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ABSTRACT:
Evasion of death receptor ligand-induced apoptosis contributs to cancer development 
and progression. To better understand mechanisms conferring resistance to death 
ligands, we screened an siRNA library to identify sequences that sensitize resistant 
cells to fas activating antibody (CH-11). From this screen, we identified the Sterol-
Regulatory Element-Binding Protein 1 (SREBP1), a transcription factor, which 
regulates genes involved in cholesterol and fatty acid synthesis including fatty acid 
synthase. Inhibition of SREBP1 sensitized PPC-1 and HeLa to the death receptor 
ligands CH-11 and TRAIL. In contrast, DU145 prostate cancer cells that are resistant 
to death ligands despite expressing the receptors on their cell surface remained 
resistant to CH-11 and TRAIL after knockdown of SREBP1.  Consistent with the effects 
on cell viability, the addition of CH-11 activated caspases 3 and 8 in HeLa but not DU145 
cells with silenced SREBP1. We demonstrated that knockdown of SREBP1 produced a 
marked decrease in fatty acid synthase expression. Furthermore, genetic or chemical 
inhibition of fatty acid synthase with shRNA or orlistat, respectively, recapitulated 
the effects of SREBP1 inhibition and sensitized HeLa but not DU145 cells to CH-11 
and TRAIL. Sensitization to death receptor ligands by inhibition of fatty acid synthase 
was associated with activation of caspase 8 prior to caspase 9. Neither silencing of 
SREBP1 or fatty acid synthase changed basal expression of the core death receptor 
components Fas, caspase 8, FADD, caspase 3 or FLIP. Thus, inhibition of SREBP1 or 
its downstream target fatty acid synthase sensitizes resistant cells to death ligands.

INTRODUCTION

Effector caspases can be activated through several 
mechanisms including the death receptor pathway. In this 
pathway, death receptor ligands such as Fas ligand (FasL) 
and TNF-related apoptosis-inducing ligand (TRAIL) 
bind cell surface receptors leading to the dimerization 
and activation of the upstream caspase, caspase-8 
with the aid of the adapter protein, FADD. Activated 
caspase-8 then cleaves and activates caspase-3 with or 
without amplification through the mitochondrial pathway 
of caspase activation [1-3]. Defects in this signaling 
pathway can render cells resistant to death receptor 
ligands and render malignant cells resistant to TRAIL, 
thereby limiting the clinical efficacy of this experimental 

therapeutic agent. 
Previous studies by our group and others have 

demonstrated that over-expression of the caspase-8 
inhibitor FLIP overcomes resistance to death receptor 
ligands [4-8] and chemical or genetic inhibition of FLIP 
restores sensitivity to death ligands in some cell lines [8-
12]. In other in vitro models, resistance to death receptor 
ligands has been attributed to over-expression of FAP-1, 
the protein-tyrosine phosphatase which interacts with Fas 
and prevents Fas translocation to the cell surface [13-14]. 
Alternatively, resistance to death ligands has been also 
linked to somatic mutations in caspase 8 [15-17].

To identify additional strategies to overcome 
resistance to death receptor stimuli, we screened an 
siRNA library to identify sequences that sensitize resistant 
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cells to CH-11. From this screen, we identified the Sterol-
Regulatory Element-Binding Protein1, SREBP1. This 
gene encodes a transcription factor that binds to the sterol 
regulatory element-1 (SRE1), thereby regulating multiple 
genes involved in fatty acid and sterol biosynthesis 
including fatty acid synthase and HMGCoA reductase 
[18-19]. Here, we demonstrated that silencing of SREBP1 
restored sensitivity to CH-11 and TRAIL through a 
mechanism at least partly related to inhibition of fatty acid 
synthase expression. Thus, this study highlights novel 
mechanisms to overcome resistance to death receptor 
ligands.

RESULTS 

Identification of siRNA that sensitize resistant 
cells to CH-11

To identify genetic targets whose inhibition restores 
sensitivity to death receptor ligands, a cell-based high 
throughput screen was performed using the FasL and 
TRAIL-resistant prostate cancer cell line PPC-1 and the 
commercially available Dharmacon siRNA library of 
6080 SMARTpools. Screens were performed in 96 well 
plates to which siRNA were added at 40nM followed 
6 hours later by the addition of agonistic anti-Fas 
monoclonal antibody (CH-11) (50 ng/mL). Cell viability 
was measured 24 hours after siRNA transfection by MTS 
assay. Each plate included controls of untreated cells, 
cells treated only with CH-11, and cells transfected with 
siRNA control. From this screen, we identified 64 genes 
(1%) that decreased viability at least 3 standard deviation 
away from the mean B score of the entire population of 
tested siRNA. These 64 siRNA were retested in secondary 
assays. Twenty of the 64 hits were reproducible on repeat 
testing and induced cell death in the presence of CH-11. 
These 20 siRNA sequences were retested in the presence 

Figure 1: Genetic silencing of SREBP1 sensitizes resistant cells to CH-11. 
A) PPC-1 cells were transfected with four individual siRNA duplexes targeting SREBP1, the Dharmacon SMARTpool or 
control sequences (final concentration 40nM).  Six hours after transfection, cells were treated with CH-11 (50 ng/mL) or buffer control 
for 18 hours. After incubation, cell growth and viability was measured with the MTS assay. Data represent the mean + SD of a representative 
experiment performed in triplicate (* p<0.05, Student t test).
 B) SREBP1 mRNA expression was measured relative to 18S RNA by real-time RT-PCR.  Data points represent the mean ± 
SD percent of SREBP1/18S expression relative to controls (ΔΔCT normalization) from independent experiments performed in triplicate. (** 
p<0.01, Student t test).
 C) PPC-1 cells were transfected with SREBP1 SMARTpool siRNA or control sequences.  24 hours after transfection, total 
cellular proteins were isolated and analyzed by SDS-PAGE immunoblotting using antibodies against SREBP1 and tubulin.
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and absence of CH-11 to identify FasL sensitizers. Of 
these 20 siRNA sequences, 2 sequences reduced cell 
viability in the presence of CH-11 > 50% compared to 
cells treated with control buffer. The other 18 had lesser 
degrees of sensitization. Of these 2 sequences, one was 
FLIP (65% reduction in viability in the presence of CH-
11) and the other was SREBP1 (57% reduction in viability 
in the presence of CH-11). Previously, we demonstrated 
that chemical or genetic knockdown of FLIP sensitizes 
resistant cells to CH-11 [8], thus, validating the efficacy 
of our siRNA screen. Therefore, we investigated SREBP1 
as a potential FasL sensitizer. 

