
foods

Article

NIR Analysis of Intact Grape Berries: Chemical and Physical
Properties Prediction Using Multivariate Analysis

Teodora Basile * , Antonio Domenico Marsico and Rocco Perniola

����������
�������

Citation: Basile, T.; Marsico, A.D.;

Perniola, R. NIR Analysis of Intact

Grape Berries: Chemical and Physical

Properties Prediction Using

Multivariate Analysis. Foods 2021, 10,

113. https://doi.org/10.3390/foods

10010113

Received: 10 December 2020

Accepted: 4 January 2021

Published: 7 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Consiglio per la Ricerca in Agricoltura e L’analisidell’Economiaagrarian-Centro di RicercaViticoltura ed
Enolgia (CREA- VE), 148-70010 Turi (Ba), Italy; adomenico.marsico@crea.gov.it (A.D.M.);
rocco.perniola@crea.gov.it (R.P.)
* Correspondence: teodora.basile@crea.gov.it; Tel.: +39-080-8915711; Fax: +39-080-4512925

Abstract: Texture characteristics are valuable parameters in the perceived quality and overall ac-
ceptability of fresh fruit. The characterization of grape texture attributes, such as firmness and
crunchiness, is usually performed by sensory analysis or instrumental texture analysis. Both method-
ologies are destructive. Hence, it is not possible to test multiple times or perform any other analysis
on the same sample. In this article, near-infrared (NIR) spectroscopy was applied to intact berries of
table grape cv. Regal Seedless. NIR spectra were employed to predict both the physical parameter
“hardness”, which is correlated with the crunchiness of berry flesh and the sweetness, which is
correlated with the total soluble solids content (TSS, as ◦Brix). The chemometric analysis was carried
out exclusively based on an open-source software environment, producing results readily usable for
any operator, besides the specific level of experience with NIR spectroscopy.
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1. Introduction
1.1. Grape Texture Attributes

The production of table grapes with organoleptic properties positively perceived by
consumers is a primary objective for grape producers. Texture attributes are of primary
importance in the perceived quality and overall acceptability of fresh fruits. According
to consumer preference, crunchiness represents a major sensory quality trait of fresh
table grape. The assessment of pulp compactness and berry skin consistency is therefore
important to predict customer acceptance of the product [1]. Significant effort has been
spent in the development of instrumental techniques, involving penetration or puncture
and compression tests, which attempt to reproduce the mechanical operations of biting
or chewing, to quantitatively determine the mechanical properties of wine grapes and
table grapes, according to the sensory texture attributes [2]. The use of a texture analyzer
as a surveying analytical technique is often applied in the food sector, for both time and
economic reasons, providing more objective and standardized results [3]. In table grapes,
typical mechanical parameters instrumentally measured to define the textural quality of
whole berry and pulp are hardness, cohesiveness, gumminess, springiness, chewiness,
resilience, firmness, toughness, and stiffness, whereas those used to characterize berry
skin are hardness, stiffness, and thickness. Hardness, which is the measurement of the
force necessary to attain a given deformation was shown to be related to perceived flesh
crunchiness in grape berries [4]. The Regal Seedless variety used in this study is a table
grape characterized by very large crunchy berries with firm flesh, average sweet taste
(berry size 18–20 mm, ◦Brix 16–18), light green color, and a good shelf life [5].

1.2. NIR Spectroscopy

Near-infrared (NIR) spectroscopy is an analytical method suitable for the prediction of
both chemical and physical properties of samples, which allows simultaneous qualitative
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and accurate quantitative analysis of different parameters. One great advantage of this cost-
effective and non-destructive analytical method is the ease of sample handling (no sample
preparation) and the possibility to analyze samples in any aggregation state. It allows vari-
ous measurement modes that can be chosen based on the nature of the sample—reflection
(for solids, powders, granulate), transflection (for semi-solids, liquids, films, emulsions), or
transmission (for clean liquids). An NIR spectrum is composed of overlapping absorption
bands related to overtones and combination signals. A large amount of information is
hidden in this intricate superimposition of signals. A suitable analysis algorithm is then
required to extract the information [6]. A limitation of this technique is the requirement of a
large number of samples for a robust calibration of the model and after for maintenance of
a calibration routine for each specific application. The prediction of parameters with values
out of the training set range is also not possible. NIR spectroscopy is a secondary analytical
technique, which requires calibration against a reference method. Both the accuracy and
the precision of NIR models are governed by the accuracy and precision of the reference
(primary) method (i.e., the reference measured values of the training set) [7].

