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DNA methylation-based copy number variation (CNV) calling software offers the
advantages of providing both genetic (copy-number) and epigenetic (methylation) state
information from a single genomic library. This method is advantageous when looking at
large-scale chromosomal rearrangements such as the loss of the short arm of
chromosome 3 (3p) in renal cell carcinoma and the codeletion of the short arm of
chromosome 1 and the long arm of chromosome 19 (1p/19q) commonly seen in
histologically defined oligodendrogliomas. Herein, we present MethylMasteR: a
software framework that facilitates the standardization and customization of
methylation-based CNV calling algorithms in a single R package deployed using the
Docker software framework. This framework allows for the easy comparison of the
performance and the large-scale CNV event identification capability of four common
methylation-based CNV callers. Additionally, we incorporated our custom routine, which
was among the best performing routines. We employed the Affymetrix 6.0 SNP Chip
results as a gold standard against which to compare large-scale event recall. As there are
disparities within the software calling algorithms themselves, no single software is likely to
perform best for all samples and all combinations of parameters. The employment of a
standardized software framework via creating a Docker image and its subsequent
deployment as a Docker container allows researchers to efficiently compare algorithms
and lends itself to the development of modifiedworkflows such as the customworkflowwe
have developed. Researchers can now use the MethylMasteR software for their
methylation-based CNV calling needs and follow our software deployment framework.
We will continue to refine our methodology in the future with a specific focus on identifying
large-scale chromosomal rearrangements in cancer methylation data.

Keywords: methylmaster, copy number variation, DNA methylation, kidney cancer, clear cell renal cell carcinoma,
epigenetics, genomics, multiomics

Edited by:
Matteo Pellegrini,

University of California, Los Angeles,
United States

Reviewed by:
Yuanyuan Zhang,

Qingdao University of Technology,
China

Yiming Bao,
Beijing Institute of Genomics (CAS),

China

*Correspondence:
Lucas A. Salas

lucas.a.salas@dartmouth.edu

Specialty section:
This article was submitted to

Genomic Analysis,
a section of the journal

Frontiers in Bioinformatics

Received: 21 January 2022
Accepted: 08 March 2022
Published: 12 April 2022

Citation:
Mariani MP, Chen JA, Zhang Z,

Pike SC and Salas LA (2022)
MethylMasteR: A Comparison and

Customization of Methylation-Based
Copy Number Variation Calling

Software in Cancers Harboring Large
Scale Chromosomal Deletions.

Front. Bioinform. 2:859828.
doi: 10.3389/fbinf.2022.859828

Frontiers in Bioinformatics | www.frontiersin.org April 2022 | Volume 2 | Article 8598281

METHODS
published: 12 April 2022

doi: 10.3389/fbinf.2022.859828

http://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2022.859828&domain=pdf&date_stamp=2022-04-12
https://www.frontiersin.org/articles/10.3389/fbinf.2022.859828/full
https://www.frontiersin.org/articles/10.3389/fbinf.2022.859828/full
https://www.frontiersin.org/articles/10.3389/fbinf.2022.859828/full
https://www.frontiersin.org/articles/10.3389/fbinf.2022.859828/full
https://www.frontiersin.org/articles/10.3389/fbinf.2022.859828/full
http://creativecommons.org/licenses/by/4.0/
mailto:lucas.a.salas@dartmouth.edu
https://doi.org/10.3389/fbinf.2022.859828
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2022.859828


INTRODUCTION

CNV calling from DNA methylation data remains an attractive
prospect as both genetic (copy-number) and epigenetic
(methylation) data can be obtained from the same
experimental results. There are, thanks to Illumina, a pedigree
of methylation analysis platforms available to the genomicist.
Beginning with the Illumina Infinium HumanMethylation27 or
“27k” BeadArray platform, followed by the widely used Illumina
Infinium HumanMethylation450 or “450k” BeadChip (Bibikova
et al., 2011), and finally, the Illumina Infinium MethylationEPIC
or “EPIC” platform, released in 2015, which sports over 850,000
methylation probes (Sandoval et al., 2011; Triche et al., 2013;
Moran et al., 2016). With each generation, the researcher is
availed of more comprehensive genome coverage from the
added probe density (Kilaru et al., 2020). DNA methylation
arrays measure bisulfite converted unmethylated cytosines as
thymines. In contrast, methylated cytosines are protected from
the bisulfite conversion and remain as cytosines (Aryee et al.,
2014). The CNV status can then be inferred from the relative ratio
of converted thymines to remaining cytosines (red and green
channel intensities) (Feber et al., 2014).