Silencing of SREBP1 sensitizes resistant tumor 
cells to death receptor ligands

Having identified SREBP1 in our siRNA screen, 
we tested the ability of four individual siRNA duplexes 
targeting SREBP1 to sensitize cells to CH-11. All 4 of 

the individual duplexes as well as the pooled siRNA 
sensitized the resistant PPC-1 cells to CH-11 and decreased 
expression of SREBP1 protein and mRNA. In contrast, 
no sensitization to CH-11 or knockdown of SRERP1 was 
observed after transfection of control siRNA. (Figure 1). 
Of note, SREBP1 knockdown did not sensitize PPC-1 
cells to VP-16, a stimulus of the mitochondrial pathway 
of caspase activation (data not shown).

To validate the effects of SREBP1 knockdown on 
death receptor sensitization and determine the effects of 
its knockdown in other cell lines, HeLa cervical cancer 
and DU145 prostate cancer cells were stably infected 
with shRNA targeting SREBP1 or control sequences. 
Previously we and others have demonstrated DU145 
and HeLa cells are resistant to death ligands despite 
expressing death receptors on the cell surface [8, 20-21]. 
HeLa but not DU145 cells are sensitized to death ligands 
by knockdown of the caspase-8 inhibitor FLIP [8, 20-
21]. SREBP1 target knockdown in both cell lines was 
confirmed by immunoblotting. Moreover, immunoblotting 

Figure 2: Genetic inhibition of SREBP1 sensitizes cells to CH-11 and TRAIL via caspase activation. 
A) HeLa and DU145 were infected with shRNA targeting SREBP1 or control sequences and stable populations selected; 
i) Total cellular proteins were isolated and analyzed by SDS-PAGE immunoblotting using antibodies against SREBP1 and 
actin. * represents the cleaved form of SREBP1 (68 Kda). 
ii) Cells stably infected with shRNA targeting SREBP1 or control sequences were treated with CH-11 (100 ng/mL for 18 
hours) or TRAIL (100 ng/mL 3 hours).  After incubation, cell growth and viability was measured by the MTS assay.  Data represent the 
mean + SD of a representative experiment performed in triplicate (* p<0.05, Student t test). 
B) The same cells infected as above were treated with CH-11 (100 ng/mL).  At increasing times after incubation, total cellular 
proteins were isolated and analyzed by SDS-PAGE immunoblotting using antibodies against caspase-3, caspase-8.  *  represents cleaved 
caspase 3 (17-22Kda) and cleaved caspase 8 (36/40 Kda).
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demonstrated knockdown of both the precursor and active 
cleaved forms of SREBP1 (Figure 2Ai). To evaluate 
the effects of SREBP1 inhibition on CH-11 and TRAIL 
sensitization, HeLa and DU145 cells stably expressing 
SREBP1 shRNA or control sequences were treated with 
CH-11, TRAIL or buffer control. After treatment, cell 
growth and viability was measured by the MTS assay. 
In HeLa but not DU145 cells, knockdown of SREBP1 
sensitized cells to both CH-11 and TRAIL (Figure 2Aii). 
Reductions in cell viability were confirmed by PI staining 
and flow cytometry.

Given the ability of SREBP1 knockdown to sensitize 
cells to death ligands, we examined the effects of target 
knockdown on caspase activation. Consistent with the 
effects on cell viability, we observed cleavage of caspases 
3 and 8 and reductions in the pro-forms of these caspases 
in HeLa cells with silenced SREBP1 treated with CH-
11. In contrast, no changes in cleaved caspases 3 and 8 
or the pro-forms were observed in DU145 cells that were 
resistant to CH-11 sensitization by SREBP1 inhibition. Of 
note, no significant changes in these caspases were noted 
in cells treated with CH-11 alone or with knockdown of 
SREBP1 alone (Figure 2B). 

Genetic and chemical inhibition of fatty acid 
synthase sensitizes resistant cells to death receptor 
ligands

SREBP1 positively regulates the expression of genes 
involved in cholesterol and fatty acid synthesis including 
fatty acid synthase (FASN) and HMG CoA reductase 
(HMGCR)[22-23]. Therefore, we examined changes in 
FASN and HMG CoA protein expression in HeLa cells 
with stable knockdown of SREBP1. In HeLa cells with 
stable knockdown of SERBP1 we observed a marked 
decrease in FASN expression compared to control cells. 
However, no change in HMGCR expression was detected 
(Figure 3A). 

Therefore, we tested whether silencing of FASN 
could recapitulate the effects of SREBP1 knockdown 
and sensitize cells to death receptor ligands. HeLa 
and DU145 cells were infected with shRNA targeting 
FASN or control shRNA and stable populations of cells 
selected. Knockdown of FASN protein was confirmed 
by immunoblotting (Figure 3B). Knockdown of FASN 
sensitized HeLa to CH-11 and TRAIL, but DU145 cells 
remained resistant (Figure 3C). As a chemical approach 
to confirm the ability of FASN inhibition to sensitize cells 
to death ligands, HeLa and DU145 cells were treated with 
increasing concentrations of the chemical FASN inhibitor, 
orlistat (S)-2-formylamino-4-methyl-pentanoic acid (S)-
1-[[(2S, 3S)-3-hexyl-4-oxo-2-oxetanyl] methyl]-dodecyl 
ester [24], with and without CH-11 or TRAIL. Orlistat 
sensitized HeLa cells to CH-11 and TRAIL but had no 
effect on DU145 cells (Figure 4A). We also measured 
caspase activation in HeLa cells treated with orlistat 

