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ABSTRACT

Advances in chromosome conformation capture
techniques as well as computational characterization
of genomic loci structural dynamics open new op-
portunities for exploring the mechanistic aspects of
genome-scale differences across different cell types.
We examined here the dynamic basis of variabilities
between different cell types by investigating their
chromatin mobility profiles inferred from Hi-C data
using an elastic network model representation of the
chromatin. Our comparative analysis of sixteen cell
lines reveals close similarities between chromoso-
mal dynamics across different cell lines on a global
scale, but notable cell-specific variations emerge in
the detailed spatial mobilities of genomic loci. Closer
examination reveals that the differences in spatial
dynamics mainly originate from the difference in the
frequencies of their intrinsically accessible modes of
motion. Thus, even though the chromosomes of dif-
ferent types of cells have access to similar modes of
collective movements, not all modes are deployed by
all cells, such that the effective mobilities and cross-
correlations of genomic loci are cell-type-specific.
Comparison with RNA-seq expression data reveals a
strong overlap between highly expressed genes and
those distinguished by high mobilities in the present
study, in support of the role of the intrinsic spatial
dynamics of chromatin as a determinant of cell dif-
ferentiation.

INTRODUCTION

Advances in chromosome conformation capture experi-
ments in recent years have opened the way to a new line
of research where it is possible to have for the first time a
physical understanding of gene-gene couplings at the level
of the entire chromatin (1–3). More recently, various stud-
ies have shown that changes in the chromatin structure are
associated with cell development and differentiation (4–7).

However, questions remain regarding the type and extent
of conservation and/or differentiation of chromatin struc-
ture among different cell lineages and how to quantify these
differences. Rao et al. (8) found that many loop domains
(∼100 kb) are conserved not only in different cells but also
across species; Dixon et al. (4) noted that, although chro-
matin domain boundaries tend to be stable during cell dif-
ferentiation, drastic changes in chromatin interactions are
observed both within and between domains; Rudan et al.
(9) found that the CTCF sites, one of the most impor-
tant determinants of domain boundaries, evolve under two
regimes: some CTCF sites are conserved across species, oth-
ers are significantly more flexible. A recent single cell study
showed that while larger chromatin structures compart-
ments are mostly conserved, the structures of topologically-
associating domains (TADs) and loops may vary substan-
tially even within the population of the same type of cells
(10). All these observations have shown some levels of con-
servation as well as variation in the chromatin 3D structure
or organization of different cells, suggesting a complex de-
pendency on cell type at the 3D genome level.

We recently introduced a topology-based framework,
Gaussian Network Model (GNM), to model and analyze
the intrinsic dynamics of the chromatin. GNM is an elas-
tic network model that provides an analytical solution for
the spectrum of spatial movements collectively accessible
to genomic loci (11). This so-called chromatin intrinsic dy-
namics is uniquely defined by the loci–loci contact topol-
ogy detected in Hi-C experiments under equilibrium con-
ditions. Proximity ligation-based assays are capable of de-
tecting locus–locus contacts genome-wide and provide a
contact map for the 3D chromatin structure. The latter
constitutes the major input for constructing a GNM rep-
resentative of the chromosome architecture and predict-
ing a spectrum of normal modes of motion. The normal
modes provide rich information about the equilibrium fluc-
tuations in the positions of genomic loci, their spatial co-
variance, as well as the chromosomal domains where they
are embedded (11,12). Equally important is the relative time
scales of these motions are predicted, which permits us to
distinguish low-frequency (slow) and high-frequency (fast)
modes. Slow modes are usually associated with the coop-
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erative movements of large substructures, and therefore re-
ferred to as global modes; whereas fast modes correspond
to local movements, and hence referred to as local modes.
Applications to biomolecular structures demonstrated that
global modes robustly mediate domain movements rele-
vant to function, whereas local motions confer specificity
(13,14).

Cell identity is determined by lineage-specific gene ex-
pression during differentiation (15). The process of gene
expression is regulated by the accessibility of the corre-
sponding region of the DNA to transcription factors and
co-factors. However, numerous studies with biomolecular
assemblies have demonstrated that accessibility to binding
substrates does not necessarily map to functionality. A more
important feature that enables function is the malleability of
the putative active sites to optimize binding energetics and
support adaptability to structural changes, manifested by
conformational flexibility under physiological conditions
(16). By analogy, it is reasonable to expect that genes located
in loci distinguished by large amplitude fluctuations under
equilibrium conditions would be more amenable to process-
ing and expression. We perform here a systematic compar-
ative analysis to examine the existence of such correlations
between the 3D mobilities of the genes and their expression
levels. Using gene-set enrichment data based on RNA se-
quencing experiments deposited in Gene Expression Om-
nibus (GEO) (17,18), we demonstrate the existence of a
strong coupling between cell-specific highly mobile genes
(HMGs) predicted here by the GNM and the highly ex-
pressed genes (HEGs) compiled in the ARCHS4 database
(19).

Overall, this present analysis shows that the structural dy-
namics of chromosomes is an important feature that defines
cell identity, in addition to sequence properties; and net-
work models for characterizing 4D genome dynamics pro-
vide a computationally efficient platform for assessing cell
type-specific behavior at the level of the entire chromatin.

MATERIALS AND METHODS

Dataset

The Hi-C datasets used in this study were downloaded
from various sources (summarized in Table 1) using the
Juicer/Straw tool (20). Preprocessing steps are described in
our earlier work (11).

Gaussian network model

As described earlier (11), the application of the GNM to Hi-
C data permits us to construct a network of n nodes each
representing a gene locus, connected by springs the force
constant of which is given by the elements of the Kirchhoff
matrix (21,22).

�i j =
{−Mi j if i �= j∑

j, j �=i
Mi j if i = j . (1)

Here Mi j represents the number (or strength) of con-
tacts observed in Hi-C experiment between loci i and j.
The present study uses population-averaged Hi-C data. We
note that the GNM is suitable, and even developed, for

modeling the equilibrium dynamics of densely packed sys-
tems using their ensemble-averaged data. The theory has
been shown to be applicable to polymer networks (23,24),
to proteins/DNA molecules (13,21,22) including proteins
resolved in different forms (25) or ensembles of sequen-
tially heterogeneous proteins that belong to the same fam-
ily (26), and recently to chromatin (11). The elastic springs
simply account for the Gaussian distribution of inter-node
distances around their mean values, the nodes being poly-
mer chain ends/cross-links, protein/DNA residues, or ge-
nomic loci, in the respective cases. Contact topology is
the only ingredient and is compatible with an ensemble
of conformers that retain the node positions. The under-
lying assumption of Gaussian fluctuations for the nodes is
mathematically correct as the size of the network increases
(using the central limit theorem). The inter-locus contact
occurrence/probability obtained from population-averaged
Hi-C data, permits to assign stronger effective spring con-
stants to pairs of loci whose interactions are more conserved
among the individual cells that compose the ensemble.