1.3. Prediction Models

NIR spectroscopy has a wide range of agri-food applications. The ability of NIR
spectroscopy to measure the quality attributes of fruits and vegetables was shown for many
products. Although modern NIR devices were recently developed with attention to their
simplification, by integrating user-friendly software for statistical processing and partial
automation of analysis, intending to allow less skillful users to routinely perform multiple
component quantification, NIR spectroscopy is not a technique without development
problems. Indeed, data complexity arising from NIR requires specific statistical analyses
and qualified operators [8]. In this article, NIR data were analyzed exclusively with the
R software. R is a programming language and a free software environment for statistical
computing and graphics. It not only implements a wide variety of statistical and graphical
technique with the support of R packages (collections of functions and data sets developed
by the community, which are continuously released and improved) but, moreover, gives
a researcher tools to create its own functions to perform any statistical analysis [9]. The
results of this work show how it is possible to obtain valuable results for predicting the
chemical and physical parameters from NIR spectra for difficult samples like intact grape
berries, exclusively using an open-source R software, leading to results readily usable for
any NIR operator, besides the specific level of experience.

2. Material and Methods
2.1. Grape Barriers Samples

Regal Seedless grape berries were collected during the 2018 vintage from the experi-
mental vineyards of CREA Research Centre for Viticulture and Enology of Turi, Southern
Italy (40◦ 57′ 26′ ′ N; 17◦ 00′ 26′ ′ E). Three blocks (namely blocks T1, T2, and T3) were iden-
tified in different areas of the vineyard. From each block, fifteen bunches were collected at
harvest. In the laboratory, berries from each bunch were sorted according to their density
by flotation in saline solution, following the procedure described by Rolle et al. [10]. Berries
with TSS between 16 and 17 ◦Brix were collected and subsequently divided according to
their equatorial diameter. For each block, three plastic bags containing 50 berries each,
were set up. Each plastic bag was covered with a plastic film and placed in a cold store at 0
◦C, until the analysis. From each plastic bag, about 30 berries were randomly picked and
left at room temperature (20◦C) for two hours, prior to the analysis. Each berry was shortly
washed with distilled water and gently tapped with paper, prior to NIR measurement.
After spectra acquisition for each berry, the Texture Profile Analysis (TPA) was measured,
followed by the total soluble solids measurement.
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2.2. NIR Spectra Measurements

A Bruker TANGO FT-NIR (Fourier Transform Near-Infrared) spectrometer was em-
ployed for spectra acquisition. In order to build FT-NIR calibration models for the investi-
gated parameters, after the NIR analysis, hundreds of samples of fresh Regal berries were
analyzed with the primary methods. For each berry, the FT-NIR spectra of the intact single
berry were recorded in the 12,000–4000 cm−1 (833–2500 nm) range on three different berry
faces. A background spectrum was automatically recorded, prior to each sample, while
both temperature and humidity were kept constant.

2.3. Instrumental Texture Analysis

For each berry, the Texture Profile Analysis (TPA) was measured using anXforceP
texture analyzer (Zwick/Roell GmbH &Co., Ulm, Germany), equipped with the Zwick
Roell software package (testXpert II Zwick/Roell, vers. 3.31 Ulm, Germany). The TPA
was obtained by performing on each berry at a double compression test. The berries were
placed in their equatorial position on a metal base (first probe) and compressed twice using
a 35 mm P/35 flat cylindrical probe (Stable Micro Systems) (second probe), under 20%
deformation, with a waiting time between the two compressions of 2 s and a test speed of
1 mm/s. From the force–time curve (Figure 1), values for hardness (N, as P1), springiness
(mm, as d), cohesiveness (adimensional, (A2 + A2w)/(A1 + A1w)), gumminess (N, as
hardness*cohesiveness), and chewiness (mJ, as gummines*springeness) were automatically
calculated by the software [11]. The equatorial diameters of the berry were also provided
by the software as the distance between the two probes when the second probe touched
the surface of the berry.
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2.4. Soluble Solids Measurements

After spectra acquisition and double compression tests, the total soluble solids content
(TSS, ◦Brix) was measured in triplicates at 20 ◦C, using a digital refractometer Atago PR1
(Atago Co., Tokyo, Japan).