Figure 3: Genetic knockdown of FASN sensitizes cells to death ligands
 A) HeLa and DU145 cells were infected with shRNA targeting SREBP1 or control sequences and stable populations 
selected as described in materials and methods   Total cellular proteins were isolated and analyzed by SDS-PAGE 
immunoblotting using antibodies against SREBP1, fatty acid synthase (FASN), 3-hydroxy-3-methylglutaryl-Coenzyme A 
reductase (HMGCR) and tubulin.
 B) HeLa and DU145 cells were infected with shRNA targeting FASN or control sequences and stable populations selected.  
Total cellular proteins were isolated and analyzed by SDS-PAGE immunoblotting using antibodies against FASN and actin.
 C) HeLa and DU145 cells infected with FASN or control shRNA as in (B) were treated with CH-11 (100 ng/mL for 18 
hours), TRAIL (100ng/mL for 3 hours), or buffer control.  After incubation, cell growth and viability was measured by the MTS 
assay.  
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and CH-11. Caspase-8 activation was observed within 1 
hour of treating HeLa cells with orlistat and CH-11 and 
activation of caspase-8 preceded activation of caspase-9. 
Of note no significant increase in caspase activation was 
seen in HeLa cells treated with either orlistat or CH-11 
alone (Figure 4B). Thus, chemical inhibition of FASN 
mimics the observations with genetic silencing of FASN 
and SREBP1. 

To understand the mechanism by which inhibition 
of SREBP1 and FASN sensitize cells to death ligands, we 
measured changes in cell surface expression of the Fas in 
HeLa cells with knockdown of SREBP1 or treated with 
orlistat. Inhibition of SREBP1 expression with shRNA 
and inhibition of FASN with orlistat did not significantly 
change the abundance of Fas on the plasma membrane 
by flow cytometry (0.9 + 0.05 fold change in geometric 
mean of Fas expression after 50μM Orlistat and 1.23 + 
0.18 fold change geometric mean after SREBP1 silencing, 
both p>0.05 by Student t test). Likewise, we could not 
detect changes in Fas localization after SREBP1 or 

FASN knockdown by shRNA as examined by confocal 
microscopy (data not shown). We also measured expression 
of FADD, FLIP, caspase-8 and caspase-3 expression in 
HeLa cells with knockdown of SREBP1 or treated with 
orlistat. Again, no differences in expression were detected 
(Figure 5A). Thus, inhibition of SREBP1 and FASN does 
not sensitize cells to death ligands by changing expression 
of core components of the death receptor pathway. 

Inhibition of FASN with orlistat has been associated 
with increased production of ceramide [25]. Therefore, 
we measured changes in ceramide after inhibition of 
FASN and SREBP1. Treatment of HeLa cells with 
orlistat increased production of membrane ceramide at 
concentrations associated with sensitization to death 
ligands. However, genetic knockdown of FASN or 
SREBP1 did not increase ceramide production (Figure 
5B). In addition, the ceramide inhibitors Desipramine 
[26], GW4869 [27] and Fumoisin B1 [28] did not abrogate 
the ability of orlistat to sensitize HeLa cells to CH-11 and 
TRAIL, and supplementation with external ceramide did 

Figure 4: Chemical inhibition of FASN sensitizes to CH-11 and activates caspases
A) HeLa and DU145 cells were treated with increasing concentrations of Orlistat and CH-11 (100 ng/mL) for 18 hours.  
After incubation cell growth and viability was measured by MTS assay.  Data represent the mean + SD of a representative experiment 
performed in triplicate.
 B) HeLa cells were incubated with CH-11 (100 ng/mL final concentration) and/or Orlistat (50 μM final concentration ) 
for 0.5 and 1 hour. After incubation, activation of caspases 8 and 9 were assessed by Flow cytometry as described in materials and methods. 
* p<0.05, Student t test. 
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not sensitize the cells to CH-11 (data not shown). Thus, 
in this model, increased ceramide production does not 
appear sufficient to explain sensitization to death receptor 
ligands after SREBP1 and FASN inhibition.

DISCUSSION

Defects in the death receptor pathway of caspase 
activation can render cells resistant to death ligands and 
thereby limit the clinical efficacy of agents such as TRAIL. 
To better understand mechanisms of resistance to death 
ligands and define strategies to overcome such blocks, 
we conducted an siRNA screen to identify sequences 
that sensitize resistant cells to CH-11. From this screen 
we identified SREBP-1. SREBP1 is a transcription factor 
that, upon cleavage to an active form, regulates genes 
involved in lipid and cholesterol metabolism [22, 29]. 
Consistent with its role in lipid metabolism, transgenic 
mice over-expressing active SREBP-1 developed fatty 
livers with increased triglycerides and cholesteryl esters 
[30]. In chromatin precipitation experiments, SREBP1 
interacts with target genes related to lipid and insulin 
metabolism. These experiments also demonstrated that 
SREBP1 interacts with the cell cycle regulators CDK2 
and E2F4 [31]. While the functional significance of this 
interaction with cell cycle regulators was unclear, these 
results suggest that SREBP1 may also regulate pathways 
beyond lipid metabolism. 

Over-expression of SREBP1 appears related to 
the pathogenesis and progression of some malignancies 
[32-35]. For example, up regulation of SREBP1 and 
its target genes has been associated with progression 
to androgen independence in prostate cancer [36]. In 
addition, gene expression studies have demonstrated up-
regulation of SREBP1 and its target genes in the putative 
stem cell fraction of prostate cancer [37]. It is not fully 
understood, however, how the dysregulation of lipid and 
cholesterol pathways promotes malignant transformation. 
Nonetheless, these data further support targeting these 
pathways as a therapeutic approach for the treatment of 
malignancy.

 SREBP1 is related to a homologous transcription 
factor SREBP2, but the genes under their control differ. 
For example, SREBP1 mainly regulates genes associated 
with fatty acid synthesis and phospholipid pathways 
while SREBP2 primarily regulates genes associated with 
cholesterol synthesis and uptake [38-39]. Of note, in our 
study, we did not identify SREBP2 as a hit in our siRNA 
screen. 

