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Histopathology based on spatial patterns of epithelial cells is the
gold standard for clinical diagnoses and research in carcinomas;
although known to be important, the tissue microenvironment is
not readily used due to complex and subjective interpretation
with existing tools. Here, we demonstrate accurate subtyping from
molecular properties of epithelial cells using emerging high-definition
Fourier transform infrared (HD FT-IR) spectroscopic imaging combined
with machine learning algorithms. In addition to detecting four
epithelial subtypes, we simultaneously delineate three stromal
subtypes that characterize breast tumors. While FT-IR imaging
data enable fully digital pathology with rich information content,
the long spectral scanning times required for signal averaging and
processing make the technology impractical for routine research or
clinical use. Hence, we developed a confocal design in which refrac-
tive IR optics are designed to provide high-definition, rapid spatial
scanning and discrete spectral tuning using a quantum cascade laser
(QCL) source. This instrument provides simultaneously high resolv-
ing power (2-μm pixel size) and high signal-to-noise ratio (SNR)
(>1,300), providing a speed increase of ∼50-fold for obtaining clas-
sified results compared with present imaging spectrometers. We
demonstrate spectral fidelity and interinstrument operability of
our developed instrument by accurate analysis of a 100-case breast
tissue set that was analyzed in a day, considerably speeding re-
search. Clinical breast biopsies typical of a patients’ caseload are
analyzed in ∼1 hour. This study paves the way for comprehensive
tumor-microenvironment analyses in feasible time periods, present-
ing a critical step in practical label-free molecular histopathology.
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Histopathology is essential for both research and clinical
management in a variety of diseases, including cancer. The

diagnostic process relies on staining thin tissue sections, followed
by a pathologist manually recognizing epithelial morphology and
patterns using an optical microscope. While carcinomas origi-
nate in epithelial cells, it is now well understood that stromal
(both cellular and extracellular) characteristics aid cancer pro-
gression (1, 2) and determine clinical outcomes (3, 4). Although
holding tremendous potential for observing, understanding, and
treating cancer, stromal changes are not routinely used for re-
search or clinical diagnoses. This arises from a lack of practical
technology to capture morphological and biochemical patterns;
multiplex staining is time consuming and expensive, generally
limited to proteins, and results are difficult to interpret. Com-
puterized pattern recognition has been reported (4) to be ef-
fective in utilizing stromal signatures, but digital data have been
limited to simple structural data or highly detailed but time-
consuming molecular measurements (5–11). Methods based on
optical vibrational spectroscopy (12–14) provide an avenue as

they offer the same image scale and quality as traditional pathol-
ogy, can be coupled to computational analysis (15), show contrast
between different cell types and disease (16), and are sensitive to
changes in both cells and extracellular material (17, 18). Moreover,
label-free spectroscopic imaging does not perturb the tissue sam-
ples in any way and can be computed to resemble conventional
stained (H&E or molecular) images, enabling integration into
clinical or research workflows (12). Laboratory studies using tissue
microarrays (TMAs) using Fourier transform infrared (FT-IR)
imaging (19–21), for example, have provided extensive demon-
stration of this potential. Fundamental molecular vibrations pro-
vide strong signals across a spectral region (800–4,000 cm−1) 20-
fold larger than the visible spectrum, making it efficient and ideally
suited to thin sections commonly used in pathology.
Despite extensive histologic studies, there are no reports of

