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The growing interest in neurorobotics has led to a proliferation of heterogeneous

neurophysiological-based applications controlling a variety of robotic devices. Although

recent years have seen great advances in this technology, the integration between human

neural interfaces and robotics is still limited, making evident the necessity of creating a

standardized research framework bridging the gap between neuroscience and robotics.

This perspective paper presents Robot Operating System (ROS)-Neuro, an open-source

framework for neurorobotic applications based on ROS. ROS-Neuro aims to facilitate

the software distribution, the repeatability of the experimental results, and support the

birth of a new community focused on neuro-driven robotics. In addition, the exploitation

of Robot Operating System (ROS) infrastructure guarantees stability, reliability, and

robustness, which represent fundamental aspects to enhance the translational impact of

this technology. We suggest that ROS-Neuro might be the future development platform

for the flourishing of a new generation of neurorobots to promote the rehabilitation, the

inclusion, and the independence of people with disabilities in their everyday life.
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1. INTRODUCTION

The last few years have seen a growing interest in the topic of neural human-machine
interfaces as a novel—potentially groundbreaking—interactionmodality between users and robotic
devices. In these interfaces, neurophysiological signals are acquired in real-time [e.g., from
electroencephalography (EEG) or from electromyography (EMG)], processed with minimum
delay, and translated into commands for the external actuators. Based on this workflow, researchers
have demonstrated the feasibility and the potentiality of this innovation, in particular for those
people suffering from severe motor disabilities (Kennedy and Bakay, 1998; Hochberg et al., 2012;
Aflalo et al., 2015; Chaudhary et al., 2016; Tonin andMillán, 2021). For instance, the latest advances
in the brain-machine interface (BMI) showed the possibility to exploit brain signals (acquired with
invasive or non-invasive techniques) to control telepresence robots, powered wheelchairs, robotic
arms, and upper/lower-limb exoskeletons (Iez et al., 2010; Leeb et al., 2013, 2015; Liu et al., 2017,
2018; Edelman et al., 2019). In parallel, systems relying on residual motor functions demonstrated
that EMG signals can be re-interpreted and used to precisely drive robotic arms in amputees (Farrell
andWeir, 2008; Castellini et al., 2009; Cipriani et al., 2011; Borton et al., 2013; Parajuli et al., 2019),
to initiate the walking pattern in lower-limb exoskeletons (Sylos-Labini et al., 2014; De Luca et al.,
2019) or to support reaching and grasping tasks with upper-limb exoskeletons (Batzianoulis et al.,
2017, 2018; Betti et al., 2018).
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However, despite such an emerging and promising trend,
the full potential of the field is still unrevealed. Among the
multifaceted and multidisciplinary aspects belonging to the
neurorobotics challenge, herein we propose an engineering
perspective on the development of neural driven robotic devices.
In this regard, we highlight three current drawbacks that
are conceptually and technically narrowing the field: first, the
community suffers from the lack of a common development
platform to spread the latest advances, to consolidate prototypes,
and to compare results among different research groups. Second,
there has been an abundance of home-made solutions that
inevitably led to a heterogeneity of technical approaches to the
same problems and to an absence of standards, making the
reuse of already developed and well-tested code problematic.
Finally, recent research trends keep considering robotic devices
asmere passive actuators of users’ intentions bymostly neglecting
the potential benefits of including robotic artificial intelligence
in the decoding workflow. Furthermore, we speculate that
the lack of technical tools (e.g., a common development
ecosystem) might also conceptually affect the direction of the
current neurorobotics research by slowing down the necessary
integration between neural interfaces and robotics. It is worth
mentioning that a variety of open-source platforms already
exists in the neurorobotics field to acquire, process, and decode
neurophysiological signals (e.g., LSL, BCI2000, OpenViBE, TOBI
Common Implementation Platform, BioSig, BCILAB, BCI++,
xBCI, BF++, PMW, and VETA Brunner et al., 2012; Stegman
et al., 2020). Although each software has specific features and
advantages, they only partially face all the aforementioned
challenges. Furthermore, to the best of our knowledge, neither
of them explicitly targets the integration of robotic platforms nor
do they provide out-of-the-box solutions to directly interact with
external devices.

