we will model the reaction

+ + .AB C AC B (13)

Modeling such chemical reactions is difficult with traditional force field methods since they cannot describe 
changes in the electronic structure and, thus, are unable to describe bond-breaking, bond-forming, charge trans-
fer, etc., of the system undergoing a reaction4,31. Rather than solving the quantum mechanical equations, we take 
a coarse-level approach and approximate the bond breaking mechanism with logic functions.

This example makes use of the multiplicity function m i( ) in (2) in order to model the electron-electron repul-
sion during the transition state. It also shows that the use of a smooth encoding function accurately accounts for 
the bond dissociation energy. Let = … ∈

x x x( , , ) ( )1 6
2 6 be the configuration vector for this system (see Fig. 6).

Figure 5.  One realization of the inhibitor molecule system (11) simulated in LAMMPS. Initially, the AB 
complex is formed. Around 30 femtoseconds (fs) C comes close enough, turns off the AB bond and BC forms 
and can diffuse away from A. This remains the case until around 450 fs, when A approaches BC, the BC bond 
turns off and the AC bond turns on.
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Table 2 lists all the potentials involved in modeling the system. The potential Φ​(1,3),1 is the potential energy 
of the bond between A and B when they form the stable molecule AB, for example a Lennard-Jones or Morse 
potential. Similarly, Φ​(2,5),1 is the bond potential energy between A and C when they form the stable molecule 
AC. They have the associated logic functions L(1,3),1 and L(2,5),1, respectively. The potentials Φ​(1,3),2 and Φ​(2,5),2 are 
used to model electron-electron repulsion during the transition state when the reactant bonds have broken and 
the product bonds have not yet formed. The secondary potentials are usually taken to be the repulsive part of the 
associated bond potential.

Table 3 lists the logic rules for this system. Consider the forward reaction AB +​ C →​ AC +​ B. We model the 
bond breaking mechanism by turning off the stable bond, Φ​(1,3),1, when C gets “close enough” to A. When C moves 
within the distance RAB C,

dis  to A, the AB bond (Φ​(1,3),1) turns off. Similarly, for the backwards reaction, the AC bond 
(Φ​(2,5),1) turns off when B gets within a distance RAC B,

dis  of A. The logic functions are logical NOT’s of the x2–x5 and 
x1–x3 proximity functions:

χ

χ

= ¬ −

= ¬ − .





 

 

x x x

x x x

L

L

( ) ( )

( ) ( )
R

R

(1,3),1 [0, ) 2 5

(2,5),1 [0, ) 1 3

AB C
dis

AC B
dis

,

,

We assume that <r Req
AB AC B,

dis  and <r Req
AC AB C,

dis . With this assumption, the AC bond turns off before B reaches its 
equilibrium bond length with A.

The use of the smooth encoding function in the potential (as opposed to the logic function) allows the transfer 
of the correct amount of energy from C to AB in order to break the bond; C must transfer an amount of energy 
equivalent to the bond dissociation energy DAB of the AB bond in order to turn off the Φ​(1,3),1 potential. We refer 
the reader to Sec. III.A in the Supplementary Information for the derivation.

Consider the situation occurring directly after a successful collision of C with AB. In this case, A and B are 
close to their equilibrium distance ( − ≈x x req

AB1 3 ) and A and C are closer than the AB-bond dissociation dis-
tance ( − <x x RAB C2 5 ,

dis ). In this state, the bonds are weak and neither AB nor AC is stable; the system is at its 
transition state. In this transition state the forces experienced by the molecules due to the bond potentials Φ​(2,3),1 
and Φ​(2,5),1 are small since the encoding functions and their partial derivatives are small, and thus the bond poten-
tials are approximately “off ”. The dynamics are predominantly dominated by noise and the residual momentum 
of the molecules.