tumor staging and tumor microenvironment use for (i) diagnos-
tically relevant accuracies, and (ii) reasonable analysis times.
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Cancer alters both the morphological and the biochemical prop-
erties of multiple cell types in a tissue. Generally, the morphology
of epithelial cells is practical for routine disease diagnoses. Here,
infrared spectroscopic imaging biochemically characterizes breast
cancer, both epithelial cells and the tumor-associated microenvi-
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demonstrates a high signal-to-noise ratio for confident diagnoses.
The instrument cuts down imaging time from days to minutes,
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reported in ∼1 hour, paving the way for routine research into the
total tumor (epithelial plus microenvironment) properties and
rapid, label-free diagnoses.
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These two factors are related. Data acquisition is slow compared
with optical microscopy as thousands of spectral frequencies need
to be acquired (22). A necessary trade-off to make imaging practical
is to use larger pixel sizes, but large pixels result in biochemical
averaging of the heterogeneous microenvironment reducing the
chemical contrast. This spatial averaging over a 10-μm scale in turn
necessitates exceptionally high signal-to-noise ratio (SNR) to re-
solve small differences, complex analysis models (23), and high
computational overhead. The limits of pixel sizes are now estab-
lished, with rigorous optical modeling fueling new instrumentation
that provides so-called high-definition (HD) (24, 25) images, in
which pixels are ∼25–100 times smaller than previously used. While
understanding of optical design has been transformed, two un-
resolved issues persist: first, n-fold smaller pixel areas require n-fold
more pixels scanned per specimen and n-fold less available light
(SNR) per pixel; together, these imply ∼n2 larger scan time just to
maintain SNR. Second, there is no evidence yet to show that HD
imaging offers an analytical advantage beyond image quality. The
smaller pixels may well need higher SNR, and subcellular hetero-
geneity may need yet more complex computations. Together, there
appears to be no obvious pathway with current technology to clin-
ically feasible, HD imaging that allows confident information ex-
traction from both the tumor and microenvironment in real time.
This study focuses on three major advances: discovery of di-

agnostically useful tumor microenvironment classes along with precise
detection of epithelial stages, development of a high-performance
discrete-frequency IR (DFIR) microscope, and a demonstration of
HD chemical characterization of human biopsies in clinically feasible
times. First, we seek to develop confident tumor and microenviron-
ment detection using HD FT-IR imaging. While there have been
prior studies on breast tissue and its microenvironment using IR
imaging (26–31), there are no reports of clinically feasible epithelial
and microenvironment protocols. One challenge is to acquire con-
sistent information that allows computerized recognition despite the
tissue heterogeneity arising from small pixels. The underlying com-
plexity is that the types and number of classes of microenvironment
associated with disease are unknown. Hence, the first section of this
study focuses on discovering a small number of characteristic mi-
croenvironment responses to cancer, potentially making diagnoses
feasible. This fundamental understanding can broadly impact pa-
thology as a step toward utilizing microenvironment information but
must be translated to an approach with practical imaging times.
Hence, second, we seek unique instrumentation to overcome current
limitations. Recently, high-intensity, broadly tunable quantum cas-
cade laser (QCL) sources have enabled rapid DFIR imaging (32–35),
especially for problems in which the data dimensionality can be sig-
nificantly reduced (36) by using a smaller set of frequencies (37–42).
In current designs, however, laser coherence can degrade image
quality and can subtly distort spectra. This distortion affects pattern
recognition accuracy in an unpredictable manner due to its de-
pendence on local structure and/or SNR. We systematically address
these challenges by engineering an IR microscope. While providing
unique analytical capabilities, this advance is useful for tumor staging
and microenvironment analysis in breast cancer. We subsequently
validate this confocal microscope design and ensure its capabilities in
providing diffraction limited imaging with minimal noise and aber-
ration. This enables accurate histological and pathological segmen-
tation of tissue that was not previously possible. Next, we adapt the
FT-IR epithelial subtyping and stromal differentiation using a
discrete-frequency (DF) model to this instrument and assess its ac-
curacy. Finally, in the third part of this report, we image tissue biopsy
samples and demonstrate automated tumor-microenvironment clas-
sifications for breast cancer in clinically feasible time.