Previously, we and others have demonstrated that 
over-expression of the endogenous dominant negative 
homolog of caspase-8, FLIP (c-Fas-associated death 
domain-like IL-1-converting enzyme-like inhibitory 
protein) is one mechanism by which malignant cells 
become resistant to stimuli of the death receptor pathway 
of caspase activation [40-43]. We also demonstrated that 

Figure 5: Effects of SREBP1 or FASN inhibition on levels of core components of the death receptor pathway of caspase 
activation and ceramide.
A) FADD, Caspase 8, Caspase 3 and Flip were studied in HeLa cells treated with increasing concentrations of Orlistat or 
infected with SREBP1 or Control shRNA. Actin was used as loading control. 
B) Membrane ceramide expression was analized by Flow Cytometry after increasing concentrations of Orlistat for 24 
hours or after FASN, SREBP1 or Control silencing shRNA in HeLa cells. *p<0.05, Student t test. 
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inhibition of FLIP protein or mRNA synthesis is sufficient 
to sensitize some cells to the death receptor ligands CH-
11 and TRAIL [8]. Therefore, we examined the effects 
of down-regulating SREBP1 on the expression of FLIP. 
No change in FLIP expression was detected, indicating 
that inhibition of SREBP1 sensitizes cells to CH-11 
and TRAIL independent of changes in FLIP. Rather, 
sensitization to death ligands appears related, at least in 
part, to reductions in fatty acid synthase expression. In 
support of this contention, SREBP1 reduced expression 
of FASN and genetic or chemical inhibition of FASN 
recapitulated the effects of SREBP1 knockdown. 

Fatty acid synthase (FASN) catalyzes the synthesis 
of palmitate from acetyl CoA, malonyl CoA and NADPH 
[44]. In normal tissues, except for cycling endometrium 
and lactating breast tissue, levels of FASN are low to 
undetectable [45-46], as the source of fatty acids is 
primarily the diet [46]. In contrast, malignant cells have 
high levels of FASN [47-50], potentially reflecting the 
higher metabolic demands of these tumors. In some 
malignant cells, chemical or genetic silencing of FASN 
induces cell death in vitro and delays tumor growth in 
vivo [51-52]. Some of these studies report that blocking 
FASN induces apoptosis through a mechanism linked 
to increased ceramide production [25]. Therefore, we 
examined ceramide production in our cells system. 
While we also demonstrated increases in ceramide after 
orlistat treatment, this increase did not appear functionally 
important for sensitization to death ligands. In support of 
this contention, genetic knockout of SREBP1 or FASN 
did not increase levels of ceramide. In addition, inhibitors 
of ceramide production did not protect against orlistat-
mediated sensitization to CH-11. Finally, supplementation 
of the medium with ceramide did not sensitize cells to 
CH-11. This observation is in agreement with a study 
by Knowles et al., who also demonstrated that cell death 
induced by orlistat was associated with activation of 
caspase-8 but independent of ceramide[53]. 

In our study, inhibition of SREBP1 or FASN did 
not sensitize DU145 cells to CH-11 or TRAIL despite the 
presence of the death receptors on the cell surface and 
target knockdown by RNAi. Yet, we demonstrated target 
knockdown in these resistant cells. Therefore, further 
work will be required to understand the basis for resistance 
in these lines how SREBP1 and FASN knockdown 
sensitize other cell lines to death receptor ligands. One 
possibility is that SREBP1 and FASN knockdown alterns 
the organization of the plasma membrane and lipids rafts, 
thus changing the localization of the death receptors 
associated to the membrane [54]. Although we could not 
show changes in Fas localization by confocal microscopy, 
more detailed studies on Fas localization using isolated 
lipid rafts might demonstrate changes in death receptor 
localization.

The findings of this study could have therapeutic 
implications. Potentially, the clinical efficacy of TRAIL 

as a treatment for malignancy could be improved by 
combining TRAIL with SREBP1 or FASN inhibitors. 
While small molecule inhibitors of SREBP1 are not 
available, orlistat is an FDA-approved chemical inhibitor 
of FASN and could be combined with TRAIL. However, 
in its current formulation, orlistat is poorly absorbed after 
oral administration [55] therefore an oral formulation with 
improved bioavailability or an intravenous formulation of 
orlistat would be required for the treatment of maligancy. 
Thus, in summary, this work highlights mechanisms of 
resistance to death ligands and strategies to overcome this 
resistance.

MATERIALS AND METHODS

Cell lines. 

PPC-1 and DU145 prostate cancer cell lines and 
HeLa cervical cancer cells were cultured in RPMI 1640 
medium. All cells were supplemented with 10% fetal 
bovine serum (FBS) (Hyclone, Logan, UT), penicillin 
(500 IU/mL), and streptomycin (50 µg/mL). All cells were 
cultured at 37 °C in a humid atmosphere with 5% CO2 .

Reagents 

The monoclonal antibody anti-Fas (CH-11) was 
purchased from MBL International Corporation (Woburn, 
MA) and soluble killer TRAIL was purchased from 
Alexis Biochemicals (San Diego, CA). Orlistat, GW4869, 
Fumonisin B1 and Desipramine hydrochloride were 
purchased from Sigma (St. Lois, MO). C16 ceramide was 
obtained from TRC (North York, ON) and was dissolved 
in isopropanol. 

Viability assays 

The CellTiter96 aqueous nonradioactive MTS assay 
was used to measure cell growth and viability according 
to the manufacturer’s instructions (Promega) and as 
described previously [56]. Propidium iodide (PI) staining 
was performed according to manufacturer’s instructions 
(Biovision, Mountain view, CA).

siRNA screen 

PPC-1 cells were plated in 96-well plates in complete 
RPMI medium 18 hours before the siRNA transfection. 
After adhering to the plates, medium was removed and cells 
were treated with aliquots of the the Human Druggable 
siRNA library (6080 siRNA pools) (Dharmacon, IL) 
(final concentration 40 nM) with lipofectamine 2000 
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(Invitrogen, CA) in medium without FBS or antibiotics. 
After 6 hours of incubation, CH-11 was added (50ng/mL 
final concentration) along with FBS and media. Eighteen 
hours later and 24 hours after siRNA transfection, cell 
viability was measured by the MTS assay. Results were 
normalized and corrected for systematic errors using the B 
score[57]. Compounds with a B score value lower than 3 
times the standard deviation were empirically considered 
hits in the assay. 