In this transition state, the electron-electron repulsion should be directly accounted for via a short-range 
repulsion potential between the molecules; usually this is repulsive part of the associated bond potential. The logic 
functions are defined such that these repulsion forces are only “on” when the system is in its transition state. This 
is easily accomplished. Denote the short-range repulsion potential between A and C by Φ​(2,5),2. This force is 
defined such that Φ ≈x( ) 0(2,5),2 , for − >x x RAB C2 5 ,

dis . This force is turned on when − <x x RAC B1 3 ,
dis . The 

logic function for the A-C repulsion is

Figure 6.  Diagram for chemical reaction example. Φ​(1,3),1 and Φ​(2,5),1 represent the stable bonds AB and AC, 
respectively. The dashed lines represent the repulsion forces induced by the encoding functions. (a) the 
repulsion between A and C is due to the partial derivatives of xS ( )(1,3),1  with respect to both x2 and x5. (b) the 
repulsion between A and B is due to the partial derivatives of xS ( )(2,5),1  with respect to both x1 and x3. See 
Supplementary Information Sec. III.A for a discussion of the repulsion force induced by the smooth encoding 
functions.

Potentials Potential type Equil. dist. Interaction range

Φ​(1,3),1 AB stable mol. bond req
AB —

Φ​(1,3),2 AB electron repulsion term — <RAC B,
dis

Φ​(2,5),1 AC stable mol. bond req
AC —

Φ​(2,5),2 AC electron repulsion term — <RAB C,
dis

Table 2.   Potentials in chemical reaction model.
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χ= − .
x x xL ( ) ( ) (14)R(2,5),2 [0, ) 1 3AC B

dis
,

Similarly, repulsions between A-B and B-C can be defined with logic functions similar to the above one.
There are three possible outcomes for when the system exits its transition state: (i) either AC forms a stable 

molecule, (ii) AB reforms, or (iii) no bonds are formed and all the molecules are free molecules. This depends on 
the equilibrium distances of the bonds, the dissociation distances, the incoming momentum of C, and the repul-
sion forces. Figure 7 shows the two most probable outcomes for a single AB +​ C event.

For our simulations, the AB and AC bonds (Φ​(1,3),1 and Φ​(2,5),1, respectively) are given by Morse potentials, (12). In 
simulations, only the short-range A-B and A-C electron-electron repulsions are modeled and are only active during 
the transition state. The form of these for these repulsions are chosen as the repulsive part of a Morse potential with 
the same parameters as the full potentials used for the AB and AC bonds. The logic function for the A-C repulsion 
potential, Φ​(2,5),2, is given by (14) with obvious modifications for Φ​(1,3),2. The associated encoding functions are given 
by the normal replacement procedure. The full potential used during the numerical experiments is given in (15).

= −
+ −

−

+





−
+ −






× −

+




 + −







+




 + −






.

− − − − − −

Φ

− − − − − −

Φ

− − −

Φ

− − −

Φ



� ��������������� ���������������
� ������������������� �������������������

� ��������������� ���������������
� ������������������� �������������������

� ������������� �������������
� ��������� ���������

� ������������� �������������
� ��������� ���������

(15)

x
x x

x x

x x

x x

U
R

D e e

R
D e e

R
D e

R
D e

( ) (1 1

1 ( / )
) ( 2 )

1 1
1 ( / )

( 2 )

1

1 ( / )

1

1 ( / )

x x x x

x x x x

x x

x x

n

S

a r a r

n

S

a r a r

n

S

a r

n

S

a r

,
AB

,
AC

,
AB

,
AC

2 5 AB C
dis 2

2 ( ) ( )

1 3 AC B
dis 2

2 ( ) ( )

2 5 AB C
dis 2

2 ( )

1 3 AC B
dis 2

2 ( )

eq eq

eq eq

eq

eq

AC
AB AB

AB
AC AC

AC
AB

AB
AC

(1,3),1

1 3 1 3

(1,3),1

(2,5),1

2 5 2 5

(2,5),1

(1,3),2

1 3

(1,3),2

(2,5),2

2 5

(2,5),2

The force derived from (15) is used in LAMMPS25 to simulate the system for an unbiased and a biased poten-
tial (parameters in Supplementary Information Table II). The parameters of the first simulation are chosen so that 
the AB and AC are symmetric (DAC/DAB =​ 1). In this case, the chemical reaction is unbiased and if averaged over 
all realizations of the noise, it is expected that the amount of time AB is formed is equal to the amount of time 

−x x1 3 −x x2 5 Φ(1,3),1 Φ(1,3),2 Φ(2,5),1 Φ(2,5),2

<RAC B,
dis — — — OFF ON

>RAC B,
dis — — — ON OFF

— <RAB C,
dis OFF ON — —

— >RAB C,
dis ON OFF — —

Table 3.   Bond-breaking logic rules.