2.5. Statistical Analysis

All statistical procedures described in detail in the following paragraphs, including
pre-treatments of the original spectra, outlier detection (principal component analysis,
PCA), calibration, cross validation, and external validation of prediction models (partial
least-squares PLS and interval partial least-squares iPLS regressions), were performed
using the open source R statistical software. R version 3.5.3 (11 March 2019) Copyright ©
2021 The R foundation for Statistical Computing, Venna, Austria [9]. The R packages used
were—mdatools [12], signals [13], ggbiplot [14], and ClassDiscovery [15].

3. Results and Discussion
3.1. NIR Spectra Pretreatments

Differences in the physical nature of the samples such as the non-homogeneous
distribution of particles, particle size differences, density variations, morphology (shape
and roughness) differences of the sample surface, result in sample-to-sample variations in
the overall path-length the photons have to travel before reaching the detector. Even small
physical differences lead to light scattering effects that influence the NIR spectra and result
in baseline shifts and scaling variations (intensity variations) [16]. Therefore, it is common
in NIR analysis of solid samples recorded in the reflectance mode to find variations in
spectral intensity, light scattering effects, path length variations, and baseline shifts in the
spectra due to particle size or particle size distribution, which together with other causes
of variations (instrumental effects such as random noise, changes in lamp intensity, and
detector response) can adversely affect the robustness and reliability of the analysis [17–19].
These alterations in the spectra can be detrimental to subsequent quantitative analysis,
leading to inaccurate predicted results. The pre-treatment of NIR original raw data is,
therefore, the first step prior to any model development and optimization [16]. An optimal
pre-treatment helps to eliminate interferences and facilitates information extraction from
NIR spectral data, allowing the building of a prediction model from a regression analysis,
characterized by the lowest statistical error [20]. There are several pre-processing methods
available for NIR spectra. The choice of the (or the combination of) specific pre-treatment
that can or should be applied requires an appropriate evaluation of the quality of the
raw data to be analyzed (e.g., baseline shifts, presence of nearby peaks, poor spectral
resolution, and so on) and the software that is used for data analysis [17]. In this article,
the pre-treatments were applied to the raw spectra using the library “signal” [13]. The pre-
processing techniques usually employed on NIR spectra, belong to two main categories—
scatter-correction methods (which are used to remove undesired spectral variations due
to light scatter effects and variations in effective path length) and spectral derivatives
(useful to emphasize pronounced, but small features, e.g., steep edges of a peak, over a
broad background, at the cost of increasing noise) [21]. In this study, the pretreatment
methods tested on the NIR raw spectra (n = 270) (Figure 2) were multiplicative scatter
correction (MSC) with or without smoothing, standard normal variate (SNV)with or
without smoothing (Figure 3), first order Savitzky–Golay derivative (SGD1), second order
Savitsky–Golay derivative (SGD2) (Figure 4), and their combination. Both MSC and SNV
pre-treatments were able to remove a large part of the variance from the original spectra
without distorting the spectral features.
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There is no unified method to define the parameters of the Savitzky–Golay filter, such
as the polynomial order, frame size, and the derivative order; usually, the choice is based
on a trial and error method. In this work, the multiple set of parameters employed was
based on previous data on similar samples, which were then employed on our samples
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as the starting point for a further optimization of the Savitzky–Golay filter parameters, as
explained in the following lines. In a previous article on grape juice, the best prediction
model for TSS (◦Brix), anthocyanins and total polyphenols was built with NIR spectra
pre-treated with an SGD1, with a window size of 15 (with or without SNV) [22]. Even if the
nature of our samples is quite different (i.e., the whole berry), we used this combination
of parameters as a starting point to estimate the optimal parameters of a Savitzky–Golay
smoothing filter. The purpose of smoothing is to get rid of random noise while (ideally)
preserving the true spectral signal, therefore, the optimal choice of smoothing parameters
allows having a reasonable estimate of the signal from the noise. After the application of
filters with different parameters, the noise level was evaluated on the portions of the spec-
trum thatwere devoid of important features (i.e., no peaks). If the noise increasedin those
regions of the spectrum, the combination of parameters used in the filter was discarded
(Figure 4 shows a comparison of SGD1 and SGD2 with different parameters). The optimal
parameters chosen were—first polynomial order and 31 frame size for the first derivative,
and third polynomial order and 31 frame size for the second derivative.
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Since the order of combined pre-treatments leads to different results [23], and the
Savitzky–Golay smoothing method allowed eliminating noises like baseline-drift, tilt,
reverse, and so on [24,25], therefore, the Savitzky–Golay filter was applied after SNV or
MSC treatments. It is known that MSC and SNV produce very similar resultsfor most
practical applications, especially when the average spectrum of the calibration set is used
as the reference spectrum in MSC [21], as it was performed on our spectra.A comparison of
SNV and MSC pre-processed spectra gave similar results, as shown in Figure 3. Since these
pre-treatments are closely related and the difference in prediction ability between the two
methods is very small, as shown by other authors [18], therefore, we used only MSC as
the scatter-correction method, prior to the derivatization. The following combinations of
pre-processing methods were performed on the raw spectra—MSC followed by Savitzky–
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Golay smoothing, MSC followed by first-order Savitzky–Golay derivative (MSC + SG1D),
MSC followed by second-order Savitzky–Golay derivative (MSC + SG2D) (Figure 5).
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3.2. NIR Spectra Analysis: Principal Component Analysis