Plate handling was performed by a CRS Dimension4 
robotics platform equipped with a Linear Plate Transport 
system (LPT) (Thermo Electron, MA). Plate transfer from 
the LPT to online peripherals was carried out by a CRS 
Flip Mover and Vertical Array Loader (Thermo Electron). 
Liquid handling steps were performed by a Biomek FX 
Laboratory Automation Workstation (Beckman Coulter) 
and ELx405 Magna cell washers (Biotek, Vermont). 
Robotics integration was controlled by a Polara integration 
software (Thermo Electron).

SREBP1 siRNA transfection

Cells were transfected with siRNA targeting SREBP1 
as above using the SREBP1 SMARTpool (Dharmacon) 
and individual sets of siRNA (Dharmacon): 

Set 1
sense, 5’-UGACUUCCCUGGCCUAUUUUU-3’, 

antisense, 5’-AAAUAGGCCAGGGAAGU CAUU-3’; 
Set 2
 sense, 5’-ACAUUGAGCUCCUCUCUUGUU-3’, 

antisense, 5’-CAAGAGAGGAGCUCAAUGUUU-3’, 
Set 3
sense, 5’-GCGCACUGCUGUCCA CAAAUU-3’, 

antisense, 5’-UUUGUGGACAGCAGUGCGCUU-3’; 
Set 4
sense, 5’-ACACAGACGUGCUCAUGGAUU-3’, 

antisense, 5’-UCCAUGAGCACGUCU GUGUUU-3’. 

Cells transfected with control siRNA (Control #2, 
Dharmacon) was used during the experiments.

shRNA infection

Construction of hairpin-pLKO.1 vectors (carrying a 
puromycin antibiotic resistance gene) containing shRNA 
sequences and production of short hairpin RNA viruses 
has been described in detail [58]. The shRNA targeting the 
SREBP1, FASN and control coding sequences are as follows: 
SREBP1, 5’-GCCATCGACTACATTCGCTTT-3’; FASN, 
5-CATGGAGCGTATCTGTGAGAA-3’ and Control 
5’-TGCCCGACAACCACTACCTGA-3’. Lentiviral 
infections were performed essentially as described [59]. 
Briefly, adherent cells were treated with 0.5 mL of the 
virus, followed by overnight incubation (37 ºC, 5% CO2) 
without removing the virus. The next day, viral media was 

replaced with fresh media containing puromycin (2 µg/
mL) to select a population of resistant cells. 

Quantitative real-time polymerase chain reaction 

First-strand cDNA was synthesized from 1 µg of 
DNase-treated total cellular RNA using random primers 
and SuperScript II reverse transcriptase (Invitrogen) 
according to the manufacturer’s protocols. Real-time 
PCR assays were performed in triplicate with 5 ng of 
RNA equivalent cDNA, SYBR Green PCR Master mix 
(Applied Biosystems, Foster City, CA, USA), and 400 
nM of gene-specific primers. Reactions were processed 
and analyzed on an ABI 7900 Sequence Detection System 
(Applied Biosystems). Forward/reverse PCR primer 
pairs for human cDNAs were as follows:: SREBP1, 
forward, 5’-GCAAGGCCATCGACTACATT-3’; 
reverse, 5’-GGTCAGTGTGTCCTCCACCT; FASN, 
forward, 5’-CTGGCTCAGCACCTCTATCC-3’, reverse, 
5’-CTCCAGGTTGTCCCTGTGAT-3’; and 18S, forward, 
5’-AGGAATTGACGGAAGGGCAC-3’; reverse, 
5’-GGACATCTAAGGGCATCACA -3’. Relative mRNA 
expression was determined using the ΔΔCT method as 
described [60].

Immunoblotting

Total cell lysates were prepared from cells as 
described previously [60]. Briefly, cells were washed 
with phosphate-buffered saline pH 7.4, and suspended 
in lysis buffer (10 mmol/L Tris, pH 7.4, 150 mmol/L, 
NaCl, 0.1% Triton X-100, 0.5% sodium deoxycholate, 
and 5 mmol/L EDTA) containing protease inhibitors 
(Complete tablets; Roche, IN). Protein concentrations 
were measured by the Bradford assay [61]. Equal 
amounts of protein were subjected to sodium dodecyl 
sulphate polyacrylamide gel electrophoresis (SDS page) 
followed by transfer to polyvinylidene difluoride (PVDF) 
or nitrocellulose membranes. Membranes were probed 
with rabbit anti–SREBP1 (2A4) (1:1000 [v/v]; Santa Cruz 
Biotechnologies, CA), mouse anti–FASN (1:1000 [v/v]), 
anti-FADD (1:2000 [v/v]), anti-caspase 8 (1:1000 [v/v]) 
(BD Transduction labs, San Jose, CA), rabbit anti-caspase 
3 (Cell Signaling, Danvers, MA) β-actin (1:20000 [v/v]) 
or α-tubulin (1:10000 [v/v]) (Sigma, St. Lois, MO), anti-
FLIP (NF6) (1:500 [v/v]) ((Alexis Biochemicals, San 
Diego, CA) or anti-HMGCR (clone A9) (1:1000 [v/v]) 
(kindly provided by Dr LZ Penn, Ontario Cancer Institute, 
Toronto, Canada). Secondary antibodies were horseradish 
peroxidase-conjugated goat anti mouse IgG (1:10 000 
[v/v]) and anti rabbit (1:5000 [v/v]) (GE Healthcare, 
Chalfont St Giles, United Kingdom). Detection was 
performed by the enhanced chemical luminescence 
method (Pierce, Rockford, IL).
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Fas and ceramide expression

Fas expression was measured using mouse anti-
human Fas FITC and mouse IgG1 FITC (BD and Co., 
Mountain View, CA). Ceramide expression was measured 
with mouse anti-human ceramide (MID 15B4) (Alexis 
Biochemicals, San Diego, CA), followed by FITC rat anti-
mouse Ig/M (BD and Co., Mountain View, CA). Cells were 
analyzed with a Becton Dickinson FACSCalibur (BD and 
Co., Mountain View, CA) flow cytometer and analyzed by 
FlowJo analysis software (Tree Star, Ashland, OR). 