Figure 7.  The two most probable outcomes of a successful AB + C event. Both trajectories start at the same 
configuration the difference is that C has a greater momentum for the blue (thicker) curved arrow. For both the 
red and blue trajectories, C approaches A. The AB bond breaks when = − <x xr RAC AB C2 5 ,

dis . Depending on 
the momentum and the relative strength of the repulsion terms, either AB reforms or AC forms.
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AC is formed. Figure 8 shows the potential energy for this simulation (Fig. 8(a)), the corresponding level sets 
(Fig. 8(b)), and a typical realization of the simulation (Fig. 8(c)). In the energy surface plot and the level set plot, 
the symmetry of the potential is evident. The realization shown in Fig. 8(c) starts with AB near its equilibrium 
length (2 Å) with C far from A. The realization shows the approximately equal times that AB and AC are formed. 
The deviation is due to this being a particular realization rather than an average over an ensemble of realizations 
and the finite nature of the simulation.

The parameters of the second simulation are chosen so that the reaction is biased in favor of AC. With the 
chosen parameters (DAC/DAB =​ 2), the AC bond is twice as stable as AB. Figure 9 shows the potential energy for 
this simulation (Fig. 9(a)), its corresponding level sets (Fig. 9(b)), and a realization of the simulation (Fig. 9(c)). 
In the energy surface plot and the level set plot, the asymmetry of the potential is evident. The realization shown 
in Fig. 9(c) starts with AB near its equilibrium length (2 Å) with C far from A. In this particular realization AC 
forms very quickly. Figure 9(c) shows the bias towards the more stable AC. The system spends most of its time 
with a stable AC molecule with a relatively small amount of time with a stable AB molecule. Thus, biased reac-
tions can be captured in the framework. A movie of a part of the unbiased reaction simulation can be found in 
Supplementary Movie 2.

DNA transcription model.  The final example is inspired by DNA transcription27,28. The model consists of a 
promoter region (sites 1 and 2) to which RNA polymerase (RNA pol) binds (sites 3 and 4), and a four nucleotide 
DNA strand, ACTG, to be transcribed (Fig. 10). As a first approximation of the transcription process, the move-
ment of the RNA polymerase down the DNA chain and the unwinding/rewinding of the DNA have not been 
explicitly modeled.

In the absence of the RNA pol, the free nucleotides cannot bind to their complementary nucleotides in the 
4 nucleotide DNA strand (ACTG =​ (5, 6, 7, 8)). Once RNA pol binds to the promoter, the first first nucleotide 
(A, atom 5) in the DNA strand can bind to the free version of its complementary nucleotide (U, atom 9). Before 
this binding happens, the remaining nucleotides in the strand (CTG, atoms 6, 7, 8) cannot bind with their (free) 
complementary nucleotides (atoms 12, 15, 18). Once A has bound to a free U nucleotide, the next nucleotide in 
the strand (C, atom 6) can bind with a free G nucleotide (atom 12), while the remaining two nucleotides (TG) still 
cannot bind with their complementary nucleotides. Once the free G has bound with C, the sugar and phosphate 
groups (atoms 11 and 13) on T and G can bind to start forming the backbone of the complementary DNA strand. 
This sequential process continues until each nucleotide in the original DNA strand ACTG has bound with its 
complementary nucleotide, resulting in the complementary RNA strand UGAC. At this point, the complemen-
tary strand and the RNA pol unbind from the original strand and promoter region, respectively.

Supplementary Table III lists the reaction potentials for each of the interacting pairs. The nucleotide base 
pairs interact via a hydrogen bond φH, whereas the sugar and phosphate groups covalently bond through φSP. The 
interaction potentials for the system can be easily read from this table (see Supplementary Information Sec. IV.A).