In order to select an appropriate pre-treatment, PCA analyses on each pre-treated set
of spectra were performed. Different colors used for the samples reflected the randomized
block design (namely blocks T1, T2, and T3). PCA is a well-known unsupervised method
often used for dimensionality reduction of multivariate data [26] that is able to highlight
common features that allow to group samples with similar composition and thus under-
lying attributes, as shown in previous works [27,28]. In this article, a PCA analysis was
performed on all spectral regions of each different pre-processed spectra as a preliminary
exploratory tool, in order to verify the clustering of samples, to compose calibration and
external validation groups, and identify outliers (Figures 6–8). PCA was performed using
the built-in R functions princomp, which uses the Singular Values Decomposition (SVD)
method to compute PCA loadings. The pre-processing method in PCA analysis that re-
sulted in the best discrimination of samples was MSC, followed by smoothing, where two
principal components explained 87.6% of the total variance of the data; Table 1. In Figure
6C, a distinct separation of the sample in the plot that reflected the experimental design
(randomized block) was observed. Therefore, we selected MSC as the pre-treatment to use
on the spectra, since the cumulative amount of variance explained by the first two PCs for
MSC pre-treated spectra was also high (79.4%), without any net separation of the different
groups of samples, based on the experimental design. The loadings on the two PC’s for the
MSC pre-treated spectra are reported in Supplementary Materials Table S1.

Table 1. PCA analysis results of spectra with different pre-processing techniques.

Pretreatment Parameters PC1% PC2%

MSC - 51.6 27.8
SNV - 51.6 27.9
SGD1 1 31 1 28.8 15.2
SGD2 3 31 2 6.3 5

MSC+SG smoothing - 78.5 9.1
MSC+SGD1 1 31 1 25.1 14.8
MSC+SGD2 3 31 2 5.6 4.3
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After the identification of MSC as the optimal pre-treatment for our data, to ensure
the reliability of the dataset, it was necessary to identify and remove the outliers. The
presence of outliers is dangerous since even a small percentage of them can distort the
results and lead to a misleading outcome. Outlier detection for high dimensional data
becomes more complex for multivariate data. PCA could be used as an outlier detection
technique. Since this algorithm is computationally fast and robust in detecting outliers in
multivariate data, it is able to detect multiple outliers in high dimensional datasets [29].
Another way to detect outlier is the calculation of the Mahalanobis distance, which is
commonly used to determine multivariate outliers. Not only was PCA used to classify the
spectral data and determine outliers, but moreover, the outlier’s detection was performed
computing p-values associated with the Mahalanobis distance for each sample using the
ClassDiscovery package [15] Therefore, we compared the results of PCA and Mahalanobis
distance computation to find outliers in our dataset. Spectra named T1_5, T1_24, T2_11,
T2_12, T2_14, T2_15, T2_24, and T3_22 were identified as the sample outliers.
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3.3. Texture Data
3.3.1. Multivariate Calibration and Validation on “Hardness” Data