Results
Epithelial Subtyping and Microenvironment Detection of Breast
Cancer. We developed a machine learning approach that pro-
vides detailed cell-level tumor diagnoses and discovers tumor-

associated microenvironments. We first designed a study using
TMAs with high disease diversity and accompanying heterogeneity
of microenvironments. These samples were imaged with both FT-
IR (unstained) and optical microscopy (stained), providing new
spectral data and conventional histochemical diagnosis. Un-
perturbed by staining or any other intervention, broadband FT-IR
spectroscopic imaging data provided 2,048 spectral data points per
pixel and ∼106 pixels per patient sample. A board-certified pa-
thologist carefully labeled cells and disease states for each sample
with the help of stains, providing a ground truth for cellular and
disease diagnoses. Both IR and pathology data were used to de-
velop models and pattern recognition protocols, as described in
Methods, to recognize different disease states within epithelium
and stromal indicators of disease. The tissue sample is mainly
divided into epithelial and the stromal compartments. The
remaining cellular moieties such lymphocytes, red blood cells,
secretions, mucin, and necrosis are grouped together in the
“others” class. Our disease models directly relate to clinical pa-
thology: as breast cancer is broadly characterized by four epithelial
subtypes, namely, hyperplasia, atypical hyperplasia, invasive, and
normal, we use the same. A typical diagnosis then consists of the
four subtypes, the microenvironment (or collagen-dominated
“stroma”) and an others class to account for the remaining cell
types. The addition of the others class to the model increases the
prediction accuracy with precise allocation of the stromal and
epithelial regions. We term this the 6-class epithelial-focus (6E)
model. The first question is whether the 6E model can accurately
replicate clinical diagnoses. Going beyond conventional diagnoses,
potential exists to develop interesting models for the microenvi-
ronment, but no clinical consensus on types or features of such
changes exists. Stroma typically consists of dense, loose, and des-
moplastic components that might contain cellular and acellular
materials, including activated and inactivated stromal cells, in-
flammatory cells, fibroblasts, blood vessels, and extracellular ma-
trix creating a diverse tumor microenvironment (43, 44). We
assessed several simple to complex models that illustrate various
aspects of tissue and disease; finally, we struck a balance between
this complexity and the four epithelial subtypes. Here we report a
parallel 6-class stromal (6S) model (dense, loose stroma and
desmoplastic, other, and two epithelial classes—benign and ma-
lignant). Both the 6E and 6S models are described in detail in SI
Appendix, Fig. S4. Together the 6E and 6S models will compre-
hensively characterize breast tissue. While the 6E model relates to
conventional diagnoses, 6S provides distinctive insight.
For each of the two (6E, 6S) models, we developed numerical

methods to classify each tissue pixel into one of the six classes. The
process consists of acquiring full spectral data from a large number
of diverse samples using TMAs, statistical formulation of spectral
metrics that characterize tissues and can be interpreted bio-
chemically. A sequential forward search approach is used to find
the metrics that maximize the accuracy of prediction of the algo-
rithm compared with pathologist marking, and quantitative enu-
meration of the results. The results are reviewed by a pathologist
as well as quantitative statistical measures, as shown in Fig. 1 A
and E, which compare automated tissue classifications for the 6E
and 6S models. An entire TMA, with the 6E and 6S classifications
shown in Fig. 1 B and F, respectively, can be seen in high reso-
lution in SI Appendix, Figs. S1 and S2. A comparison of select
samples with their corresponding H&E-stained images is shown in
SI Appendix, Fig. S3. While spatially corresponding to H&E im-
ages, IR images provide greater capability and information. Un-
like H&E images that are analyzed by a pathologist, first, IR
analysis is all in silico and a prime example of fully digital pa-
thology. Second, the microenvironment mapping is not manually
possible. Third, the accuracy of diagnoses can be quantitatively
assessed using receiver operating characteristic (ROC) curves as
shown in Fig. 1 C and G for 6E and 6S models, respectively. The
correlation between the pathologic state of the 6E model and
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stromal composition of the 6S model is apparent. For example,
the malignant epithelium in Fig. 1E (F3) is accompanied by des-
moplastic stroma while the hyperplasic biopsy (A10) is surrounded
by loose and dense stroma. Stromal changes provide opportunities
for differentiation of the clinically difficult and atypical cases from
malignant, illustrating the value of chemical imaging in enabling
precise diagnosis and decision-making. Finally, we sought to un-
derstand the prediction potential of the formulated spectral
metrics. Fig. 1 D and H show that a quantitative measure of ac-
curacy, namely the area under the curve (AUC) of the ROC

curve, can be used to determine small number of metrics (∼10)
that are sufficient for accurate segmentation. While more complex
models for breast pathology or that of other tissues may be ex-
amined, this plot is generally representative of tissue classification
as a function of spectral features, as shown in a number of studies
(19, 45–47). The achievable classification accuracy is typically seen
to saturate for a number of spectral frequencies (∼20 frequencies
are used to build ∼10 metrics) that is much smaller than the
number of spectral frequencies typically acquired in an FT-IR
spectrum (∼2,000). This result facilitates the acquisition of only