In the current scenario, we firmly believe in the urgency of
a common and open-source research framework for the future
development of the neurorobotic field. Hence, we spotlight Robot
Operating System (ROS)-Neuro, the first middleware explicitly
devised to treat the multidisciplinary facets of neurorobotics with
the same level of importance, to promote a holistic approach to
the field, and to foster the research of a new generation of neural
driven robotic devices.

2. ROS-NEURO MIDDLEWARE

2.1. Overview
ROS-Neuro has been designed to represent the first open-source
neurorobotic middleware that places human neural interfaces
and robotic systems at the same conceptual and implementation
level. ROS-Neuro is an extension of ROS that for many years
is considered the standard platform for robotics (Quigley et al.,
2009). One of the strengths of ROS is its modularity and the
possibility for different research groups to develop stand-alone
components all relying on the same standard communication
infrastructure. A similar requirement is a cornerstone for
the workflow of any closed-loop neural interface where—
for instance—acquisition, processing, and decoding methods
should run in parallel in order to provide a continuous/discrete

control signal to drive the robotic device. ROS-Neuro not only
exploits such modular design but also provides several standard
interfaces to acquire neurophysiological signals from different
commercial devices to process EEG and EMG signals with
traditional methods and to classify data with common machine
learning algorithms. As in the case of ROS, the aim of ROS-
Neuro is to allow the development of neurorobotic applications
among different research groups as well as the possibility to
easily compare heterogeneous methodological approaches and
to rely and evaluate solutions proposed by others. This is
guaranteed by its multi-process architecture where several stand-
alone executables can coexist and can communicate through
the provided network infrastructure. Moreover, each of these
processes can be easily exchanged between research groups with
the only requirement of sharing the same interface. The concept
of ROS-Neuro has been introduced for the first time in Beraldo
et al. (2018b) and in the following years, authors implemented
and carefully tested packages to acquire, record, process, and
visualize EEG and EMG data (Tonin et al., 2019; Beraldo et al.,
2020). The aim of this contribution is to present ROS-Neuro to
the community by providing a description of its main features
and potentialities.

2.2. Abstraction, Modularity, and Parallel
Architecture
Robotic applications and human neural interfaces share several
similarities in the technical and implementation workflow. As
robotics is traditionally based on the interactions between
perception and planning and action, neural interfaces
rely on the acquisition, processing, and classification
closed-loop where the human plays the twofold role of
generating the input signals and monitoring (as well as
adapting to) the results of the decoding. Tonin and Millán
(2021). ROS-Neuro generalizes such an architecture by
providing modules to gather neurophysiological signals
(rosneuro_acquisition package), to record the
acquired data (rosneuro_recorder), to process and
decode it (rosneuro_buffers, rosneuro_filters,
rosneuro_processing), and to finally infer the intention of
the user (rosneuro_decisionmaking). As in the case of the
packages available in the ROS ecosystem, thesemodules represent
generic interfaces that neither depends on specific hardware
devices nor on particular processing methods. For instance,
rosneuro_acquisition package is designed to work with
plugins that can support different EEG/EMG devices and that
can be independently developed (and shared) by any research
group according to their needs. However, it is worth mentioning
that ROS-Neuro already provides plugins that interface with
the most used commercial acquisition systems (e.g., g.Tec,
BioSemi, ANTNeuro, Cognionics). Similarly, packages like
rosneuro_buffers and rosneuro_filters implement
widely commonly used methods to process neural data such
as spatial filters, DC removal algorithms, and windowing that
can be easily extended and integrated with custom solutions
provided by researchers. Table 1 lists the acquisition systems
(hardware devices and software platforms) compatible with
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TABLE 1 | List of acquisition devices and platforms currently compatible with the rosneuro_acquisition package and the file formats supported by the

rosneuro_recorder.