Let us step through the logic in the order the reaction occurs:

1.	 The bonds between the RNA pol and the promoter region (Φ​(1,3) and Φ​(2,4)) are “on” except when the comple-
mentary chain has formed and is still attached to the original base strand.

2.	 The A-U bond (Φ​(5,9)) is “on” when the RNA pol has bonded with the promoter and the complementary 
chain’s backbone has not fully formed. This second condition prevents the complementary strand from reat-
taching to the original DNA strand once it has been formed. It is “off ” otherwise.

3.	 The C-G bond (Φ​(6,12)) is “on” when all of following conditions are true: (1) RNA pol has bonded with the 
promotor, (2) the A-U bond has formed, and (3) the complementary backbone has not formed. It is “off ” 
otherwise.

Figure 8.  Simulation of an unbiased (1:1 well-depth), bond breaking chemical reaction, (13). (a) The 
potential energy (15) for the system. The parameters are given under simulation 1 in Supplementary Table II. 
(b) The level set plot of the potential energy. (c) A typical trajectory of the simulation. The cyan trace denotes 
the distance between molecules A and C ( = −x xrAC 2 5 ), whereas the red trace corresponds to the distance 
between molecules A and B ( = −x xrAB 1 3 ). Initially, A and C are near their equilibrium length (2) and B is 
far from A. We see a successful AC +​ B →​ AB +​ C event happening very soon (red trace is close to the 
equilibrium distance, then becomes large; cyan trace is large, then becomes small).
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4.	 The sugar-phosphate group bond Φ​(11,13) turns “on” when (1) RNA pol has bonded with the promoter and (2) 
both the A-U and C-G bonds have formed. It remains “on” once the complementary backbone has formed. It 
is “off ” otherwise.

5.	 The T-A bond (Φ​(7,15)) is “on” when all of the following conditions are true: (1) RNA pol has bonded with the 
promotor, (2) the A-U and C-G bonds have formed, (3) the (11,13) sugar-phosphate bond has formed, and 
(4) the complementary backbone has not formed. It is “off ” otherwise.

6.	 The sugar-phosphate group bond Φ​(14,16) turns “on” when (1) RNA pol has bonded with the promoter, (2) the 
A-U, C-G, and T-A bonds have formed, and (3) the (11, 13) sugar-phosphate bond has formed. It remains 
“on” once the complementary backbone has formed. It is “off ” otherwise.

7.	 The G-C bond (Φ​(8,18)) is “on” when all of the following conditions are true: (1) the conditions in (10) are true, 
(2) the T-A bond has formed, and (3) the (14, 16) sugar phosphate bond has formed. It is “off ” otherwise.

8.	 The sugar-phosphate group bond Φ​(17,19) turns “on” when (1) RNA pol has bonded with the promoter, (2) the 
A-U, C-G, T-A, and G-C bonds have formed, and (3) the (11, 13) and (14, 16) sugar-phosphate bonds have 
formed. It remains “on” once the complementary backbone has formed. It is “off ” otherwise.

A global potential derived from the above logic rules is given in Eq. (16). The exact form of the logic functions 
xL ( )p  and the associated smooth encoding functions xS ( )p  comprising the potential are given in the 

Supplementary Information. The derivation of the potential is not difficult, but lengthy. We refer the reader the 
Supplementary Information Sec. 4 for the details.
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Figure 11 shows a trace of the pairwise distances between atoms for a typical simulation using this potential 
in LAMMPS (parameters in Supplementary Information Table IV). We use the same qualitative approximation 
of the force as was used in the inhibitor molecule example. For simplicity, all the potentials are taken to be Morse 
potentials. The red trace (TF) corresponds to the distance between the RNA pol and the promoter region. The 
variables r5,9 (cyan), r6,12 (gold), r7,15 (black), and r8,18 (blue) correspond to the sites on the complementary A-U, 
C-G, T-A, and G-C pairs from the base strand and the free nucleotides. At the start, the RNA pol and the free 
nucleotides diffuse around in space. Around 900 ps, the RNA pol binds to the promoter region (TF trace ≈​0). 
The free nucleotides then bind in the the order of the designed logic. U binds to A (r5,9 ≈​ 0) around 1100 ps; G 
binds with C (r6,12 ≈​ 0) between 1800 and 1900 ps; A binds to T (r7,15 ≈​ 0) around 2400 ps; and finally C binds to G 
(r8,18 ≈​ 0) around 2700 ps. Once this final free nucleotide has bounded with its complement, the complementary 
chain has finished forming and unbinds as does the RNA pol. The RNA pol can rebind to the promoter region, but 
the complementary RNA strand cannot rebind to the original DNA strand. This is exactly the behavior designed 