SNP array-based comparative genome hybridization retains
the greatest resolution and is still used as the gold standard in
several public databases (Koike et al., 2011; Kilaru et al., 2020).
Some time after this technology was developed, researchers later
sought to identify CNVs fromDNAmethylation data, the need to
process this data was first answered with software such as
DNAcopy (Seshan and Olshen, 2021) and Minfi (Aryee et al.).
Shortly thereafter, Feber et al. built off these initial software with
their release of ChAMP (Morris et al., 2014; Tian et al., 2017).
After ChAMP followed the CopyNumber450kCancer (Marzouka
et al., 2016) and cnAnalysis450k (Knoll et al., 2017) routines
which were specifically aimed at analyzing the 450k
platform data.

These arrays have been validated in a variety of studies since
their inception, distribution, and utilization for cancer studies,
among others: e.g., 450k with colorectal cancer (Sandoval et al.,
2011), again the 450k BeadChip for acute lymphoblastic leukemia
(Nordlund et al., 2013), or combined with other copy-number
and transcriptomic data for multi-omics studies in glioblastoma
(Sturm et al., 2012). Researchers have pioneered improvement at
each stage of technology development in their application,
including software and wet-lab improvements that have
provided the genomics community with additional accuracy
and inferential capabilities—such as normalization
improvements to signals generated from the 450k platform
(Fortin et al., 2014).

Feber et al. described several technical challenges in the
processing and analysis of DNA methylation array data.
However, they also identified how CNV calling from
methylation data could potentially identify translocations and
inversions while the earlier genotyping arrays cannot.
Additionally while, the genotyping arrays have a very high
resolution, methylation-based CNV callers have an easier time
identifying CNVs in genes relative to intergenic regions (Feuk
et al., 2006; Feber et al., 2014; Kilaru et al., 2020).

450k platform-specific software like CopyNumber450kCancer
and cnAnalysis450k incorporated computational and statistical
methodology in novel ways to address these unique technical
challenges. For example, the latter borrowed normalization
routines from other analytical routines such as the dasen
family of preprocessing methods (wateRmelon) (Pidsley et al.,
2013), and ssNoob, Quantile, Funnorm, and SWAN—all part of
minfi (Aryee et al., 2014). Anotherkey finding was that the
normalization distributions were skewed after comparing these
procedures (Knoll et al., 2017). This skewing meant differing
gain/loss cutoffs would have to be applied depending on the
normalization method. During the DNA methylation array
processing, the copy-number inference is based on the red
(unmethylated signal) and green (methylated signal) intensity
channels. Technical variations in these two signal channels need
to be accounted for as the relative differences between these
signals allow the CNV state to be inferred. Thus, changes in
intensity normalization may affect CNV calling, but not
necessarily the methylation calling (Knoll et al., 2017). To
alleviate both the baseline offset and distribution skew issues,
the cnAnalysis450k authors chose a normalization procedure that
implements a z-transformation that scales data sets relative to one
another and is purported to alleviate the above issues (Knoll et al.,
2017).

Even so, analytical challenges persisted, as regions that
harbored genomic deletions were still producing false-positive
artefactual spurious signals (Zhou et al., 2018). Zhou et al.
attempted to resolve this issue by developing a statistical
approach to masking deleted or “hyperpolymorphic” genomic
regions (Zhou et al., 2018). Their software, SeSAMe,
implemented a technique called pOOBAH or p-value with
out-of-band (OOB) array hybridization. They report reducing
the number of false-positive epigenetic silencing regions reported.
The focus was on the tumor suppressor genes CDKN2A and RB1,
often deleted in tumors (somatic deletions). The authors also
claimed that their method decreased technical variation and
retained biological variation across 450k and EPIC platform
samples. Finally, they claim that the SeSAMe package is
suitable for efficiently analyzing thousands of samples, such as
those from The Cancer Genome Atlas (TCGA), which we analyze
in this paper (Triche et al., 2013; Zhou et al., 2018).