Eigenvalue decomposition of � yields n − 1 nonzero nor-
mal modes of collective motions. Each mode k is charac-
terized by an eigenvector ukand an eigenvalue λk assigned
a number as λ1 ≤ λ2 ≤ . . . ≤ λn−1. uk is an n-dimensional
normalized vector that represents the collective spatial dis-
placements of all n nodes in mode k (also called mode
shape), and λk scales with the mode frequency. The cross-
correlation between the displacements �ri and �r j of loci i
and j is defined by the ijth element of the covariance matrix
C,

Ci j = 〈�ri · �r j 〉 =
m−1∑
k=1

1
λk

[
uk uT

k

]
i j , (2)

where the angular brackets designate the summation over
m representative modes. The term 1

λk
[uk uT

k ] represents the
contribution of mode k to C. Likewise, the ithdiagonal ele-
ment of C describes the mean-square fluctuation (MSF) of
the ith locus around its mean position, i.e.

〈�r 2
i 〉 = Cii =

m−1∑
k=1

1
λk

[
uk uT

k

]
i i . (3)

[uk uT
k ]i i plotted as a function of locus index i describes

the normalized distribution of loci square displacements
driven by mode k (as

∑
i

[uk uT
k ]i i= tr[uk uT

k ] = 1, by def-

inition). The size/amplitude of MSF profile along mode k
scales with 1/λk, lower frequency modes making larger con-
tributions. The term 1/λkthus serves as a statistical weight
for the contribution of mode k to 〈�r 2

i 〉 or 〈�ri · �r j 〉.
In the current study, a uniform resolution of 50 kb per

gene locus is adopted for efficient comparative analysis of
16 types of cells. At this resolution, the number of modes
accessible to a given chromosome, e.g. in cell line GM12878,
varies between 677 (chromosome 22) and 4452 (chromo-
some 1); and the entire chromatin has access to 56 392
modes. Our previous analysis repeated with different sub-
sets of modes (11) showed that the first m ≈ 100 softest
modes predominantly determine the chromosomal dynam-
ics and yield robust results in good agreement with chro-
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Table 1. Dataset of cell lines analyzed in the present study*

Linkage Name Germ layer Reference

GM12878 Human lymphoblastoid cell line mesoderm

Rao et al. (2014) (8)

K562 Human immortalized myelogenous leukemia cell 
line mesoderm

KBM7 Chronic myelogenous leukemia (CML) cell line mesoderm
HUVEC Human umbilical vein endothelial cell line mesoderm
IMR90 Lung fibroblasts endoderm
NHEK Normal human epidermal keratinocytes ectoderm
HMEC Primary mammary epithelial cells ectoderm
HeLa Cervical cancer cells ectoderm
Hap1 Near-haploid human cell line derived from KBM7 mesoderm Sanborn et al. (2015) (32)

HCT116 Human colon cancer cell line ectoderm Rao et al. (2017) (33)

RPE1 Retinal pigment epithelial cell line ectoderm Darrow et al. (2016) (34)

HSPC Hematopoietic stem and progenitor cells mesoderm
Joeng et al. (2017) (6)EP Erythroid progenitor cells mesoderm

T-cell T lymphocytes mesoderm
THP1 Immortalized monocyte-like cell line mesoderm

Phanstiel et al. (2017) (35)
Macrophages Macrophages derived from THP1 mesoderm

(*) Cells that originate from hematopoietic stem cells are highlighted in blue. These all originate from 
mesodermal germ layers, as well as the human umbilical vein endothelial cell line (HUVEC, highlighted 
in gray). Those resulting from the differentiation of ectodermal germ layers are highlighted in yellow; and 
endodermal germ layers in orange.

matin accessibility data as well as results derived from
higher resolution (5 kb/locus) data. Here we adopted m =
500 as a sufficiently large subset to represent the collective
dynamics (see Supplementary Figure S1), while also saving
computing time, given that the time cost of the Hungarian
algorithm used for mode-mode matching (see below) is of
the order of O(n3).

Directional cross-correlations, or correlation cosines, be-
tween the motions of loci i and j are defined as

Di j = Ci j√
Cii × √

Cj j
. (4)

Note that Di j varies in the range [−1, 1], the up-
per and lower limits referring to fully correlated and
fully anticorrelated pairs. Anticorrelated pairs undergo
correlated/concerted movements along the same direction
but opposite senses. Di j = 0 for uncorrelated pairs of loci.
In the present study we evaluated Di j values for each chro-
mosome.

Mode-mode overlaps

To compare two sets of modes defined as {(λA
k , vA

k ) | k ∈
[1, n A]} and {(λB

l , vB
l )| l ∈ [1, nB]} obtained for the same

chromosome of two different cell types A and B for example,
we evaluate the mode-mode overlaps organized in a correla-
tion cosine map S(A, B) the klth element of which is

[S (A, B)]kl = ∣∣vA
k · vB

l

∣∣ (5)

The absolute value is used because the direction of fluctu-
ations (or sense of eigenvectors) is immaterial. [S(A, B)]kl

varies in the range [0, 1], the lower and upper limits referring
to no overlap and complete overlap, respectively.

Mode conservation across different types of cells

The level of conservation of mode k is evaluated by averag-
ing [S(A, B)]kk over all pairs (A, B), i.e.

〈S〉k = N (N − 1)
2

∑
A

∑
B,B �=A

[S (A, B)]kk, (6)

where N is the total number of cell types (N = 16 here).

Covariance overlap

The similarities between covariance matrices CA and CB for
respective cell types A and B is quantified by the covariance
overlap (27):

L (A, B)

= 1 −
⎡
⎣ ∑n−1

i = 1(σ A
i + σ B

i ) − 2
∑n−1

i = 1

∑n−1
j = 1 (σ A

i σ B
j )

1
2 (vA

i · vB
j )2

∑n−1
i = 1(σ A

i + σ B
i )

⎤
⎦

1
2

.

(7)

Here σi denotes the variance of mode i, equal to the recip-
rocal of λi . Because Hi-C maps are measured for different
cell lines that may have different total read counts, we nor-
malized the variances as

wk = σk∑n−1
l=1 σl

= 1/λk∑n−1
l = 1 1/λl

. (8)
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wk serves as a prior probability of contribution from mode
k. This normalization permits us to directly compare the co-
variance matrices derived from different datasets. Compu-
tations were performed using ProDy, a Python Application
Programming Interface (API) designed for normal mode
analysis of biomolecular systems (28,29).