Hardware Company Driver Plugin Status

rosneuro_acquisition

BioSemi ActiveTwo BioSemi free rosneuro::EGDDevice Tested

MindWave Headsets Neurosky free rosneuro::EGDDevice Untested

Bittium NeurOne Bittium free rosneuro::EGDDevice Untested

g.USBamp g.Tec proprietary rosneuro::EGDDevice Tested

g.NEEDaccess g.Tex proprietary rosneuro::EGDDevice Untested

BitBrain EEG BitBrain proprietary rosneuro::EGDDevice Untested

DSI-24 Wearable Sensing proprietary rosneuro::EGDDevice Tested

CGX Quick-20 Cognionics proprietary rosneuro::EGDDevice Tested

eego sport and mylab AntNeuro proprietary rosneuro::EGDDevice Tested

Ultracortex Mark IV OpenBCI free rosneuro::LSLDevice Tested

LabStreaming layer / free rosneuro::LSLDevice Tested

Tobi Interface A / free rosneuro::EGDDevice Untested

General data format (GDF) file / free rosneuro::EGDDevice Tested

BioSemi data format (BDF) file / free rosneuro::EGDDevice Tested

File format Company Driver Status

rosneuro_recorder

General data format (GDF) / free Tested

BioSemi data format (BDF) BioSemi free Tested

Filter Type Class Status

rosneuro_filters

DC removal Temporal rosneuro::Dc<T> Tested

Common Average Reference Spatial rosneuro::Car<T> Tested

Laplacian derivation Spatial rosneuro::Laplacian<T> Tested

Blackman Windowing rosneuro::Blackman<T> Tested

Flattop Windowing rosneuro::Flattop<T> Tested

Hamming Windowing rosneuro::Hamming<T> Tested

Hann Windowing rosneuro::Hann<T> Tested

Buffer Type Class Status

rosneuro_buffers

RingBuffer FIFO rosneuro::RingBuffer<T> Tested

Application Type Status

rosneuro_visualizer

neuroviz Temporal scope Tested

The table also provides the filters and buffers available in the rosneuro_filters and rosneuro_buffers packages. It is worth noticing that both filters and buffers can be

easily concatenated via configuration file [please refer to FilterChain in Robot Operating System (ROS)]. Finally, neuroviz application is listed—the electroencephalography

(EEG)/electromyography (EMG) scope provided by the rosneuro_visualizer package. In the last column, Untested status means that the related hardware is technically supported

by the plugin but it was not possible to test it.

ROS-Neuro and the supported file formats to store the acquired
data. Furthermore, the filters, buffers, and the application scope
provided by ROS-Neuro are reported.

Another feature of ROS-Neuro is the possibility to
conveniently implement parallel pipelines with the minimum
developing effort. This is of particular interest for many
emerging aspects of hybrid neural interfaces. On the one hand,

these interfaces are designed to simultaneously acquire, process,
and fuse together heterogeneous neurophysiological signals from
several sources [e.g., EEG, EMG, electrooculography (EOG)] in
order to improve the robustness of the whole system (Müller-
Putz et al., 2011). On the other, they can rely on different
processing workflows to decode concurrent tasks performed by
the user. In both cases, ROS-Neuro already exploits the ROS
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optimized communication infrastructure and it can rely on
built-in solutions to synchronize and align data streams from
different processes (e.g., hardware-based trigger) (Bilucaglia
et al., 2020). This enormously facilitates the implementation of
interfaces where—for instance—multiple acquisition processes
are instantiated to simultaneously gather EEG and EMG signals
(Figure 1). Then, specific processing may be applied to EEG
in order to decode the intention of the user to reach an object
with a robotic arm or an upper-limb exoskeleton; at the same
time, residual muscular activity may be exploited to distinguish
the type of grasping. Furthermore, brain signals can be also
analyzed in conjunction with environmental information in
order to recognize potential erroneous actions performed by
the neuroprosthesis.

2.3. Standard Messages and
Communication
The rapid growth of the neurorobotics field, and in particular, of
human neural interfaces has led to the heterogeneity of technical
solutions. In this scenario, one of the main limitations of current
developing frameworks is the custom approaches to sharing
information between the different modules composing the
closed-loop implementation of neural interfaces. Traditionally,
each research group relies on its own data structures to
represent neurophysiological data and custom-made network
infrastructures to implement the communication between the
several processing steps. Such a lack of a common approach
strongly downplays the impact of the technology by limiting the
possibility to share developing tools, to exploit solutions already
implemented, and to replicate results achieved by different
research groups.