The data obtained from the primary methods for the test set (Table S2 in Supplemen-
tary Materials) were used together with the absorbance values for the entire wave number
axis (1899 values), to build a data frame used in the following analysis. The multivariate
calibration was performed using the partial least squares (PLS) regression, which uses
the so called “PLS components” that are determined to maximize the covariance between
the spectral data (independent variables) and the concentrations (dependent variables),
to create multivariate models using a linear combination of spectra wave numbers with
a given property of interest [20]. The PLS analysis was performed using the mdatools
package, in which the only algorithm implemented for PLS analysis was SIMPLS [12]. The
optimal number of components couldbe automatically selected using the RMSE values
calculated for the different number of components and through cross-validation predic-
tions. In order to detect and remove outliers prior to obtaining the final PLS model, the
procedure followed was the one described in Rodiova et al. (2020) [30]. The optimal
number of principal components for the PLS model was determined by performing a
leave-one-out cross-validation procedure. The mdatools package implemented several
methods for computing the critical limits for residual distances, a robust approach was first
used, since using classical estimators when data are contaminated with outliers might lead
to wrong estimators, therefore, in this case it was recommended to instead use a robust
version. The robust approach utilizes the median and inter-quartile range instead of mean
and standard deviation, and is insensitive to small and larger deviations [31]. After the
outlier’s detection and removal step, a classic approach, namely the data driven approach,
based on classical estimators (statistical moments), is used to build the final model [32].
Although some samples were detected as outliers with the PCA analysis, none of them was
detected as an outlier in the PLS. Some of the PCA outliers were found among the samples
identified as extremes in the residual plot (Figure 9: 5 is T1_5, 6 is T1_6, 41 is T2_11, 44 is
T2_14, 53 is T2_23, 78 is T3_18, and 82 is T3_22).
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Three PLS models were built—one with all MSC pretreated spectra, one removing the
PCA outliers (Figure 10), and one removing the extreme values (Figure 11). The model
built removing the PCA detected outliers gave the best results in terms of prediction
capability, which was evaluated by the root mean square error (RMSE), coefficient of
determination (R2), bias (average difference between the NIR-predicted values and the
measured or reference ones) and Residual Prediction Deviation (RPD) for calibration and
cross-validation (Table 2). The number of factors (called “ranks”) is a very important
parameter to evaluate the quality of a regression model. A low rank implies that the model
had a higher stability due to noise reduction. The three low-rank models (number of
component 4) indicated an effective removal of sparse noise from the NIR signal [33]. The
coefficient of determination gave the percentage of variance present in the component
values, which was reproduced in the prediction. A low R2 means an insufficient precision
of the reference data or the presence of outliers in the calibration dataset. Due to the
intrinsic complex nature of the solid samples, generally accepted good R2 values for solid
samples are lower than those for liquid samples (optimum was 90%). [34] Even so, the
values shown for PLS models were below 50%, describing models of insufficient quality.
Both RMSE for calibration and cross-validation were calculated for the three models. Not
only was there a very small difference in the RMSE values among the models but, moreover,
even the smallest one was over 2, which reflected the poor ability of the model to precisely
predict the hardness parameter. The library used to build the PLS model computed the
RPD (the standard deviation of observed values divided by the Root Mean Square Error
of Prediction (RMSEP)). The RPD takes both the prediction error and the variation of
observed values into account, providing a metric of model validity that is more objective
than the RMSEP and is more easily comparable across model validation studies. The
higher the RPD, the better the model’s predictive capacity. Even though some authors
established RPD values higher than 2 for satisfactory calibration models for prediction
purposes, the values ranging between 1.4 and 2.0 were indicative of fair models [35], and
the interpretation of the RPD was somewhat arbitrary with different thresholds for a good
model used in the literature [36]. However, its systematic use was criticized by several
authors, since using the standard deviation to represent the spread of a variable can be
misleading on a skewed dataset [37]. As bias is defined as the average difference between
the NIR-predicted value and the real value, it should be close to zero. Therefore, a positive
value means that, on average, the model over-estimated the composition of this amount,
while a negative value represented an underestimation. It must be underlined that there
are no acceptable values for any of the parameters listed above. They are better interpreted
and applied comparatively, rather than absolutely. The nature of the dataset (e.g., disperse
values, high standard deviation of measured data, and so on) greatly affect the quality of
the predicted outcome. For the PLS regression, however, even the best regression model, in
terms of R2 and RPD, showed that the data points did not fit well with the statistical model
(low R2) and were not able to accurately predict the reference values (RPD close to one),
with a slight underestimation of the actual values (negative bias).