Identification of mode-mode-matches across different cell
lines

Because of cell-type specific variations in the genome struc-
ture, the mode spectra also differ. Pairwise comparisons of
the mode sets for different cell lines necessitate the iden-
tification of the equivalent (best matching) modes, which
we carried out as a linear assignment problem (30). Ac-
cordingly, we first calculate the mode overlaps [S(A, B)]kl ∈
[0, 1] for all eigenvector pairs (k, l) of cells A and B using
Equation (5), and then evaluate the cost of matching them,
or the distance between the two sets, as 1 − [S(A, B)]kl
and finally select the mode pairs that minimizes the total
cost/distance using the Hungarian algorithm (30,31).

Construction of the cell dendrograms based on 4D genome
properties

To this aim, we converted the covariance overlap to an arc
distance (covariance distance),

dcov (A, B) = arccos (L (A, B)) , (9)

for each pair (A, B) of cells, for all chromosomes. Then, we
took the maximum distances across all chromosomes for
each cell pair to construct a distance graph G D where the
vertices represent the cells, and the edges are weighted by the
covariance distances between the corresponding vertices.
For characterizing the cellular hierarchy among hematopoi-
etic cells, a minimum-spanning tree (MST) was found using
Prim’s algorithm (32). This way, cell lines at intermediate
stages are treated as internal nodes. For all cells, because of
the absence of intermediate cell lines, neighbor-joining (NJ)
algorithm (33) was adopted, where all cell lines are treated
as terminal nodes.

Overlap between HMGs and HEGs

Relative mobilities of genomic loci are calculated by sub-
tracting from the MSF profile〈 �r2

i q〉 of locus i in cell type
q the average over all cell types, i.e.

�
〈
�r2

i

〉
q = 〈

�r2
i

〉
q −

∑16
q = 1 〈�r2

i q〉
16

. (10)

Loci with the highest � 〈�r2
i 〉q (top 10%) are consid-

ered as highly mobile, and genes within these loci are
called ‘highly mobile genes’ (HMGs) for that cell type q.
The ARCHS4 database (19) from Enrichr (34,35) contains
HEGs data for 125 cell types. We used Jaccard index as a
metric to evaluate the overlap between HMGs for cell line
q and the HEGs for cell line z from the ARCHS4 database,

J
(
HMGq , HEGz

) =
∣∣ HMGq ∩ HEGz

∣∣∣∣ HMGq ∪ HEGz
∣∣ . (11)

We rank-ordered the cell lines in ARCHS4 from high-
est to lowest overlap based on this metric and found
that J(HMGq , HEGz) values were maximized for q = z.

Application to single-cell Hi-C data

Mouse single-cell and population Hi-C datasets were ob-
tained from the above mentioned single-cell study (10). Pop-
ulation Hi-C datasets were processed in the same way as de-
scribed in our earlier work (11). As to single-cell datasets,
rather than using the highly sparse Hi-C raw data that
would lead to disconnected graphs, we used the 3D struc-
tural models optimally resolved by Stevens et al. for eight
single-cell genome (10). In each case, loci-loci contact fre-
quencies were obtained by reverse calculation without any
normalization from the 3D model using the simple relation-
ship (10):

n =
(

k
d

)3

. (12)

Here, n is the contact frequency, d is the Euclidean dis-
tance between pairs of loci, and k is a constant. For compar-
ative purposes, the contact maps constructed for the eight
different cells were summed element-wise to obtain ‘com-
bined single-cell data’ representative of the cumulative be-
havior of the cells. GNM analysis was performed for each
single-cell, for the combined single-cell, and for population
Hi-C contact map.

RESULTS

Computations reveal the shared and specific features of the
chromosomal dynamics of different types of human cells

We evaluated the intrinsic chromosomal dynamics of 16
human cells (or cell lines), listed in Table 1, using their
inter-loci contact topology data from public Hi-C datasets
(6,8,36–39) in the GNM (21,22) framework. We first com-
puted the MSFs of genomic loci for all chromosomes, re-
peated for all cells. The resulting mobility profiles (normal-
ized MSFs, which allow for visual comparison of the be-
havior of different cells) are illustrated for chromosomes
17 (Figure 1A) and 2 and 8 (Supplementary Figure S2),
which show chromosome-specific patterns broadly shared
by different types of cells. Note that these are obtained as
part of the mobility profiles generated for the entire chro-
matin, i.e. the underlying GNMs include both intra- and
inter-chromosomal contact data for each cell type.

We quantified cell-cell similarities between chromosomal
mobility profiles by evaluating pairwise Pearson correlation
coefficients. This led to an average Pearson correlation of
r = 0.63 ± 0.23 for cell-cell mobility profiles of all chro-
mosomes (dashed line in Figure 1B), except for an ectoder-
mal cell line, NHEK, which correlated poorly with other
cells (r = 0.29 ± 0.22, Figure 1B, last entry) but exhibited
a correlation with another ectodermal cell line, RPE1 (r =
0.58 ± 0.14). RPE1, in turn, exhibited relatively strong cor-
relations with two other ectodermal cell lines, HMEC (r =
0.66 ± 0.08) and HCT116 (r = 0.63 ± 0.12), as well as the
only endodermal cell line, IMR90 (r = 0.68 ± 0.11).
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Figure 1. Comparison of the chromosomal dynamics of different types of cells. (A) Mobility profile of genomic loci computed for the chromosome 17 of
all 16 cells or cell lines in our dataset (Table 1). The curves represent the normalized distributions of mean-square fluctuations (MSFs) in the 3D positions
of genomic loci predicted by the GNM, stacked up for visual comparison. (B) Violin plots showing the distribution of Pearson correlations between the
chromatin mobility profile of individual cells (listed along the abscissa) and all others. Blue dashes indicate the mean. (C) Similarities between the chromatin
dynamics of the examined 16 cell lines. The entries in the heat map show the Pearson correlations between the genomic loci mobility profiles computed for
the entire chromatin of each pair of cell lines.

The mobility profiles of genomic loci exhibit global similari-
ties while retaining cell-specific patterns

Pearson correlations between the mobility profiles of ge-
nomic loci in different types of cells can be viewed in Fig-
ure 1C for all pairs of cells. The results refer to the col-
lective fluctuations of all chromosomes (entire chromatin)
for each pair of cell types. The hematopoietic cell lines
(the first nine in Figure 1B, C) exhibit a correlation of
at least 0.5 with each other, with three being the most
dissimilar, EP (erythroid progenitors), THP1 and THP1-
derived macrophages. EP is the only red blood cell line in
the dataset, and THP1 and the macrophages are more dif-
ferentiated than other hematopoietic cell lines. HSPC, the
hematopoietic stem and progenitor cells, correlate well with
almost all other cell types (r = 0.66 ± 0.17, Figure 1B, first
entry) and will be used as reference for quantitative analyses
of cell type-specific behavior.