Figure 9.  Simulation of biased (2:1 well-depth), bond breaking chemical reaction, (13). (a) The potential 
energy (15) for the system. The parameters are given under simulation 2 in Supplementary Table II. (b) The level 
set plot of the potential energy. (c) A typical trajectory of the simulation. The cyan trace denotes the distance 
between molecules A and C ( = −x xrAC 2 5 ), whereas the red trace corresponds to the distance between 
molecules A and B ( = −x xrAB 1 3 ). Initially, A and B are near their equilibrium distance (2) and C is far 
from A. We see a successful AB +​ C →​ AC +​ B event happening very soon (red trace is close to the equilibrium 
distance, then becomes large; cyan trace is large, then becomes small). The trace exhibits the bias towards a 
stable AC bond, since the cyan trace is close to equilibrium longer than the red trace.
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Figure 10.  Simple DNA transcription model. Free base nucleotides cannot bind with the DNA strand until 
RNA pol binds with the promoter. When RNA pol is bound to the promoter, the free nucleotides bind to the 
DNA strand ACTG sequentially from left to right. Once the complementary strand has formed, the RNA 
pol unbinds from the promoter and then the complementary strand can diffuse away. Once the RNA pol has 
diffused far enough away, the bonds between the complementary base pairs turn off and the complementary 
strand can diffuse away. Dashed arrows between sites denotes an active potential. The P blocks denote a 
phosphate group and the S blocks denote a sugar group.
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into the potential. Supplementary Movie 3 in the Supplementary Information shows one simulation of the DNA 
transcription.

Conclusions
We have developed and demonstrated a methodology and mathematical framework for obtaining an approxi-
mate interaction potential for a system which respects known coarse-level behavior. This methodology develops 
a semi-empirical model for the system by encoding the known coarse-level physics into logic functions that then 
modify simple pairwise potentials. Each logic function’s only role is to turn its associated pairwise potential on 
or off. A smooth multi-body interaction potential is obtained by replacing each logic function with a smoothed 
variant. The reader may wish to think of the resulting approximate potential as a linear combination of pair-
wise potentials where instead of the coefficients taking scalar values, they are encoding functions capturing the 
coarse-level logic.

Three relatively simple examples demonstrated our methodology: a simple inhibitor molecule mechanism, a 
chemical reaction with bond breaking, and a model inspired by DNA transcription. While these examples were 
simple and inspired by biophysical and chemistry applications, we stress that the methodology is quite general 
and not restricted to these application domains or only simple problems. Any system that is driven by a potential 
can utilize this methodology to its benefit.

The result of our procedure is the approximation of a complicated, high-dimensional potential with a 
lower-dimensional representation that still respects the relevant physics. A significant reduction in the dimen-
sionality of the system is possible; instead of accounting for every interaction between a large number of compo-
nents, we now only need as many variables as are needed to correctly model the coarse-level logic. In the bond 
breaking example, the potential capturing the logic was 8-dimensional, whereas the dimension of the configu-
rations space was 12. The same system modeled at the quantum level is much more complicated. Since the bond 
breaking event is the relevant physics, the reduced order model is accurate enough for this purpose.

With this dimensional reduction, the ability to accurately simulate large, complicated systems within a com-
putational design framework is feasible. The resultant models can be wrapped in an optimization loop as part of 
exploratory computational experiments, such as for the development of new drug therapies, or as part of an engi-
neering design loop. This in turn allows for the faster and cheaper development of new technologies and products.

We note that the developed framework can be potentially used in reverse: not for approximation to a given 
physical process with coarse-grained logic given, but for design of molecular processes with logic prescribed by a 
designer. This is achieved by providing to the designer the specifications of molecules that can carry the logic out.
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