Table 2. PLS model summary for “hardness” data.

Data Set Model X Cumexpvar Y Cumexpvar R2 RMSE Slope Bias RPD

Training set (all spectra)
nComp = 4

Cal 88.88688 50.56211 0.506 2.312 0.506 0.000 1.43
Cv NA NA 0.305 2.741 0.383 −0.0005 1.21

PCA outlier removal
nComp = 4

Cal 84.40549 55.65603 0.557 2.185 0.557 0.0000 1.51
Cv NA NA 0.327 2.692 0.423 −0.0468 1.23

Extreme values removal
nComp = 4

Cal 86.99243 53.71146 0.537 2.181 0.537 0.000 1.48
Cv NA NA 0.325 2.633 0.411 0.028 1.22

Number of selected components for all models—4; Cross-validation—full (leave-one-out); NA—not available.
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3.3.2. iPLS on “Hardness” Data

It was shown how a large number of variables in a dataset often results in an unreliable
prediction of the dependent variable. Chemometrics can be used for the selection of a small
number of relevant variables, which represent the most useful information contained in
the full spectra. In order to extract this useful information from the NIR spectra, different
variable selection methods could be performed [38]. Therefore, in order to improve the
predictive performance of the regression model, an interval partial least-squares (iPLS)
regression was implemented. The iPLS is a modelling procedure for variable selection
method, mostly used on spectroscopic data in which different intervals of the spectral
wavenumbers and their combinations are used to find the most relevant one for prediction
of a response variable [39]. The iPLS models were built (mdatools library) with a forward
iterative stepwise selection procedure on 15 intervals and a ten-fold venetian blind cross
validation—one using all spectra, one removing the PCA outliers, and another one remov-
ing the extreme samples.The iPLS variable selection results is shown in Figure 12, where
the bars represent the 15 intervals (the selected intervals are the 5 green ones), the height
of each bar corresponds to the RMSECV value for the local model made using variables
from this interval as predictors (first iteration), and within each bar, the number of PLS
components used in the local modelis reported. The mean spectrum is also reported in red,
while the dashed line shows error for the global model. The optimal number of principal
components for the iPLS models was determined using an automatic selection based on
the “Wold criterion”, which is based on a ratio between the PRESS values for the current
and the next component.

The iPLS models built using selected interval of wavelengths showed more satisfactory
parameters compared to the PLS models (Table 3 and Figure 13). The best predictive
resultswere obtained with an iPLS model (Table S3) built using all spectra in the training
set, with an increased fitting of the experimental data on the statistical model (R2 0.44 for
the best iPLS model compared to 0.32 for the best PLS model), better prediction of the
parameter (higher RPD: 1.30 for the best iPLS model compared to 1.23 for the best PLS
model), with a slight overestimation of the actual values (positive bias).

Table 3. iPLS models for the “hardness” parameter.

Data Set Model X Cumexpvar Y Cumexpvar R2 RMSE Slope Bias RPD

All training set
nComp = 4

initial
global
model

98.47121 47.09408 0.471 2.392 0.471 0.0000 1.38

final model NA NA 0.405 2.536 0.440 0.0176 1.30

PCA outlier removal
nComp = 3

initial
global
model

76.11868 43.80306 0.438 2.460 0.438 0.0000 1.34

final model NA NA 0.391 2.561 0.402 −0.0120 1.29

Extreme values removal
nComp = 3

initial
global
model

86.49316 40.5588 0.406 2.471 0.406 0.0000 1.31

final model NA NA 0.376 2.531 0.394 0.0412 1.27

nComp—number of selected components; NA—not available.