Most recently, in 2019, the authors of Epicopy (Cho et al.,
2019) sought to use existing tools to streamline the analysis and
improve accuracy for TCGA datasets. They used functional
normalization (Fortin et al., 2014) and like the other methods
mentioned above, built off of the methodology of, or
incorporated, DNAcopy to perform methylation signal mean-
centering, circular binary segmentation, and copy number
estimation (Olshen et al., 2004; Feber et al., 2014; Cho et al.,
2019). They applied the GISTIC 2.0 (Mermel et al., 2011) software
to get copy numbers for individual genes and samples as well as to
find “focal” and “arm-level” events in each tumor type (Cho et al.,
2019). Our software, MethylMasteR, integrates the four different
routines described above: SeSAMe, our own version of
cnAnalysis450k (Called “HM450” by us), ChAMP, and
Epicopy. Other CNV calling methods that have been
developed along the way—such as conumee (Hovestadt and
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Zapatka, 2017), as well as newer methods that continue to be
developed to help address the ongoing analytical challenges
discussed above. See Kilaru et al., 2020 for a review (Kilaru
et al., 2020). More recently, methodology is also being
developed to explore methylation and copy number variation
within the context of single cell Multiomics as well (Hou et al.,
2016; Bian et al., 2018).

While CNV calling can be performed from DNA methylation
arrays, the gold standard remains high-density SNP arrays (Koike
et al., 2011; Feber et al., 2014; Cho et al., 2019). It is desirable to
perform genetic (copy number variation) and epigenetic
(methylation) analyses at the same time via methylation data
(rather than using separate SNP Chips to identify CNV’s to
reduce costs and materials used (Feber et al., 2014), but
researchers need to be sure that the methods available to call
CNVs from methylation data are accurate and performant under
various conditions. Studies need to be performed to assess said
performance and accuracy of the pipelines available to
accomplish this task.

Herein, we present MethylMasteR, a software that provides a
stable and user-friendly platform for running DNA methylation-
based CNV calling algorithms. MethylMasteR allows for the
comparison between the performance (total runtime and peak
memory usage), and the ability to identify large-scale CNVs
(recall) in cancer samples, across four popular algorithms that
call CNVs from methylation data. We also introduce our custom
routine incorporating SeSAMe and parts of the
CopyNumber450kCancer CNV calling routines. The
MethylMasteR software package combines the DNA
methylation CNV callers using a common Sample Sheet and
raw IDAT input files. Individual algorithms are then run, and
CNV segments are transformed into a common data. frame
format, which facilitates visualizations and comparison across
algorithms. Finally, and perhaps most importantly, we have
implemented our software within the Docker software
architecture (Merkel, 2014) which allows us, the developer to
control software dependency harmonization and versioning
without hassle to the end-user.

METHODS

Sample Selection
A total of 31 kidney cancer samples (KIRC) from the Firehose
database on GDC’s TCGA were selected based on the status of
their VHL-coding region on the short arm of chromosome 3 (3p).
All 31 samples were selected to contain deep 3p deletions
associated with clear cell renal cell carcinomas. The
corresponding Illumina 450k BeadChip IDAT files were
downloaded from TCGA. A further 50 low-grade glioma
(LGG), subtype oligodendroglioma, samples were also
downloaded from the Firehose database. Twenty-five samples
are histologically defined oligodendrogliomas and contained
codeletion of the short arm of chromosome 1 and the long
arm of chromosome 19 (1p/19q), and the other twenty-five
samples were astrocyte-like oligodendrogliomas that were
copy-number neutral in these regions (Li et al., 2016). The

Affymetrix SNP Array 6.0 (“gold standard”) copy number
segmentation data corresponding to the above data was also
downloaded from TCGA.

All testing was performed on a Dell Precision 5,820 Tower
X-series workstation running Windows 10 Pro 64bit and R 4.1.2.
128 GB of useable RAM and an Intel(R) Core(TM) i9-10900X
CPU x64 processor @ 3.70 GHz. All analyses were performed
only using a single core as some packages set multiple cores for
the analysis; we wanted to ensure equal computational resources
were allocated for each routine.