The mobility profiles in Figure 1A and Supplementary
Figure S2 show that each chromosome exhibits a unique
mobility profile, closely maintained across different cells.
A closer look reveals certain localized cell-specific fea-
tures. For example, despite the similarities between the
hematopoietic cell lines (highlighted in yellow boxes in Fig-
ure 1A and C), some notable distinctions are observed at se-
lected loci: GM12878 and T-cells, both of which belong to

lymphoid lineage, and KBM7 and its derivative Hap1, show
enhanced fluctuations in the short arm of chromosome 17
(loci 320–380) as compared to other hematopoietic cell lines
(see the orange arrow); and erythroid progenitor (EP) has
more suppressed mobility at the tail of chromosome 17 (loci
1400–1600) than other hematopoietic cells (green arrow).
Ectodermal cell lines NHEK, RPE1 and HCT116, except
for HMEC, exhibit the most distinctive fluctuation patterns
compared to cells derived from other germ layers.

Dissection of mode spectrum reveals the high conservation of
global modes

The mobility profiles are obtained from the linear
(weighted) combination of square displacements of loci
in 3D, contributed each by a representative set of normal
modes (1 ≤ k ≤ 500). Of interest is to dissect the mode
spectrum and analyze the contribution of individual modes
to assess the origin of the similarities and dissimilarities
between the chromosomal mobility profiles of different cell
types. As explained in the Materials and Methods, each
mode k has a shape (n-dimensional vector uk representing
the normalized displacements of the n loci along the kth
mode axis) and a statistical weight 1/λk which defines the
amplitude of the (square) displacement along mode k.
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Modes are assigned mode numbers increasing from 1 to
n − 1 with decreasing amplitude, such that the first few
modes (global modes) make relatively large contributions
to the fluctuation spectrum; whereas higher modes usually
exhibit more localized fluctuations.

Decomposition of the chromosomal mode spectrum ac-
cessible to each cell type yielded the mode conservation
curve presented in Figure 2A as a function of mode num-
ber. The ordinate 〈S〉k designates the correlation cosine be-
tween the shape of mode k, averaged over all pairs of cells.
The first mode is highly conserved across all examined cells
(〈S〉1 = 0.84 ± 0.18) indicating the prevalence of a global
mode shape for the chromatin, shared by all cell lines; Fig-
ure 2C and D illustrate the global mode shape (parts) corre-
sponding to the respective chromosomes 2 and 17. A closer
look at mode conservation within individual chromosomes
(illustrated for chromosome 2 in Figure 3E, and 8 and 17 in
Supplementary Figure S3A, B) also exhibited the same pat-
tern, mainly high-to-moderate conservation of the first few
modes (see also the inset, Figure 2A), followed by a rapid
decrease with increasing mode number.

We further evaluated the mode-mode overlaps among the
first 10 modes, for every pair of cells. The heatmap on the
left in Figure 3A shows an example of such overlaps for
HSPC and KBM7, where each element represents the cor-
relation cosine [S(A, B)]kl = |vA

k · vB
l | between the kth and

lth modes (1 ≤ k, l ≤ 10) of the respective cells A and B
(in this case HSPC and KBM7). The same type of overlap
map is displayed for HSPC and each of the other cell types
in Figure 3C and the complete map for all pairs of cells is
presented in Supplementary Figure S3C. These maps con-
firmed that the slowest modes from different cells exhibit
relatively high overlaps (see red pixels near the upper left
part of the diagonal in each block). Even in the case of the
most distinctive cell types such as GM12878 and NHEK,
the overlap between the top three modes remained above
0.65.

While different cell types have access to conserved genome-
scale dynamics, the ‘active’ modes of motions differ from cell
to cell

Closer examination of the heat maps Figure 3A (left) and
Supplementary Figure S3C (inset) reveal that a high mode-
mode overlap between different cell lines is not necessarily
observed at the diagonal elements of each block, indicat-
ing a mismatch in mode numbers between different cells.
As mentioned above, the mode number/index is a physically
meaningful quantity, smaller indices referring to lower fre-
quency or larger amplitude modes. Thus, an off-diagonal
red pixel in the heat map means that the two modes are sim-
ilar in shape (relative distribution of loci movements during
this mode), but not in size (absolute amplitude of motions).
In a sense, the mode will be more pronounced or active in
one type of cell compared to the other. Here ‘more active’
means a ‘predisposition to undergo a relatively larger dis-
placement’ along that mode (exhibited by the cell with the
smaller mode number).

The differences in the mobility profiles of chromoso-
mal loci in different cell types (Figure 1A) can thus origi-
nate not only from the different shapes of the modes - ev-

idenced in the comparison of the global (k = 1) mode
shapes of chromosomes 2 and 17 for the 16 cells/cell lines
in Figure 2C and D), but also from their different statistical
weights.

To understand to what extent the frequency dispersion
or the selective activation of pre-existing shared modes un-
derlies the differences in the observed spatial mobilities of
genomic loci, we adopted the mode numbers of HSPCs as
reference (as the most undifferentiated cell in the dataset,
based on the mode shape overlaps) and reordered the modes
of the other 15 cell lines to achieve the highest mode-mode
overlaps. Figure 3A provides a schematic description of
mode number reassignment method. Essentially, the shape
and frequencies of the modes are retained, but their mode
index is changed to match the so-called ‘equivalent’ modes
in evaluating the average mode-mode overlaps. This led to
heat maps with highest mode-mode overlaps along the diag-
onals of the blocks, as illustrated in Figure 3D and Supple-
mentary Figure S3F inset, and a conservation profile pre-
sented in Figure 2B for the entire chromatin, and Figures
3C and S3D-E for the respective chromosomes 2, 8 and 17.
By selectively including the ‘equivalent modes’ (or matched
modes) and excluding others to evaluate the intrinsic dy-
namics, we end up with mobility profiles that are almost
identical across all cell lines (Figure 4A). The recomputed
mobility profiles led to significant increase in the Pearson
correlations among different cell lines (r = 0.85 ± 0.08,
Figure 4B; compared 0.63 ± 0.23in Figure 1A, B).

It is important to note that the equivalent modes were
identified by searching a broader range of modes, and
often found from amongst ‘higher’ modes (Figure 3B),
which means some of the matched modes had relatively
low weights/amplitudes and thus might not be contribut-
ing to collective dynamics in a given cell type as effec-
tively as they do in another cell type. Slow modes tended
to be retained without significant change in mode num-
bers; whereas fast modes exhibited large differences. For
example, the first 10 matched modes are selected from
among the original 20 modes of the cell lines; whereas
the top 100 modes of the reference cell line (HSPC) are
matched by up to 400 (original) modes of the other cell lines
(Figure 3B).