Caspase activation assay

Activation of caspases 8 and 9 was detected by 
APO LOGIX carboxyfluorescein caspase detection kits 
(Cell Technology, Mountain View, CA) following the 
manufacturers instructions [62].

ACKNOWLEDGEMENTS 

This work was supported by the Canadian Cancer 
Society, and the Ontario Institute of Cancer Research 
through funding provided by the Ministry of Research and 
Innovation in the Province of Ontario and the Ministry 
of Long Term Health and Planning in the Province of 
Ontario. A.D.S. is a Scholar in Clinical Research from the 
Leukemia and Lymphoma Society.

CONFLICT OF INTEREST STATEMENT

The authors declared no potential conflicts of interest 
with respect to the authorship and/or publication of this 
article. 

REFERENCES

1. Fernandes-Alnemri T, Armstrong RC, Krebs J, Srinivasula 
SM, Wang L, Bullrich F, Fritz LC, Trapani JA, Tomaselli 
KJ, Litwack G et al: In vitro activation of CPP32 and 
Mch3 by Mch4, a novel human apoptotic cysteine protease 
containing two FADD-like domains. Proc Natl Acad Sci U 
S A 1996, 93(15):7464-7469.

2. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X: Bid, 
a Bcl2 interacting protein, mediates cytochrome c release 
from mitochondria in response to activation of cell surface 
death receptors. Cell 1998, 94(4):481-490.

3. Los M, Van de Craen M, Penning LC, Schenk H, 
Westendorp M, Baeuerle PA, Droge W, Krammer PH, 
Fiers W, Schulze-Osthoff K: Requirement of an ICE/CED-
3 protease for Fas/APO-1-mediated apoptosis. Nature 
1995, 375(6526):81-83.

4. Scaffidi C, Schmitz I, Krammer PH, Peter ME: The role of 
c-FLIP in modulation of CD95-induced apoptosis. J Biol 

Chem 1999, 274(3):1541-1548.
5. Bullani RR, Huard B, Viard-Leveugle I, Byers HR, Irmler 

M, Saurat JH, Tschopp J, French LE: Selective expression 
of FLIP in malignant melanocytic skin lesions. J Invest 
Dermatol 2001, 117(2):360-364.

6. Tepper CG, Seldin MF: Modulation of caspase-8 and 
FLICE-inhibitory protein expression as a potential 
mechanism of Epstein-Barr virus tumorigenesis in Burkitt’s 
lymphoma. Blood 1999, 94(5):1727-1737.

7. Abedini MR, Qiu Q, Yan X, Tsang BK: Possible role of 
FLICE-like inhibitory protein (FLIP) in chemoresistant 
ovarian cancer cells in vitro. Oncogene 2004, 23(42):6997-
7004.

8. Mawji IA, Simpson CD, Gronda M, Williams MA, Hurren 
R, Henderson CJ, Datti A, Wrana JL, Schimmer AD: 
A chemical screen identifies anisomycin as an anoikis 
sensitizer that functions by decreasing FLIP protein 
synthesis. Cancer Res 2007, 67(17):8307-8315.

9. Fulda S, Meyer E, Debatin KM: Metabolic inhibitors 
sensitize for CD95 (APO-1/Fas)-induced apoptosis 
by down-regulating Fas-associated death domain-like 
interleukin 1-converting enzyme inhibitory protein 
expression. Cancer Res 2000, 60(14):3947-3956.

10. Suh WS, Kim YS, Schimmer AD, Kitada S, Minden 
M, Andreeff M, Suh N, Sporn M, Reed JC: Synthetic 
triterpenoids activate a pathway for apoptosis in AML 
cells involving downregulation of FLIP and sensitization to 
TRAIL. Leukemia 2003, 17(11):2122-2129.

11. Watanabe K, Okamoto K, Yonehara S: Sensitization of 
osteosarcoma cells to death receptor-mediated apoptosis by 
HDAC inhibitors through downregulation of cellular FLIP. 
Cell Death Differ 2005, 12(1):10-18.

12. Nakajima A, Kojima Y, Nakayama M, Yagita H, Okumura 
K, Nakano H: Downregulation of c-FLIP promotes caspase-
dependent JNK activation and reactive oxygen species 
accumulation in tumor cells. Oncogene 2008, 27(1):76-84.

13. Wieckowski E, Atarashi Y, Stanson J, Sato TA, Whiteside 
TL: FAP-1-mediated activation of NF-kappaB induces 
resistance of head and neck cancer to Fas-induced apoptosis. 
J Cell Biochem 2007, 100(1):16-28.

14. Ivanov VN, Ronai Z, Hei TK: Opposite roles of FAP-1 and 
dynamin in the regulation of Fas (CD95) translocation to 
the cell surface and susceptibility to Fas ligand-mediated 
apoptosis. J Biol Chem 2006, 281(3):1840-1852.

15. Soung YH, Lee JW, Kim SY, Jang J, Park YG, Park WS, 
Nam SW, Lee JY, Yoo NJ, Lee SH: CASPASE-8 gene is 
inactivated by somatic mutations in gastric carcinomas. 
Cancer Res 2005, 65(3):815-821.

16. Soung YH, Lee JW, Kim SY, Sung YJ, Park WS, Nam 
SW, Kim SH, Lee JY, Yoo NJ, Lee SH: Caspase-8 gene is 
frequently inactivated by the frameshift somatic mutation 
1225_1226delTG in hepatocellular carcinomas. Oncogene 
2005, 24(1):141-147.

17. Kim HS, Lee JW, Soung YH, Park WS, Kim SY, Lee JH, 



Oncotarget 2011; 2:  186 - 196195www.impactjournals.com/oncotarget

Park JY, Cho YG, Kim CJ, Jeong SW et al: Inactivating 
mutations of caspase-8 gene in colorectal carcinomas. 
Gastroenterology 2003, 125(3):708-715.

18. Wang SL, Du EZ, Martin TD, Davis RA: Coordinate 
regulation of lipogenesis, the assembly and secretion 
of apolipoprotein B-containing lipoproteins by sterol 
response element binding protein 1. J Biol Chem 1997, 
272(31):19351-19358.