Copy Number Variation Calling Methods
We ran four main workflows. All workflows use the same
general formula to calculate the copy number state from the
original methylation signal intensities that we find in the raw
IDAT files: a log ratio is first calculated between the methylation
signal of a test set (IT) over that of a reference set (IR). This could
be a ratio of tumor sample intensities over normal sample
intensities or over a reference intensity set such as the Epic.5.
normal default samples used by SeSAMe, or the median signal
intensity used by default in Epicopy. Thus LRR � log2(ITIR). Then
a threshold is applied to the LRR values to determine the copy
number state of a particular region. We chose a more liberal
threshold of −0.2 and 0.2 than what is often seen in literature
(Feber et al., 2014) for copy number losses and gains
respectively. Regions with LRRs within this range were
consider neutral.

The first workflow that we ran is the Sesame workflow.
SeSAMe and the sesameData R package were used to load in
the “Epic.5. normal” reference (prostate-derived cell lines and
consequently male-only samples) and the tumor. IDAT files from
TCGA. The openSesame () function was used to read in the files,
perform background correction using the normal-out-of-band
(noob) algorithm (Fortin et al., 2014), a nonlinear dye bias
correction step to account for differences in the red and green
fluorescent dyes used to measure methylation (Zhou et al., 2018),
and pOOBAH masking to identify and correct for aberrant
methylation signal stemming from hybridization failure (Zhou
et al., 2018) and output data as SeSAMe signal sets. Segmentation
analysis was then performed with SeSAMe using the “Epic.5.
normal” reference data set.

The MethylMasteR “HM450” workflow is based on the
cnAnalysis450k routine. With this routine, SeSAMe was again
used to read in and preprocess the control Epic.5. normal and
tumor samples from IDAT files as described above. The
preprocessed signal sets were then converted to an
RGChannelSet object and extracted into a GenomicRatioSet
object using the Minfi preprocessRaw() and getCN() functions
for both the control and treatment samples (Aryee et al., 2014).
The data in this object was then z-transformed for both the tumor
and control data, and the median intensity values of all control
samples were also taken. The CNV segments were then calculated
from the above-transformed data and the median control
intensity using cnAnalysis450k functionality. The final CNV
calls were plotted as heatmaps following the style of
CNAclinic (Chandrananda, 2017) and output as comma-
separated-values files (CSVs).
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ChAMP functionality was adjusted slightly and applied to the
31 KIRC deep 3p deletion samples. The function was modified to
accept a modified Illumina-style sample sheet—the
MethylMasteR Style sample sheet and the sample sheet path
can be specified independently from the IDAT files path. The
entire ChAMP routine was run with the modified champ. process
() functionality, we disabled components that were not strictly
necessary for CNV calling such as differential methylation region
detection, as it would increase the overall run time, and possibly
the peak memory usage as well. Again, heatmaps and CSVs for
the CNVs were generated as outlined above.

For the Epicopy routine, the authors were unable to get the
normal data object to load with a “magic number” error,
suggesting that it may need to be regenerated for the newest
version of Epicopy. In place of the built-in “thyroid,” “breast,”
and “lung” normal (TCGA-derived normal-adjacent samples),
the median was specified as the internal control to use for these
samples. Heatmaps and CSVs were again generated. Again, as
with ChAMP, some of the Epicopy (and Minfi) internal
functionality was modified to use the MethylMasteR sample
sheet and workflow.

Our custom routine mostly follows the SeSAMe methodology,
but we added additional peak correction functionality to correct
baseline offsets in the segmentation calls. This was done by
employing the AutoCorrectPeak () functionality from
CopyNumber450kCancer, which is meant to adjust the Log R
Ratios (LRRs) baseline and improve the accuracy of CNV
segment calls (Marzouka et al., 2016).

In each case, the final segmentation state was calculated by
setting a segment mean LRR threshold to ≤ −0.2 and ≥0.2 to copy
number losses and gains, respectively, for visualization. Any
segment with a mean between these two values was considered
neutral. The same threshold was used across all algorithms to
keep the comparisons as equal as possible.

Finally, the gold standard 31 KIRC, and 50 LGG, samples from
the firehose legacy portal SNP CNV calls from the Affymetrix
SNP Array 6.0, were loaded into MethylMasteR using a custom
routine. Heatmaps and CSVs were again generated against which
the CNVs could be compared from the above four routines.