The degree of collectivity of a given mode provides a mea-
sure of its distribution over different parts of the structure
(40). Slower modes are usually more collective, coopera-
tively involving large groups of loci, and collectivity usually
decreases with mode number, but this is not necessarily a
smooth decrease. The collectivity of the top 500 modes for
all chromosomes and cell types evaluated before and after
matching the modes showed that the dependency of collec-
tivity on mode number remained unaffected by mode-mode
matching (Supplementary Figure S4).

Overall, these results show that the chromatins of differ-
ent types of cells have access to comparable modes of mo-
tion (encoded by their similar contact topologies) but not
all of these pre-existing intrinsic modes are manifested, re-
sulting in cell-specific mobilities of genomic loci. The dif-
ferences in mobility profiles observed in Figure 1 originate
from the fact that the ‘active’ modes differ between differ-
ent cell lines. If we select the original softest 500 modes, we
end up with cell-type specific mobility profiles. The profiles
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Figure 2. Conservation of the first global mode accessible to the chromatin. (A) Mode conservation profile as a function of mode number k reveals the
high conservation of the global mode (k = 1). The profile displays the correlation cosines between individual mode shapes computed for each of the first
200 modes accessible to the entire chromatin averaged over all cell pairs (Equation 6). The solid green curve and the shade show the mean and standard
deviation, respectively. (B) Same as panel A, after reorganizing the modes to select the equivalent modes that best match those of the reference cell, HSPC.
Note the higher conservation of modes, but also the accompanying higher variance. See the counterparts of panels A and B for chromosomes 2, 8 and
17 in Figure 3 and Supplementary Figure S3. (C, D) Global mode shape for chromosomes 2 (C) and 17 (D), highly conserved across 16 cell lines. The
curves represent the normalized spatial displacements of loci (abscissa) along the equivalent mode 1 axis. A central hinge region is observed in C at the
crossover between positive and negative displacements near loci 2000–2500. The original mode numbers are shown in parentheses on the ordinate, and the
correlation cosine with respect to the reference (HSPC) is indicated in each case.

become similar only if we select the ‘equivalent’ modes even
though this set contains contributions from relatively ‘inac-
tive’ modes and excludes some ‘active modes’.

In other words, conserved modes among different types of
cells manifest themselves in a signature profile shared among
all cell lines (Figure 4A). But in practice, not all modes are
operative, and the fluctuations of genomic loci exhibit cell
type-specific features. Some modes are ‘mute’ while oth-
ers are fully deployed, and which modes are selectively de-
ployed depends on the cell type.

It is of interest to assess the fraction of the original modes
that have been replaced by equivalent modes. Results are
presented in Figure 4C. We note that despite showing the
greatest enhancement to conform to the signature profile,
NHEK is only in the third place to show largest mode
changes (19%), indicating that some of the original slow
modes for NHEK greatly differed from those for HSPC,
and the substitution of those modes effectively restituted
the mobility profile to closely resemble the signature pro-
file. Two cell lines that showed the largest mode changes
are K562 (27%) and T-cells (24%). Their mobility profiles
exhibited an increase in average correlation with all others
from 0.60 (each) to 0.86 and 0.78, respectively. EP expe-
rienced the least mode number changes (8.1 ± 4.6%), yet
its average correlation increased significantly (from 0.54 to
0.79).

Locus-locus correlations in 4D show stronger dependency on
cell type than do loci mobilities

Locus mobility is a one-dimensional (1D) property
representing the size of motions intrinsically acces-
sible to each gene locus; whereas locus-locus spatial
coupling/correlation is an additional and maybe more
important feature contributing to the chromatin dynamics
in a three-dimensional (3D) space. Such interactions
between loci can be quantified by the covariance matrix
C (see Materials and Methods). C is an n × n symmetric
matrix, the ijth element of which describes how much
the pair of loci i and j are correlated with regard to their
spatial movements, averaged over all possible modes of
motions. Such correlations may originate from connectivity
(sequence neighbors along the DNA), spatial proximity
in the 3D genome or from ‘allosteric’ effects involving
other common connections. Upon normalization of C with
respect to the MSFs of the loci, we obtain the directional
cross-correlation matrix, D, which describes the correlation
cosines, exclusively, between the motions of loci pairs
(see Materials and Methods). The mobility profile and
directional cross-correlations thus provide complementary
information on the respective sizes and orientational
couplings of genomic loci movements.

Figure 5A and Supplementary Figure S5A show such
directional cross-correlation maps for chromosome 17 as
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Figure 3. Conservation profile of soft modes and mode-mode overlaps across different cell lines, illustrated for chromosome 2. (A) Mode-mode matching
process illustrated for the softest 10 modes of HSPC and KBM7. The entries in the heat map are the mode-mode correlation cosines, with the strength of
correlations decreasing from red to blue. Red two-way arrows display the modes that are swapped to result in the map on the right. (B) Comparison of the
original (abscissa) and reassigned (ordinate) mode numbers after optimal matching to the mode numbers of the reference cell (HPSC). Results for different
cell types are color-coded, consistent with previous figures. (C, D) Same as panel (A), displayed mode-mode overlaps between all (15) pairs of cell types and
the reference HPSC, and their reordering to identify equivalent modes. (E, F) Conservation level of the first 200 modes before (E) and after (F) mode-mode
matches, similar to Figure 2A, B, but shown here for chromosome 2. The gray dashed lines in E and F indicate the respective mean values of 0.069 and
0.316.

an example, computed for all cell lines in our dataset.
We observe strong correlations among sequential neigh-
bors (red band along the diagonal). Pronounced couplings
are observed within selected regions presumably represent-
ing TADs (red squares on the diagonal). As to the cross-
correlations between sequentially distant loci, a range of be-
havior is detected. For instance, an interesting pattern near
the end of the long arm (loci 1000–1500 approximately) is
distinguished in K562: two distal domains exhibit a pro-
nounced coupling (highlighted by the black square in Fig-
ure 5A and schematically depicted in Figure 5B). This be-
havior tends to be more prominent in mesodermal cell lines
(including hematopoietic cell lines labelled in blue and HU-
VEC labelled in gray), than in ectodermal cell lines such as
NHEK, HMEC, HCT116 and RPE1. We also notice that,
as compared to other cell lines, K562, HCT116, THP1 and

macrophage exhibit stronger cross-correlations among the
loci in the short arm (loci 1–500), implying a higher pack-
ing density in the region. Another manifestation of tight
packing is the suppressed mobility of loci occupying such
regions, noted earlier in the short arm region (Figure 1A).
Thus, tightly packed regions which exhibit minimal move-
ments are also distinguished by their close directional cou-
plings, in accord with their restricted movements as almost
rigid blocks. This feature can be observed clearly by display-
ing the MSF profiles along the axes of the cross-correlation
maps. The black arrows in Supplementary Figure S6 high-
light such regions.