19. Ren S, Li X, Rodriguez-Agudo D, Gil G, Hylemon P, 
Pandak WM: Sulfated oxysterol, 25HC3S, is a potent 
regulator of lipid metabolism in human hepatocytes. 
Biochem Biophys Res Commun 2007, 360(4):802-808.

20. Sharp DA, Lawrence DA, Ashkenazi A: Selective 
knockdown of the long variant of cellular FLICE inhibitory 
protein augments death receptor-mediated caspase-8 
activation and apoptosis. J Biol Chem 2005, 280(19):19401-
19409.

21. Mawji IA, Simpson CD, Hurren R, Gronda M, Williams 
MA, Filmus J, Jonkman J, Da Costa RS, Wilson BC, Thomas 
MP et al: Critical role for Fas-associated death domain-like 
interleukin-1-converting enzyme-like inhibitory protein 
in anoikis resistance and distant tumor formation. J Natl 
Cancer Inst 2007, 99(10):811-822.

22. Rawson RB: The SREBP pathway--insights from Insigs 
and insects. Nat Rev Mol Cell Biol 2003, 4(8):631-640.

23. Horton JD, Shah NA, Warrington JA, Anderson NN, 
Park SW, Brown MS, Goldstein JL: Combined analysis 
of oligonucleotide microarray data from transgenic and 
knockout mice identifies direct SREBP target genes. Proc 
Natl Acad Sci U S A 2003, 100(21):12027-12032.

24. Kridel SJ, Axelrod F, Rozenkrantz N, Smith JW: Orlistat 
is a novel inhibitor of fatty acid synthase with antitumor 
activity. Cancer Res 2004, 64(6):2070-2075.

25. Bandyopadhyay S, Zhan R, Wang Y, Pai SK, Hirota S, 
Hosobe S, Takano Y, Saito K, Furuta E, Iiizumi M et al: 
Mechanism of apoptosis induced by the inhibition of fatty 
acid synthase in breast cancer cells. Cancer Res 2006, 
66(11):5934-5940.

26. Elojeimy S, Holman DH, Liu X, El-Zawahry A, Villani M, 
Cheng JC, Mahdy A, Zeidan Y, Bielwaska A, Hannun YA 
et al: New insights on the use of desipramine as an inhibitor 
for acid ceramidase. FEBS Lett 2006, 580(19):4751-4756.

27. Luberto C, Hassler DF, Signorelli P, Okamoto Y, Sawai H, 
Boros E, Hazen-Martin DJ, Obeid LM, Hannun YA, Smith 
GK: Inhibition of tumor necrosis factor-induced cell death 
in MCF7 by a novel inhibitor of neutral sphingomyelinase. 
J Biol Chem 2002, 277(43):41128-41139.

28. Wang E, Norred WP, Bacon CW, Riley RT, Merrill AH, 
Jr.: Inhibition of sphingolipid biosynthesis by fumonisins. 
Implications for diseases associated with Fusarium 
moniliforme. J Biol Chem 1991, 266(22):14486-14490.

29. Shimano H: Sterol regulatory element-binding proteins 
(SREBPs): transcriptional regulators of lipid synthetic 
genes. Prog Lipid Res 2001, 40(6):439-452.

30. Shimano H, Horton JD, Shimomura I, Hammer RE, Brown 
MS, Goldstein JL: Isoform 1c of sterol regulatory element 
binding protein is less active than isoform 1a in livers of 
transgenic mice and in cultured cells. J Clin Invest 1997, 
99(5):846-854.

31. Reed BD, Charos AE, Szekely AM, Weissman SM, 
Snyder M: Genome-wide occupancy of SREBP1 and its 
partners NFY and SP1 reveals novel functional roles and 
combinatorial regulation of distinct classes of genes. PLoS 
Genet 2008, 4(7):e1000133.

32. Yamashita T, Honda M, Takatori H, Nishino R, Minato H, 
Takamura H, Ohta T, Kaneko S: Activation of lipogenic 
pathway correlates with cell proliferation and poor 
prognosis in hepatocellular carcinoma. J Hepatol 2009, 
50(1):100-110.

33. Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, 
Leevers S, Griffiths JR, Chung YL, Schulze A: SREBP 
activity is regulated by mTORC1 and contributes to Akt-
dependent cell growth. Cell Metab 2008, 8(3):224-236.

34. Furuta E, Pai SK, Zhan R, Bandyopadhyay S, Watabe M, 
Mo YY, Hirota S, Hosobe S, Tsukada T, Miura K et al: 
Fatty acid synthase gene is up-regulated by hypoxia via 
activation of Akt and sterol regulatory element binding 
protein-1. Cancer Res 2008, 68(4):1003-1011.

35. Osada S, Naganawa A, Misonou M, Tsuchiya S, Tamba S, 
Okuno Y, Nishikawa J, Satoh K, Imagawa M, Tsujimoto G 
et al: Altered gene expression of transcriptional regulatory 
factors in tumor marker-positive cells during chemically 
induced hepatocarcinogenesis. Toxicol Lett 2006, 
167(2):106-113.

36. Ettinger SL, Sobel R, Whitmore TG, Akbari M, Bradley 
DR, Gleave ME, Nelson CC: Dysregulation of sterol 
response element-binding proteins and downstream 
effectors in prostate cancer during progression to androgen 
independence. Cancer Res 2004, 64(6):2212-2221.

37. Blum R, Gupta R, Burger PE, Ontiveros CS, Salm SN, 
Xiong X, Kamb A, Wesche H, Marshall L, Cutler G et al: 
Molecular signatures of prostate stem cells reveal novel 
signaling pathways and provide insights into prostate 
cancer. PLoS One 2009, 4(5):e5722.

38. Brown MS, Goldstein JL: The SREBP pathway: regulation 
of cholesterol metabolism by proteolysis of a membrane-
bound transcription factor. Cell 1997, 89(3):331-340.

39. Horton JD, Shimomura I, Brown MS, Hammer RE, 
Goldstein JL, Shimano H: Activation of cholesterol 
synthesis in preference to fatty acid synthesis in liver and 
adipose tissue of transgenic mice overproducing sterol 
regulatory element-binding protein-2. J Clin Invest 1998, 
101(11):2331-2339.