Comparison
The peakRAM() function from the peakRAM R package (Quinn,
2017) was used in R to identify peak memory usage during each
routine, and the base R Sys. time () function was used to calculate
the total time elapsed.

For comparison of renal cell carcinoma CNV segments
identified across routines, we chose to measure the recall of
each routine against a “gold standard” reference data set: the
hg19 SNP6 CNV segment data corresponding to our 31 KIRC
firehose legacy test samples. The countOverlaps () function from
the GenomicRanges R package (Lawrence et al., 2013) was used to
calculate overlaps between CNV segments identified by the
MethylMasteR routines and the gold standard segments (both
tumor and normal adjacent) from the Affymetrix SNP6 chips.
Here the recall was calculated as the percent of CNV reference
segments correctly identified, R � (TN+TP)

TR � ON+(OT−ONT)
N ∪ T .

Overlaps normal (ON) is the true negative number (TN) and

is calculated as the number of normal reference (N) (SNP6 gold
standard) CNV segments that overlapped at least one routine
CNV call by one or more bases. Overlaps tumor (OT) is
calculated the same as ON but for the tumor reference CNV
segments (T). Because true negatives were prioritized over true
positives, segments that overlapped between the normal standard
and tumor standard (ONT) were subtracted from OT to get the
true positive (TP) number of reference segments. The total
number of reference segments (TR) is the total number of
segments that comprises the union of the normal reference
segments (N) and tumor reference segments (T) calculated
with the GenomicRanges union () function. ONT was
calculated using the seqsetvis R package (Boyd, 2021).

For the oligodendroglioma samples, the recall was calculated,
and comparisons were performed similarly to the above with a
couple of adjustments. Because there was no tissue adjacent
Affymetrix SNP6 data, we used the 25 histologically
determined oligodendroglioma samples, harboring the 1p/19q
codeletions as the test group and the 25 astrocyte-like
oligodendroglioma samples that were neutral for these
deletions as the normal group. To determine which samples
contained the deletions or were neutral, the mean LRR values
were retrieved from cBioPortal. Any CNV with mean intensity ≤
−0.2 was labeled a deletion (copy number = 1), ≥0.2 as an
amplification (copy number = 3), and in-between values were
labelled as neutral (copy number = 2). If a sample harbored no
CNVs with a copy number value = 1 and met a detection
threshold to ensure a large-scale event (total marks for that
CNV >10,000) in both 1p and 19q, it was classified as a
tumor (T) reference sample. If instead, the state was equal to
2 with the other parameters being the same, it was classified as a
normal (N) reference sample.

RESULTS

Overall, the analysis provided insightful information about
individual routines performance within the standardized
framework provided by our software and outlined in
Figure 1. Our framework also facilitates the
implementation of custom functionality, such as peak
correction, exemplified in Figure 2. The baseline-corrected
segments (Figure 2B) have fewer false positives at the -0.2,0.2
LRR level vs the uncorrected segments (Figure 2A). The
MethylMasteR program completed each subroutine
successfully, and the results of the individual routines
relative to one another can be seen in Figure 3.

ChAMP took over 1 h to complete the renal cell carcinoma
data with the 31 test samples. Many features were disabled,
including batch correction, differential methylation region
calling, and gene set enrichment analysis. In addition,
ChAMP was pretty memory intensive, requiring over 2
Gigabytes of RAM at its peak. The HM450 routine required
the most RAM at its peak but completed the fastest by far at well
under 10 min . Epicopy took the middle ground regarding time
and memory usage, while SeSAMe and our closely related
custom routine had the best combined time and memory
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performance (Figures 2A,B). The above performance results
can also be found in Supplementary Table S1.1. These patterns
were observed when running the routines on the
oligodendroglioma samples as well with the exception that
ChAMP, Epicopy, and our custom routine required more
memory than expected for the astrocyte-like (copy number
neutral) oligodendroglioma samples compared to the other
two categories: renal cell carcinoma and histologically
determined oligodendroglioma (codeletion) samples
(Supplementary Table S1.1).