In order to estimate the overall prediction ability of the best iPLS model, it was
validated with a new set of samples. The samples in the test set were berries belonging
to the three blocks of the experimental randomized design, which were not used in the
calibration of the model, with “hardness” values included in the range of those of the
training set. The predicted values are shown in Figure 14. The overestimation of the
prediction model was more evident for the lower values of hardness. This could be
attributed to the small numerosity of berries with the smaller hardness values in training
the dataset, which resulted in a smaller contribution to the model.
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Both the accuracy and precision of a model obtained from the NIR data are strictly
linked to the accuracy and precision of the primary reference method used [7]. This meant
that low precision and or accuracy in the reference data strongly affect the prediction model
efficacy. For any quantitative measure, the knowledge of the uncertainty associated with
the measurement is essential for a correct interpretation of the results. Without uncertainty
information, results could be misinterpreted (e.g., observed differences are not only linked
to the experimental variability), which in turn, might lead to an incorrect evaluation of
the analysis outcome [40]. The precision of the instrumental measure of “hardness” was
determined for the densimetric-sorted berries (i.e., berries belonging to the same density
class). The standard deviation range of the measured values (SD 0.2–3.8) was consistent
with the values usually associated with the measure of this parameter using compression
testing machines as the primary reference methods by other authors (SD ranging from 0.7
to 3.2) [4]. Such high uncertainty values associated with the reference method negatively
affected the NIR analysis outcome. Usually, when dealing with primary methods with low
precision or accuracy, the best choice is to use another reference method. Unfortunately,
all methods used for texture analysis (sensory analysis and instrumental texture analysis)
are affected by strong uncertainty. Therefore, when evaluating the NIR outcome, we must
consider the nature of the input data used. The most commonly used statistical index that
accounts for the model reliability is the residual predictive deviation, which evaluates the
predictive accuracy. For the best iPLS prediction model, RPD was 1.30, which indicated
a fairly accurate model [35]. These results can be considered very good for the nature of
our dataset. The RPIQ (residual predictive interquartile amplitude, IQ/SECV) is another
index able to evaluate the predictive ability of the calibration models. It indicates that
the calibration models are satisfactory for prediction purposes when RPIQ > 2 [37,41].
For the best “hardness” model the RPIQ was >2 therefore, according to this criterion, the
calibration model developed for the “hardness” parameter on the whole berries could be
considered as good ones for the prediction of hardness values from unknown samples.

3.4. TSS Data
3.4.1. Multivariate Calibration and Validation on TSS Data

The procedure described in the previous paragraphs for the parameter “hardness” was
also followed for the TSS data. Since no outliers were detected with the robust approach
(Figure 15), the classic data driven approach was used to build the model and the optimal
number of components was automatically selected.

Two prediction models were built, one using all spectra and another byremoving the
PCA detected outliers (Table 4 and Figure 16). Since the removal of the extreme values did
not lead to any improvement in the prediction model, those spectra were not removed.

Table 4. PLS model (class pls) summary for the TSS data.

Data Set Model X Cumexpvar Y Cumexpvar R2 RMSE Slope Bias RPD

Training set (all spectra)
nComp = 6

Cal 91.90354 83.1635 0.832 0.663 0.832 0.0000 2.45
Cv NA NA 0.611 1.008 0.621 0.0158 1.61

PCA outlier removal
nComp = 7

Cal 91.34024 94.56569 0.946 0.371 0.946 0.0000 4.32
Cv NA NA 0.619 0.982 0.598 0.0415 1.63

nComp—number of selected components; Cross-validation—full (leave-one-out); NA—not available.
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3.4.2. iPLS on TSS Data

The TSS prediction models built with PLS regression were improved in terms of both
accuracy and predictability, using the iPLS analysis (forward method) with venetian blinds
validation on 15 intervals. The iPLS variable selection results are reported in Figure 17.
The five components iPLS model obtained after PCA outliers removal using seven selected
intervals, showed a better prediction capability. Indeed, the best regression model showed
a good fit of the experimental data (R2), it was able to accurately predict the reference
values (RMSEP), and had a high RPD (RPD >2 indicate satisfactory calibration models for
prediction purposes) [35] with a good estimation of the values (bias close to zero) (Table 5).
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Table 5. iPLS models for TSS data.