ROS-Neuro provides standard messages to exchange data
structures between the modules usually implemented within
neurorobotics applications. Moreover, messages are available
to all modules by the ROS network infrastructure-based peer-
to-peer communication mechanisms. Data acquired by the
rosneuro_acquisition is streamed as NeuroFrame
messages within the ecosystem (Figure 1), where several
modules can subscribe to the stream at the same time
and concurrently process the messages in order to extract
and decode heterogeneous features from neurophysiological
signals. Similarly, the output of the decoder is translated into
NeuroPrediction messages that can be exploited to directly
control the robotic application or to be further processed.
Furthermore, it is worth mentioning that ROS allows to quickly
extend the interface of any message without the need for coding
in order to handle specific, application-related requirements.
As a consequence, ROS-Neuro not only offers the possibility
to conveniently compare different methodological approaches
even during closed-loop operations but also to effortlessly
distribute implementation solutions among different research
groups with the only requirement of providing the standard
message interface.

2.4. Robotic Devices
The straightforward integration between neural interfaces and
external actuators is the most evident advantage of ROS-Neuro

middleware. Traditionally, the inclusion of robotic devices has
been considered a pure technical challenge, and thus, a variety
of home-made solutions has been adopted to deliver the output
of the neural interface to the robot ecosystem. However, the
drawback of this approach is twofold: first, from an engineering
perspective, custom solutions are often not optimized and
efficient with the consequence of an increased risk of technical
faults. Second, the communication stream between neural
interfaces and robotic devices is usually limited to a single uni-
dimensional control signal. This definitely narrows the research
on new human-machine interaction (HMI) modalities and the
introduction of bidirectional communication with the robot to
enhance the robustness and the reliability of the whole system.
For instance, a robot’s intelligence may provide information
about the operational context to the neural interface in order to
modulate the velocity of the decoder response, thus facilitating
the control or preventing the delivery of an erroneous command
according to the current situation. Thus, the level of autonomy of
the neurorobotic device may be changed in the case, for example,
a smart wheelchair crosses a narrow passage or a robotic hand
attempts to grasp an unusual-shaped object (Figure 1).

By construction, ROS-Neuro explicitly provides such a
common and bidirectional communication between the neural
interface workflow and the robotic intelligence by exploiting
the ROS ecosystem and the several packages already available
in the ROS community. Furthermore, the reliability and
robustness of the communication is guaranteed by the ROS
network infrastructure by reducing the likelihood of technical
shortcomings and malfunctions.

3. EVALUATION OF ROS-NEURO: THE
CYBATHLON EVENT

ROS-Neuro has been evaluated by using different hardware
devices (e.g., a variety of commercial EEG/EMG amplifiers and
various robotic platforms Beraldo et al., 2018a,b, 2020; Tonin
et al., 2019) during several experiments. In all cases, ROS-Neuro
demonstrated its flexibility, reliability, and robustness. However,
the most critical stress test for ROS-Neuro has been the usage
for the Cybathlon events (Wolf and Riener, 2018). Cybathlon is
the first neurorobotic championship where several international
teams from all over the world competed in different disciplines:
from races with lower and upper limb prostheses to races with
wheelchairs and exoskeletons. The ultimate goal of Cybathlon
is to foster the research and development of daily-life solutions
for people with disabilities. In this context, one of the most
challenging disciplines was the BCI Race1 where pilots with a
severe motor disability (i.e., inclusion criteria ASIA-C) exploited
a non-invasive BMI to control an avatar on the screen during a
virtual race. Authors participated in the Cybathlon BCI Series
2019 and the Cybathlon 2020 Global Edition with theWHi Team
composed of researchers from the University of Padua (Italy).
In these periods and in the related longitudinal training of the
pilot, ROS-Neuro has been extensively used and tested. In both

1https://cybathlon.ethz.ch/en/event/disciplines/bci
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FIGURE 1 | A schematic representation of a hybrid, multi-process implementation of a neural interface with Robot Operating System (ROS)-Neuro. Two acquisition

systems are used in parallel to acquire (and record) EEG and EMG data (blue and cyan boxes). An additional interface can be added to record the data stream from

the LSL device (dashed cyan box). Data is made available in the eeg/neurodata and emg/neurodata communication channels as NeuroFrame messages to all

the other modules. In the example, four different workflows work in parallel (green boxes) to detect resting state, motion intention, to monitor the behavior of the

system from EEG signals, and to classify residual muscular activity from EMG data. An additional processing module can be added by exploiting the ROS-Neuro