We can see that Epicopy, and ChAMP performed the worst in
terms of recall for copy number gains and losses for the kidney
cancer samples but had improved performance, most notably
with ChAMP in terms of identifying gains, in the
oligodendroglioma samples. Both routines identified many
neutral regions in both tumor types (Figures 3C,D). SeSAMe
was able to recognize the gains and losses very well but had some
trouble identifying neutral regions against the gold standard
SNP6 Chip CNV calls. The HM450 routine and our custom
pipeline performed the best in terms of recall, but HM450 used a
high level of total peak RAM. In contrast, both SeSAMe and our
custom routine (which builds on SeSAMe results) were slower
than the HM450 routine (Figures 3A–D). A comparison of the
final CNV states of our custom routine to the SNP6 standard
(both tumor and normal) can be seen in Supplementary Figure
S1. All recall results are also contained in Supplementary Table

S1.2 (renal cell carcinoma) and Supplementary Table S1.3 (low-
grade glioma: oligodendroglioma).

DISCUSSION

Overall, our custom routine, SeSAMe, and HM450 performed
the best in execution time, memory, and overall recall. Our
custom workflow, which builds off SeSAMe, had an advantage
in identifying gains and copy number neutral regions over
SeSAMe alone. HM450 was best overall at identifying losses -
an important finding when considering that copy number losses
in the short arm of chromosome 3 are essential drivers in many
kidney cancers. In addition, the large-scale loss of 1p and 19q
essential for the molecular diagnosis of classical
oligodendrogliomas was most easily identified using HM450
as well, which thus demonstrated decent recall and run time but
required the most peak RAM usage of any of the routines. This is
an essential factor to consider when analyzing many samples.
ChAMP and Epicopy appeared to perform the worst overall for
the kidney cancer results but performed better for the
oligodendroglioma samples. The many dependencies required
for both of these routines may lead to a greater number of
parameters that need to be fine-tuned for individual tumor and
may be responsible for the variability in recall across tumor
types. ChAMP held a slight edge in recall relative to Epicopy but

FIGURE 1 |MethylMasteR workflow overview. The MethylMasteR software package combines common methylation CNV callers using a common Sample Sheet
and raw IDAT files and is implemented as a Docker image which can be run as a Docker container on any operating system that has Docker installed. Individual
algorithms are then run, and CNV segments are formatted into a common data. frame format, which facilitates visualizations and comparison across algorithms. In
addition to the generation of CNV heatmaps and tables, time and memory are also recorded for comparison across algorithms.

Frontiers in Bioinformatics | www.frontiersin.org April 2022 | Volume 2 | Article 8598285

Mariani et al. MethylMasteR: DNA Methylation CNV Customization

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


required a significantly longer runtime and more peak RAM
usage. There was also some divergence in expected memory
usage in the copy-number neutral oligodendroglioma samples
relative to the other two categories in ChAMP, Epicopy, and our
custom routine as well. This demonstrates that while general
patterns were observed, one must be cautious when analyzing
and interpreting memory requirements for complex software
that builds upon many dependencies, which are not all
necessarily designed with memory optimization in hand. In
addition, many of the available ChAMP features that were not
essential for CNV segmentation calling were not run; thus, in
many user cases, the runtime for ChAMP would be even longer.
It should be noted that ChAMP offers parallel processing
support that would speed up computation time, but it is not
clear that this feature is supported or desirable on all operating
systems due to the high RAM consumption during the serial
processing.

Overall, it is crucial to note that the recall for calling CNV’s
using methylation data is low relative to the gold standard SNP6
results. Yet, to tumor biologists, large-scale chromosomal
aberrations are of great biological interest, and we have
demonstrated that some routines perform better than others
in this regard. Indeed, the identification of such events is
mentioned as an advantage to CNV calling with methylation
data in some cases (Feber et al., 2014). At the same time, the
resolution of the SNP-based CNV calling methods ensures that
they will remain the gold standard for now. As we have
reproduced herein, CNV calling with DNA methylation data

can identify large-scale CNV events and has the advantage of
providing DNA methylation information in parallel. Thus, the
researcher will have to decide which cases are best suited for CNV
calling with methylation data and which, or how many, analysis
routines to run (Kilaru et al., 2020).

The overall formatting of the software in a standardized
manner allowed us to quickly implement our custom routine
involving the primary SeSAMe analysis pipeline with a modified
version of the AutoCorrectPeak () function originally from the
CopyNumber450kCancer pipeline. The organization of the
MethylMasteR framework allowed us to push the overall gain
and loss recall almost to the level of the HM450 routine, which
was the best at identifying large-scale copy number losses such as
the chromosome 3p deletion commonly seen in renal carcinoma.