40. Schimmer AD: Inhibitor of apoptosis proteins: translating 
basic knowledge into clinical practice. Cancer Res 2004, 
64(20):7183-7190.

41. Krueger A, Baumann S, Krammer PH, Kirchhoff S: FLICE-
inhibitory proteins: regulators of death receptor-mediated 



Oncotarget 2011; 2:  186 - 196196www.impactjournals.com/oncotarget

apoptosis. Mol Cell Biol 2001, 21(24):8247-8254.
42. Thome M, Tschopp J: Regulation of lymphocyte 

proliferation and death by FLIP. Nat Rev Immunol 2001, 
1(1):50-58.

43. Reed JC: Drug Insight: cancer therapy strategies based on 
restoration of endogenous cell death mechanisms. Nat Clin 
Pract Oncol 2006, 3(7):388-398.

44. Wakil SJ: Fatty acid synthase, a proficient multifunctional 
enzyme. Biochemistry 1989, 28(11):4523-4530.

45. Thompson BJ, Smith S: Biosynthesis of fatty acids by 
lactating human breast epithelial cells: an evaluation of the 
contribution to the overall composition of human milk fat. 
Pediatr Res 1985, 19(1):139-143.

46. Weiss L, Hoffmann GE, Schreiber R, Andres H, Fuchs 
E, Korber E, Kolb HJ: Fatty-acid biosynthesis in man, a 
pathway of minor importance. Purification, optimal assay 
conditions, and organ distribution of fatty-acid synthase. 
Biol Chem Hoppe Seyler 1986, 367(9):905-912.

47. Alo PL, Visca P, Marci A, Mangoni A, Botti C, Di Tondo 
U: Expression of fatty acid synthase (FAS) as a predictor 
of recurrence in stage I breast carcinoma patients. Cancer 
1996, 77(3):474-482.

48. Gansler TS, Hardman W, 3rd, Hunt DA, Schaffel S, 
Hennigar RA: Increased expression of fatty acid synthase 
(OA-519) in ovarian neoplasms predicts shorter survival. 
Hum Pathol 1997, 28(6):686-692.

49. Kusakabe T, Nashimoto A, Honma K, Suzuki T: Fatty acid 
synthase is highly expressed in carcinoma, adenoma and 
in regenerative epithelium and intestinal metaplasia of the 
stomach. Histopathology 2002, 40(1):71-79.

50. Piyathilake CJ, Frost AR, Manne U, Bell WC, Weiss H, 
Heimburger DC, Grizzle WE: The expression of fatty acid 
synthase (FASE) is an early event in the development and 
progression of squamous cell carcinoma of the lung. Hum 
Pathol 2000, 31(9):1068-1073.

51. Carvalho MA, Zecchin KG, Seguin F, Bastos DC, Agostini 
M, Rangel AL, Veiga SS, Raposo HF, Oliveira HC, 
Loda M et al: Fatty acid synthase inhibition with Orlistat 
promotes apoptosis and reduces cell growth and lymph 
node metastasis in a mouse melanoma model. Int J Cancer 
2008, 123(11):2557-2565.

52. Schmidt LJ, Ballman KV, Tindall DJ: Inhibition of fatty 
acid synthase activity in prostate cancer cells by dutasteride. 
Prostate 2007, 67(10):1111-1120.

53. Knowles LM, Yang C, Osterman A, Smith JW: Inhibition 
of fatty-acid synthase induces caspase-8-mediated tumor 
cell apoptosis by up-regulating DDIT4. J Biol Chem 2008, 
283(46):31378-31384.

54. Swinnen JV, Van Veldhoven PP, Timmermans L, De 
Schrijver E, Brusselmans K, Vanderhoydonc F, Van de 
Sande T, Heemers H, Heyns W, Verhoeven G: Fatty acid 
synthase drives the synthesis of phospholipids partitioning 
into detergent-resistant membrane microdomains. Biochem 
Biophys Res Commun 2003, 302(4):898-903.

55. Shepard TY, Jensen DR, Blotner S, Zhi J, Guerciolini R, 
Pace D, Eckel RH: Orlistat fails to alter postprandial plasma 
lipid excursions or plasma lipases in normal-weight male 
volunteers. Int J Obes Relat Metab Disord 2000, 24(2):187-
194.

56. Schimmer AD, Welsh K, Pinilla C, Wang Z, Krajewska 
M, Bonneau MJ, Pedersen IM, Kitada S, Scott FL, Bailly-
Maitre B et al: Small-molecule antagonists of apoptosis 
suppressor XIAP exhibit broad antitumor activity. Cancer 
Cell 2004, 5(1):25-35.

57. Gunter B, Brideau C, Pikounis B, Liaw A: Statistical and 
graphical methods for quality control determination of 
high-throughput screening data. J Biomol Screen 2003, 
8(6):624-633.

58. Moffat J, Grueneberg DA, Yang XP, Kim SY, Kloepfer 
AM, Hinkle G, Piqani B, Eisenhaure TM, Luo B, Grenier 
JK et al: A lentiviral RNAi library for human and mouse 
genes applied to an arrayed viral high-content screen. Cell 
2006, 124(6):1283-1298.

59. Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, 
Hinkle G, Piqani B, Eisenhaure TM, Luo B, Grenier JK et 
al: A lentiviral RNAi library for human and mouse genes 
applied to an arrayed viral high-content screen. Cell 2006, 
124(6):1283-1298.

60. Schimmer AD, Thomas MP, Hurren R, Gronda M, 
Pellecchia M, Pond GR, Konopleva M, Gurfinkel D, Mawji 
IA, Brown E et al: Identification of small molecules that 
sensitize resistant tumor cells to tumor necrosis factor-
family death receptors. Cancer Res 2006, 66(4):2367-2375.

61. Krajewski S, Zapata JM, Reed JC: Detection of multiple 
antigens on western blots. Anal Biochem 1996, 236(2):221-
228.

62. Carter BZ, Gronda M, Wang Z, Welsh K, Pinilla C, 
Andreeff M, Schober WD, Nefzi A, Pond GR, Mawji IA et 
al: Small-molecule XIAP inhibitors derepress downstream 
effector caspases and induce apoptosis of acute myeloid 
leukemia cells. Blood 2005, 105(10):4043-4050.