Fig. 1. Epithelial tumor classification and microenvironment models for breast cancer characterization using FT-IR imaging. Using the 6-class epithelial (6E) model,
(A) classified images showing malignant, hyperplasia, atypia, and normal tissue samples, (B) 6E class image of the full tissue microarray (TMA), (C) the corresponding
receiver operating characteristic (ROC) curve, and (D) area under the curve (AUC) of the ROC curve dependence on spectral metrics for the 6Emodel. The Inset shows
that the accuracy saturates for a few metrics. The complementary 6-class stromal (6S) model on the same samples shows (E) disease-associated microenvironment
changes, (F) 6S classification of the TMA, (G) the corresponding ROC curve, and (H) the impact of spectral metrics on AUC values for the 6S model.
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12 frequencies needed and enables the use of emerging DF in-
struments for faster, yet accurate, digital pathology. For the op-
timal set of frequencies and their assignments, see SI Appendix,
Tables S4 and S5.
We emphasize that low SNR does not permit accurate clas-

sification, as previously reported (48) and demonstrated with two
illustrative examples in SI Appendix, Table S1. The apparent
SNR for DF systems reported previously has ranged from ∼10 in
early systems (49) to ∼100 using expensive cooled detectors in
the latest state of the art (35). While large-format array detectors
offer rapid imaging, the typical SNR cannot approach the levels
reported here using a single-element detector. Even if laser
stability or innovative designs allowed signal averaging to im-
prove the SNR, the additional measurements will result in
needing the same time as an FT-IR imaging experiment, pro-
viding no specific advantage to DFIR systems. A less discussed,
but known issue, with using lasers is that coherence-induced
speckle acts as a noise source since the underlying tissue struc-
ture changes from sample to sample. Speckle contributions may
not appreciably manifest in images but do affect spectra. The
variance introduced by speckle remains to be quantified using
theory (25), but current estimates are of a few percent, which will
not allow accurate histologic recognition. Thus, while it is pos-
sible to translate the FT-IR imaging results to DF instruments in
principle, there are no reports yet of histopathological models
with the complexity presented here being possible with speckle-
free laser-based instruments using these few frequencies.

High-Performance IR Microscopy—a Confocal, Spectral-Spatial Scanning
System. To address the need for a low-noise, speckle-insensitive,
and diffraction-limited microscope, we developed a design pre-

cisely to address these shortcomings and enable translational
studies. Our microscope, shown in Fig. 2A, consists of a multilaser
unit spanning the mid-IR fingerprint region from 770 to 1,940 cm−1,
interchangeable high numerical aperture (N.A.) optics with
0.56 N.A. and 0.85 N.A. image formation lenses, a cryogenically
cooled, single-element mercury cadmium telluride (MCT) detector,
and a high-speed linear motor microscopy stage. Each aspect of
this design is optimized to overcome current drawbacks. First,
we utilize the high brightness of the laser to provide confocal
illumination using high-N.A. lenses and use apertures to limit the
focal area. The confocal geometry not only provides spatial lo-
calization but also is effective in rejecting out-of-focus light as well
as reduced speckle due to limited sample area illumination. Sec-
ond, the use of a cooled single-element detector provides high
SNR data due its superior noise characteristics compared with
array detectors as well as the ability to lock into the modulated
QCL pulsed signal. Third, real-time controls are integrated into
the system to maintain high fidelity. Since the confocal geom-
etry is effective in rejecting out-of-focus light, slight tilts in the
sample can drastically affect the image’s focus while the high-
speed stage is scanning the sample over large areas. We de-
veloped and integrated software controls that make axial ad-
justments to keep the sample in focus in real time, which also
compensates for chromatic aberration and provides optimal
SNR at every point. In addition to optimizing imaging perfor-
mance, we also optimized spectral fidelity by resetting laser pa-
rameters at every wavenumber to the optimal repetition rates,
pulse widths, and pointing alignment. The instrument can scan at
up to 300 mm/s; for each pixel during the scan, axes encoders
trigger detection electronics locked into the laser’s pulse fre-
quency, allowing images to be acquired at a magnification limited