We then examined the overlaps between covariance ma-
trices obtained for different cell lines. Unlike fluctua-
tion profiles, covariance matrices showed higher variations
among the cells. The overall covariance overlap averaged
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Figure 4. Verification of the close similarity of the spectrum of motions after eliminating the differences originating from the frequency dispersion. (A)
Mobility profiles of genomic loci on chromosome 17 based on first 500 matched modes identified for all cell lines. (B) Distribution of Pearson correlations
between the chromatin mobility profiles of each cell type and all others, obtained with the same set of modes. (C) Percent change in mode population
after inclusion of equivalent modes for each cell line, averaged over all chromosomes. The error bars indicate the standard deviation among chromosomes.
HSPC has no change because it is used as the reference.

over all chromosomes and pairs of cell lines was 0.48 ± 0.11
(blue violins in Figure 5C). NHEK again yielded the lowest
average overlap of 0.40 ± 0.10, however, it was not an out-
lier, and many other cells exhibited comparable values. The
overlaps between the covariance matrices could be slightly
improved upon mode matching (red violins in Figure 5C),
but the improvement was much more limited compared to
that observed in locus mobility profiles. Overall this analysis
the directional couplings between loci movements exhibit a
stronger dependency on cell type than that the mobility pro-
files of individual loci.

Covariance overlap between loci serves as a discriminative
metric for assessing the divergence of cell lines

To understand the impact of cell-type-specific locus-locus
dynamical couplings on the response or adaptation of cells
to endogenous or environmental effects, on cell differentia-
tion, we quantified the differences between the covariances
obtained for individual chromosomes in different cell lines
using as metric the covariance overlap (see Materials and
Methods) and performed a series of experiments in silico.

First, we examined the loop domain loss for HCT116
under the influence of auxin using time-dependent Hi-C

dataset, mainly Hi-C maps for HCT116 cells under normal
conditions (auxin-), 6 hours after the treatment of auxin
(auxin+), and 20, 40, 60 or 180 min of auxin withdrawal
(37). We evaluated the covariance overlaps between the co-
variance (of all chromosomes) of the treated cells at each
time point and those of the normal cells. As expected, the
average covariance overlap dropped by approximately 30%
after the treatment and gradually recovered with time after
auxin withdrawal (Supplementary Figures S5B and S7).

Second, we asked whether the differences in covariances
could be used to distinguish cell types. To answer this ques-
tion, we constructed a distance graph for the cell lines based
on the covariance overlaps, where each node represents a
cell line and each edge is weighted by the arc distance dcov

between the covariance matrices, obtained for the corre-
sponding pair of cells (see Materials and Methods). We
then determined the MST that revealed the relations be-
tween cell lines based on their covariance. We applied this
procedure to the hematopoietic cell lines because among
the cell lines we collected those had the clearest differentia-
tion hierarchy and lineages in earlier or intermediate stages,
such as HSPC, GM12878 and THP1. Covariance overlaps
obtained for different chromosomes gave rise to different
MSTs (Supplementary Figure S8A-C), possibly due to dif-
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Figure 5. Locus-locus cross-correlations reflect cell-type specificity. (A) Directional cross-correlations Dij between genomic loci computed for chromosome
17, shown for six different cell types (see Supplementary Figure S5 for the remaining ten). Dij values vary from −0.26 (anticorrelated, off-diagonal regions in
dark blue) to 1.0 (fully correlated, diagonal elements, in red) and color-coded as indicated in the bar to ease the visualization. The white bands at loci ∼400–
500 refer to the centromere, where Hi-C contact data are missing. (B) Schematic description of chromosomal organization indicated by the correlation
patterns. Red blocks A and B on the diagonal represent two domains (A: green; and B: blue) with tightly packed DNA; and the off-diagonal red blocks
indicate the long-range domain-domain couplings between A and B. The dashed curve depicts a long sequence not shown between A and B. (C) Covariance
overlaps among cell lines averaged over all chromosomes based on the first 500 original (blue violins) or matched (red violins) modes. (D) Collective MST
for hematopoietic cells based on the covariance overlaps computed for all chromosomes (see Equation 10). (E) Neighbor-joining tree for all cell lines
constructed using the minimum (maximum) covariance overlaps (distances) for all chromosomes. Edge/branch lengths in panels D/E not proportional to
arc distances. The color shades are added to facilitate the visualization of the grouping of ectodermal, mesodermal and other cell lines as in C.

ferent rates in the spatial organization of different chromo-
somes during cell differentiation. To determine the MST for
all chromosomes, we constructed a graph based on the max-
imum dcov(A, B) (see Equation 9) between all cell types,
which led to the tree presented in Figure 5D. The latter
broadly agrees with single-cell transcriptional behavior of
hematopoietic progenitors (41,42). For visual comparison,
we display a single-cell RNA map for hematopoietic pro-
genitors from earlier work (41) and compare with our MST
in Supplementary Figure S9. The tree correctly reproduces
the transcriptional similarities among blood cell lineages
(indicated by solid edges), including the fact that Hap1 is de-
rived from KBM7. K562 and KBM7, both of which relate
to myeloid progenitors, should have been closer to HSPC
than GM12878, a lymphoblastoid cell line. This discrep-
ancy might originate from the cancerous nature of K562
and KBM7 (hence the dashed edges between KBM7, K562
and GM12878). Moreover, the relationship among mono-
cyte progenitors (THP1) and GM12878 is ambiguous, also
marked by a dashed edge in Figure 5D.

Third, we applied the neighbor-joining method to con-
struct a ‘phylogenetic’ tree based on the maximum covari-
ance distance map (Supplementary Figure S8D) obtained
for all investigated cell lines. The resulting tree (Figure 5E)
groups together similar cell lines, e.g. hematopoietic cells
cluster together except for HSPC and EP, and epithelial
cell lines, NHEK, RPE1 and HCT116, are under the same
branch. Interestingly, one of the two leukemia cell lines,
K562, is clustered with HeLa derived from the cervical tu-
mor, whereas the other, KBM7 and its derivative Hap1, are
grouped with normal lymphoid cells, GM12878 and T-cells,
suggesting cancer heterogeneity among leukemia cells.

The similarities between cell lines found here at the chro-
matin dynamics level are in accordance with an earlier study
(43) where they found that HMEC, despite being an ep-
ithelial cell line originated from the ectoderm, was more
similar to endodermal and mesodermal cells; the leukemia
cell lines, KBM7 and K562, resemble GM12878; and there
are similarities between IMR90 and HUVEC. However, the
results for epidermal keratinocytes, NHEK, are different.
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High similarities between the TADs identified for NHEK
and those for GM12878 and K562 were reported (43), while
NHEK shows little resemblance to other cell lines in terms
of its intrinsic dynamics.