MATLAB interface (dashed green box). The output of the processing workflows is published as NeuroPrediction messages in the prediction/*/raw. A

decision making module (purple box) reads the predicted outputs and generates a proper control signal for the robotic device. Such a signal can be also used to

provide feedback to the user. In parallel, computer vision algorithms and ROS navigation packages (red and yellow boxes) not only take care of controlling the robot

but also provide environmental information for the EEG workflows (red and blue arrows).

editions, the WHi Team won the gold medal by awarding the
race records. Most importantly, ROS-Neuro was confirmed to
be reliable and robust during the whole training and, especially,
in the demanding conditions of the event. Neither technical
faults nor difficulties or glitches during the interface with the
official Cybathlon infrastructure (for connecting to the virtual
race) have been reported. We speculate that the efficiency, the
flexibility, and the performance of ROS-Neuro were one of the
key reasons (among others) for the success of the WHi Team at
the Cybathlon.

4. DISCUSSION

Recent evidence in literature highlighted the importance of
reconsidering the current approach to neurorobotics in order
to enhance the reliability of neural driven robotic devices, and
thus, foster the translational impact and the daily usage of the
technology (Perdikis et al., 2018; Perdikis and Millán, 2020;

Tonin and Millán, 2021). In particular, the research community
started following a more holistic approach by investigating the
mutual interactions between the actors of the system, i.e., the
user, the decoder, and the robotic device. For instance, several
studies have demonstrated the key role of mutual learning
between user and decoder to facilitate the acquisition of BMI
skills and enhance the reliability of BMI-driven devices (Perdikis
and Millán, 2020). Similarly, it has been shown that a neural
interface explicitly designed to promote the interaction between
user and robotic intelligence can support a more natural
and efficient control of the device (Tonin et al., 2020). In
this scenario, we speculate that ROS-Neuro might offer the
technical counterpart of this new research direction by not
only allowing to develop the neural interface workflow and
the robotic intelligence within the same ecosystem but also by
guaranteeing high performance and strong robustness of the
whole application.

Although we previously pinpointed ROS-Neuro features with
respect to the current platforms available in the community,
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it is worth mentioning that it should not be considered a
direct competitor. Indeed, ROS-Neuro represents uniqueness
in the neurorobotics field with the explicit aim of integrating
neural interfaces and robotics by exploiting the advantages
of both fields. Furthermore, current development frameworks
to acquire neural signals can easily be included in the
ROS-Neuro infrastructure, for instance, plugin to connect
LSL is already implemented and available in the public
repository to incorporate external information streams into the
ROS-Neuro ecosystem.

ROS-Neuro is distributed as an open-source project, and it
is available on GitHub2. As in the case of ROS, the success
of ROS-Neuro strictly depends on the creation of a wide
community disseminating the latest developments and including
the multidisciplinary needs of the different research groups. It is
our opinion that ROS-Neuro represents the only way to achieve a
robust and flexible ecosystem, to review and evaluate alternative
approaches, and, finally, to boost neurorobotics technology.
ROS-Neuro supports the development of packages in C++
and Python, and we acknowledge that this might hinder the
approach to the platform, especially if researchers are used
to working with GUI-based software (e.g., OpenVibe). For
this reason, ROS-Neuro already provides a MATLAB interface
(rosneuro_matlab) in order to facilitate the integration
with toolboxes widely spread in the community and to mitigate
the effort of those people not used to such programming
languages. Nevertheless, we consider that this is a small price
to pay in comparison with the advantages in terms of reliability,
performance, and integration that ROS-Neuro can offer.

Finally, the current version of ROS-Neuro is fully based
on ROS 1 LTS (ROS Noetic Ninjemys)3, and thus, it works
on Ubuntu Linux operating systems only. However, in a few
years, the community started the development of ROS 2 that—

2https://github.com/rosneuro
3https://www.ros.org/

among several changes—is the first multi-platform version of
ROS (i.e., on Ubuntu Linux, MacOS, and Windows 10). The
transition of ROS-Neuro from ROS 1 to ROS 2 has already been
scheduled to expand the base of potential users of ROS-Neuro.
Nevertheless, the effort to develop and maintain both versions
can be demanding, and it would be beneficial to have the support
of the whole community.

In conclusion, we firmly believe that ROS-Neuro might be the
future development platform for neurorobotics. Furthermore, as
in the case of ROS, it might represent the starting point for
the creation of a flourishing research community to foster the
translational impact of neurorobotics technology.
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