Similarly, by modifying the Ilumina-style sample sheet that is
used by minfi, ChAMP, and Epicopy, to our MethylMasteR
sample sheet, we have incorporated a single input sample file
that can easily be used across all the routines in our software. This
feature added to our ability to streamline comparisons across the
various algorithms and parameters; similarly, we can create a
more efficient software platform to facilitate downstream
analyses across the multiple routines by using the same
internal data formats.

The software also has additional features that allow the user to
customize analyses. For instance, specifying a normal control
within the sample sheet (instead of using the internal references)
and the gathering of a final set of consensus regions (also output
in. CSV format) using a modified version of population_ranges ()

FIGURE 2 | Autocorrection as part of the custom workflow. The MethylMasteR software framework enables the easy deployment of custom workflows such as
results from the SeSAMe and CnAnalysis450kCancer workflows above. (A) An uncorrected CopyNumber450kCancer-style plot. (B) The corrected CNV segmentation
values after processing with SeSAMe segmentation values with the AutoCorrectPeak () function from the CopyNumber450kCancer R package. Abbreviations: L-value -
the LRR value or log2 ratio of tumor methyla.
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function from CNVRanger (da Silva et al., 2020) are two such
features. The population_ranges () function was called with
default parameters: density = 0.1, rho = 0.5, and est. recur =
TRUE. Another example of analysis customization is that
MethylMasteR allows the user to change the LRR signal
threshold parameter that is used identify copy number states.
In addition to thresholds, the R equation: seg .state �
round(2seg .means*2) can be used by setting this parameter to
“NULL” in R. Such intelligent parameter deployment is

another example of the analytical versatility provided by
MethylMasteR. Finally, the standardized visualization of CNV
states across routines via heatmaps is useful and novel and allows
for the fast and easy interpretation of data.

Finally, and perhaps most importantly, we decided to build
our software into the Docker architecture, creating an image
that can be downloaded and run as a container on any operating
system that has Docker installed. Because Docker is now
available for so many operating systems, this provides an

FIGURE 3 | Comparisons of CNV calling routines. Results are shown for the four common software routines incorporated into the MethylMasteR framework and
the MethylMasteR custom analysis routine. (A-B). ChAMP required an extended runtime and peak memory for successful completion, while HM450 was fast but
memory intensive. SeSAMe and the custom routine were optimal for speed and memory usage, with Epicopy a close second. (C-D). Overlaps with the Affymetrix SNP6
legacy data as the gold standard showed that Epicopy was the least accurate overall, with ChAMP having slightly better recall for identification of losses in kidney
cancer but better recall for gains in oligodendroglioma. HM450 and our custom routine were the most accurate overall, and HM450 required less run time but used the
highest amount of peak RAM of all the routines (except the copy number neutral astrocyte-like oligodendroglioma runtime results—see Supplementary Table S1.1).
SeSAMe was not as accurate in identifying losses as our custom routine and had similar run time performance. This routine was also on par with ChAMP and Epicopy in
terms of recall for the oligodendroglioma samples. In general, similar recall results to those obtained for the renal cell carcinoma samples in Figure 3C can be seen for the
oligodendroglioma samples as well in Figure 3D.
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excellent, novel way to regulate software version control and
compatibility on our end as developers and release the final
product as a standalone executable for the user to run within a
Docker environment. This approach reduces the added
difficulty that many users experience when downloading,
installing, or integrating various genomics software - all of
which may not be actively maintained.

Overall, we have demonstrated how multiple DNA
methylation software can be combined in a comprehensive yet
efficient framework for accurately calling large-scale CNVs from
raw DNA methylation signals and comparing their performance
across algorithms. In the future, we plan to add additional
functionality to the custom routine to improve
MethylMasteR’s recall and overall accuracy further. We also
will continue to refine our Docker-based approach, allowing
users ease of use, and developers maximum control over, the
development of genomics software requiring numerous versioned
dependencies. Such a framework will enable researchers to
explore the genetic and epigenetic cancer biology that can be
gleaned from DNA methylation data with greater facility and
accuracy.
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