Overall, these results suggest that the pairwise covariance
overlaps could be used as a metric for quantifying the dif-
ferentiation of cells with regard to their collective dynamics.
Clearly the present dendrograms obtained by using covari-
ance distances in MST and NJ methods refer to a classifi-
cation based on global dynamics, and do not imply a de-
velopmental or evolutionary relation. However, it would be
of interest to examine to what extent the differential expres-
sion patterns in different cell types relate to the differences
in the intrinsic dynamics (or spatial mobilities) of the genes
in those cells, which will be examined next.

Genes distinguished by high mobility correlate with those
highly expressed in a cell-type-specific manner

Chromatin accessibility plays an essential role in regulating
gene expression and cell differentiation by allowing or pre-
venting physical interactions between transcription factors
or other regulatory proteins and genomic loci (44). Theoret-
ically, the accessibility of a site is predominantly determined
by the local packing density, which is manifested by high
mobilities in the 3D fluctuation profiles predicted by the
GNM (11). A further question is to understand the role of
high mobility at selected loci in defining cell differentiation.
To this aim, we identified the subset of highly mobile genes
(HMGs) distinguished by large amplitude motions (peaks
in the fluctuations profiles, e.g. Figure 1A) in a given cell
type but not in others, and explored the biological relevance
of these strong departures from the average fluctuation pro-
file of all cells (Figure 6A), if any, to the differential function
of the specific cells.

Toward answering this fundamental question, we com-
pared the HMGs predicted here with the highly ex-
pressed genes (HEGs) in multiple cell lines annotated in
the ARCHS4 database (19) (see Materials and Methods).
ARCHS4 contains information on the HEGs of 125 com-
mon cell lines, obtained by integrating gene expression data
from RNA-seq experiments deposited in the Gene Expres-
sion Omnibus (GEO) (19). These 125 cell lines constitute
our pool of ‘candidate cell types’, which will be searched
to explore the relationship between HMGs and HEGs. The
pool contains HEG data for six of the 16 cell lines investi-
gated here (K562, IMR90, HCT116, HUVEC, HeLa, and
THP1), which will be referred to as the query cell lines.
The following computational test/protocol of four steps,
schematically described in Figure 6A is adopted: (i) we com-
pute for a given cell type q the relative mobilities of genomic
loci with respect to the average over all cells examined by the
GNM, (ii) we identify those loci, or corresponding genes,
which rank in the top 10% in terms of their mobility. These
are the HEGs specific to cell type q. (iii) The list of HEGs is
provided as input to search the pool of candidate cell types
and extract those cell types p whose HMGs provide max-
imal overlap (highest Jaccard indices) with the HEGs of
cell type q. (iv) the top-ranking 5–6 candidate cells result-
ing from this screening process are shown in the bar plots
in panel B (left bars), along with the results for the other

GNM-characterized cell types also contained in the pool
(color-coded; right bars).

The results are presented in Figure 6B for each of the
six query cell lines. In each case, we screened the query cell
line against the entire dataset of 125 candidate cell lines in
ARCHS4 and computed the Jaccard index as a measure of
the overlap between the HMGs of the query cell line and the
HEGs of the candidate cell lines; and the bars display the
top-ranking candidate cell lines whose HEG pattern shows
the highest similarity to the HMG pattern of the query cell
line. In each case we also display the results for the other
five query cell lines for comparative purposes. Notably, the
top-ranking candidate cell line turned out to be the query
cell line itself in all cases (Figure 6B).

Other top-ranking candidates also bear resemblances
to the corresponding target as well. For instance, BJ cell
(normal human foreskin fibroblast), NHDF (normal hu-
man dermal fibroblast) and MG63 (osteosarcoma with fi-
broblastic shape) all share a fibroblast-like morphology as
IMR90, a fetal lung fibroblast. In the case of THP1, a typi-
cal cell model for primary monocytes, one of its top candi-
dates, U937, also shows monocytic traits (Figure 6B).

This analysis clearly demonstrates that (i) the unique
HMG pattern predicted here to typify each cell line strongly
correlates with the cell-line-specific HEG behavior, suggest-
ing a strong link between high mobility and high expression
and (ii) the set of HMGs provides a sufficiently distinctive
feature to accurately discriminate between cell lines exhibit-
ing different expression patterns. It also suggests that (iii)
high conformational flexibility or spatial mobility may be
a prerequisite for enabling productive interaction with pro-
teins and thereby effective transcription or gene expression.

DISCUSSION

The present comparative study of the intrinsic dynamics
of chromosomes in a series of cell lines using correspond-
ing Hi-C data in the Gaussian Network Model (GNM)
shed light to several fundamental features, including the
shared fluctuation patterns in the spatial positions of dif-
ferent types of cells or signature dynamics, evident in the
modes of motions in the lowest frequency (and highest col-
lectivity) regime. Even more interesting was the identifica-
tion of cell type-specific variations in the equilibrium dy-
namics, originating from the effective contribution of a dif-
ferent pool of modes of motions (in the low-to-intermediate
frequency regime) by different types of cells. Thus, even
though many mode shapes in this regime bore close simi-
larities between different cell types, their frequency were dif-
ferent; and this resulted in cell-type specific distributions of
highly mobile genes (HMGs) in different cell types. A dis-
tinctive overlap between HMGs and highly expressed genes
(HEGs) has been found upon systematic screening of gene
expression data. This relation, with important implications
in cell differentiation, invites attention to the significance of
the intrinsic mobilities of the individual genes in enabling
their transcriptional regulation, shown here using a physi-
cal model for the first time at the genome-scale, for several
types of cell lines.

Overall, the slowest (and most collective) modes of mo-
tion intrinsically accessible to the individual chromosomes
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Figure 6. Strong correlation between cell-type-specific highly mobile genes (HMGs) and highly expressed genes (HEGs). (A) Illustration of the 4-step
protocol in silico test of the relationship between HMGs and HEGs for IMR90 as a query cell: (1) Identification of high mobility (HM) loci from the
difference (green curve) between the mobility profile obtained with the GNM (shown here for IMR90 chromosome 17; yellow curve), and that averaged
across all 16 cell lines (blue curve); HM loci are defined as those exhibiting the top 10% mobility, shown by the red dots. (2) Genes located in HM loci,
HMGs, are identified (shown by green dots). The procedure is repeated for all chromosomes, and the resulting list of HMGs for IMR90 chromatin is used
for screening against the cell-type specific HEGs compiled in the ARCSH4 database; (3) Similarities between the HMGs of the query cell type and the
HEGs of the 125 cell types in ARCSH4 are measured by the Jaccard index, and rank-ordered for each query cell type; (4) Top-ranking five (screened) cell
lines whose HEGs exhibit the highest overlap with the HMGs of the query cell are shown by the bar plots in panel B. Results are presented in (B) for six
of our dataset cell types that were represented in ARCSH4, and the corresponding Jaccard scores are additionally displayed (right colored bars) in each
case for comparison. The top-ranking cell type (from the pool of 125 in ARCSH4) turns out to be the query cell type itself, demonstrating the distinctive
overlap between HMGs and HEGs specific to each cell type.