Data Set Model X Cumexpvar Y Cumexpvar R2 RMSE Slope Bias RPD

Training set (all spectra)
nComp = 4

Cal 95.33922 82.98385 0.830 0.667 0.830 0.0000 2.44
Cv NA NA 0.659 0.943 0.615 0.0145 1.72

PCA outlier removal
nComp = 5

Cal 95.69764 87.0354 0.870 0.573 0.870 0.0000 2.79
Cv NA NA 0.701 0.870 0.655 0.0191 1.84

nComp—number of selected components; NA—not available.

The iPLS model showed a better predictability, and thus was used for the external
validation on the same test set used for the “hardness” parameter. The model built with the
external validation set showed a good fit (Figure 18). As reported in previous articles, NIR
technology is not appropriate for the measurement of internal qualities in fruits with thick
skin (e.g., passion fruit) or heterogeneous internal structure (e.g., tomatoes). This result was
shown for fruit quality attributes such as sugars or acids, which are routinely measured
with high accuracy using NIR spectroscopy on other fruits [42]. Our results conform with
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these findings, showing a difference between the NIR-predicted values and the measured
values. This result could be mainly attributed to the low depth of penetration of the NIR
radiation, which is more evident on the solid non-homogeneous samples.
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4. Conclusions

The objective of this research was the analysis of intact table grape berries in terms of
both texture-related (crunchiness as textural hardness) and chemical-related (sweetness
as TSS) parameters, using NIR spectroscopy. These specific parameters were investigated
due to their importance in customer’s acceptance of fresh table grape. Standard analysis
techniques for texture characteristics of fresh fruits are destructive ones, which prevents any
further analysis of the sample. NIR spectroscopy is a non-destructive methodology often
used for fruit and vegetables. In NIR analysis, a change in concentration of an NIR-active
compound modifies the spectrum, allowing to correlate the amount of that compound (or a
class of structurally similar compounds, e.g., sugars) to the modification observed. Indeed,
NIR analysis shows an optimal prediction for parameters linked to chemical compounds
present in the sample. The prediction of properties not directly connected to a chemical
compound or a class of compounds but rather to a combination of different components is
not simple. This difficulty increases when dealing with non-homogenous samples such
as intact fresh fruit samples. Our results show that it is possible to obtain information
on texture-related parameters on fresh fruits, using adequate chemometric techniques.
NIR spectra were recorded in the spectral region of 12,000–4000 cm−1 (833–2500 nm),
using a set of hundreds of berries. Several pre-treatments of the original spectra were
applied to the raw spectra and the best pre-treatment (i.e., MSC) was selected based on
the amount of variability explained in a PCA analysis. Moreover, outlier samples in the
PCA were identified based on the Mahalanobis distance. A PLS analysis was applied to
MSC pre-processed spectra using different training sets—all recorded spectra, after the
removal of those recognized as outliers in the PCA or removing the spectra that were
extreme, by considering the PLS critical limits. To improve the predictability of the models,
interval partial least square (iPLS) models were also built on the same three training sets.
The predictability of the best iPLS model was confirmed by external validation by an
independent test set. The same procedure was followed for both texture and chemical
data. The NIR analysis of the investigated texture parameter provided models with less
satisfactory performance statistics compared to the TSS one. Given the accuracy and
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precision of the reference method employed, the regression model was able to satisfactorily
predict the “hardness” parameter (residual predictive interquartile amplitude, RPIQ >
2). According to our results, NIR technology appears to be a promising technique for
both predicting the compositional parameters and obtaining information concerning the
physical parameters in table grape, which would allow the application of efficient and low-
cost instruments for the fruit industry. Both PLS and iPLS analysis are widely used in NIR
analysis to search for the linear relationships between the measured and predicted values.
To achieve a better prediction for the physical parameters, other types of relationships
could be investigated. Ongoing studies are evaluating the predictive ability of non-linear
models (e.g., as artificial neural networks, ANN) with newly released R packages.
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standard error, p-values, and t-values for best iPLS on “hardness” parameter (ncomp = 4).
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