of different types of cells were distinguished by their conser-
vation, even among phenotypically divergent cells such as
GM12878 and NHEK, yielding an average correlation co-
sine of 〈S〉1 = 0.84 ± 0.18 between all cell type pairs. The
modes in the intermediate and high-frequency ranges, on
the other hand, appeared to be less conserved. This is phys-
ically reasonable, because global modes, especially the first
few, usually underlie the structural stability (13). The spa-
tial organization of chromatin is hierarchical, and recent
studies have been focusing on identifying chromosomal do-
mains at different scales as well as the hierarchy itself (45–
47). The conservation of global modes may suggest that the
cells maintain similar upper levels of the hierarchy but or-

ganize the lower levels differently. This type of organization
may ensure a stable genome structure and the framework to
achieve cell type-specific gene transcription/regulation ac-
tivities.

Careful analysis showed that the differences in the mode
spectrum essentially resided in the contributions (statisti-
cal weights) of different modes of motions, rather than the
availability of these modes of motions. In other words, dif-
ferent types of cells share pre-existing modes with simi-
lar ‘shapes’ but different frequencies. While the ensemble
of modes intrinsically accessible were comparable, some
modes were ‘silent’ in selected cell types, while others were
‘active’. This distinction is reminiscent of the existence of
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the same set of genes in all cell lines but their differential
expression levels in different cell types depending on the
specific functions of these cells. Similarly, we have the same
ensemble of collective motions theoretically accessible, but
not all of them are operative within the same time win-
dow, and as a result the different types of cells end up ex-
hibiting differential dynamics (Figure 1A and Supplemen-
tary Figure S2). We demonstrated that the 16 cell types
presently analyzed would have exhibited the same fluctu-
ation behavior (Figure 4A, B), if their equivalent modes
were equally active. However, the differences in their actual
amplitudes (quantified by the discrepancy between original
and matched mode numbers, shown in Figure 3B and 4C)
led to cell-type specific gene mobilities, which directly re-
lated to cell-type specific gene expression properties.

Locus mobility is a 1D property and does not reflect
the complexity of chromosomal dynamics. So, using it as
a measure of cell type specificity would be incomplete be-
cause of the absence of inter-loci interactions. Here we com-
pared the covariance matrices using the covariance overlap,
which is a well-established metric to compare the subspaces
spanned by normal modes and has been used in many ap-
plications (27,48,49). We found that while the locus mo-
bilities shared much resemblance among cell lines, long-
range couplings measured by spatial cross-correlations (co-
variance) exhibited more diversities, even among closely
related cells (Figure 5A and Supplementary Figure S5A).
For example, for chromosome 17, the off-diagonal cross-
correlations are much weaker and sparser for K562 than for
other hematopoietic cells (Figure 5A and Supplementary
Figure S5A), which may suggest that in K562 the two arms
of chromosome 17 are partially disordered, if not unfolded.
Moreover, in the same chromosome, there are two anchor
regions (Figure 5A, black arrows) that connect the two arms
of the chromosome in GM12878; whereas the regions are
absent in two leukemia cell lines, K562 and KBM7, as well
as in THP1 and all four epithelial cell lines. These observa-
tions agrees with the view that while chromatin domain po-
sitions are stable during differentiation, interactions within
and between domains can change drastically (4). Further-
more, the cell trees based on covariance overlaps did capture
some lineage relationships.

The recently developed database ARCSH4 was used here
as a test bed for exploring the relationship if any between
cell-type specific HMGs (most mobile genes) and HEGs.
For each query cell line, we quantified the overlap be-
tween cell-line-specific HMGs and the HEGs collected in
ARCHS4, and rank-ordered the best matches using the Jac-
card index as a metric. This analysis clearly revealed the
strong relationship between the genes distinguished by their
high mobility (HMGs) in a given cell type, and those exper-
imentally observed to be highly expressed (HEGs) in that
particular cell type, confirmed for six different cell types that
were represented in ARCSH4.

Overall, our analysis demonstrates that the cells intrinsi-
cally maintain similar mode shapes but reorganize the or-
der (frequency) of modes to achieve different overall mo-
bility, potentially exposing different chromosomal regions
for transcription factors and co-factors to access. Such se-
lective operation of different modes of motion amongst a
shared pool of pre-existing modes may emerge as a mech-

anism contributing to cell specificity, reminiscent of the se-
lective expression of functional genes in different cells even
though all cells share the same DNA.

The current methodology is computationally efficient
and scalable. While the focus here has been the chromoso-
mal dynamics of different types of cells, the GNM lends
itself to the analysis of the entire chromatin for different
types of cells. Examination of the mode spectrum and mode
collectivities for the entire chromatin, illustrated in Supple-
mentary Figure S10 for GM12878, shows that most of the
soft modes (>85% by weight, among the first 100) involve
intra-chromosomal movements only. Examination of mode
shapes corresponding to the highly collective modes (peaks
in panel B) shows inter-chromosomal coupled movements,
as illustrated for modes 10 and 16 are panel C.

An exploratory analysis to assess the significance of us-
ing as input single-cell Hi-C data, as opposed to those col-
lected for a population of cells, reveals the heterogeneity of
the individual cells with regard to their spatial fluctuation
patterns. This type of heterogeneities are consistent with the
variations in the structures of TADs and loops from cell to
cell, as noted earlier (10). Yet, the soft modes of motions
predicted based on population-averaged Hi-C data could
be detected in single cells, which could be attributed to the
conserved/shared organization of larger (A and B) com-
partments on a genome-wide basis in every cell (10). Supple-
mentary Figure S11 illustrates this feature. In panel A, we
compare the soft mode spectrum for single mouse embry-
onic stem cells chromosome 15 (based on single-cell Hi-C
data (10)) with that obtained for a population of the same
cell type, which reveals that several soft modes (along the
diagonal) are shared. Furthermore, the mode-mode corre-
lations between the soft modes predictions based on single-
cell Hi-C data and those based on population-averaged Hi-
C data are improved upon grouping together the results for
single cells (termed ‘combined single-cell’ in panels B and
C). The MSFs of gene loci calculated for the population and
for the combined single-cell using the first 100 softest modes
also exhibit some level of consistency between two systems
(panel D). As more data will become available, more de-
tailed analytical treatments using broader datasets, includ-
ing more extensive single cell Hi-C data, will help obtain
more complete and accurate information on cell-specific
chromatin dynamics as well as their relevance to cell dif-
ferentiation.
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