Fig. 2. Laser-based confocal IR microscopy. (A) The microscope consists of a quantum cascade laser (QCL) source, tunable for narrow-band emission across the
mid-IR fingerprint region. A high-speed stage and focus unit raster scans the sample, while the detection is locked into the laser’s pulse rate and each pixel is
triggered by the stage encoder counter. (B) Images of USAF 1951 resolution test targets show diffraction-limited performance for absorbance at 1,658 cm−1

with both the 0.56 N.A. objective (Top) at 2-μm pixel size and the 0.85 N.A. objective (Bottom) at 1-μm pixel size. (C) The optical contrast of each set of bars is
plotted as a function of spatial frequency. The bars are no longer resolvable if the contrast drops below 26%, which corresponds to the Rayleigh criterion
separation distance. The arrow indicates the deconvolution of the raw data (solid line) with the simulated PSF at the specified wavenumber to achieve a
substantial resolution enhancement (dotted line). These results are compared with the simulated performance (dashed line) of a FT-IR instrument with
optimized Schwarzschild objectives used in FT-IR imaging. (D) The unprocessed spectrum of a 5-μm layer of SU-8 epoxy acquired by our QCL instrument at
1 cm−1 resolution shows accurate spectral features compared with a reference FT-IR spectrometer. The 100% spectral profile lines show absorbance noise of
∼10−4 and 10−3 for the two objectives over most the fingerprint region.
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only by the encoder resolution. The pixel size is optimally set at
1 μm, no larger than half the size of the point spread function
(PSF) at the shortest tunable wavelength according to the Nyquist
sampling criterion. The scanning is optimized for a “long di-
rection” that limits acceleration–deceleration effects and achieve
high pixel rates. Finally, the raw data undergo a multistep post-
process to obtain absorbance data from a background, integrate
by aligning forward and backward stage sweeps using a nonrigid
alignment algorithm that compensate for stage-induced aber-
rations, and interband alignment to account for instrument drift
over time. If needed, the data can be deconvolved (50) against
a simulated PSF at each wavenumber to further improve
visualization.

Evaluation of Imaging Performance. We sought to ensure spectral
and spatial fidelity of the newly designed instrument. We first
validated the spatial resolution against a USAF 1951 chrome-on-
glass resolution target. The Rayleigh criterion is often used to
determine the resolution of the instrument and signifies the
minimum separation distance between two objects where they
appear to remain distinct, corresponding to a contrast ratio of at
least 26.4%. Accordingly, our system provides diffraction-limited
resolution of 4 and 3 μm with the 0.56 and 0.85 N.A. objectives,
as shown in Fig. 2B and seen in the absorbance contrast as a
function of line spacing in Fig. 2C. After deconvolution, minor
improvements in resolvability to 3 and 2 μm, respectively, are
seen, but a drastic improvement in the contrast of structures up
to 10 μm is observed, highlighting the potential to improve vi-
sualization. To our knowledge, the only comparable capability to
this performance has previously been reported using synchro-
trons (24). We further compared the experimental transfer
functions with that of FT-IR instruments using optimized
Schwarzschild objectives of the same N.A. using Code V optical
design software. The underlying mechanism of image formation
is apparent for a coherent source whose amplitude transfer
function (ATF) has a flat frequency response followed by a sharp
cutoff dependent on the aperture size of the pupil. As the beam
coherence decreases, the transfer function will approach optical
transfer function (OTF) behavior as seen with our measure-
ments. Since the OTF of an instrument with an incoherent
source is the autocorrelation of the ATF, the contrast gradually
declines to zero at twice the ATF’s cutoff frequency. However,
the higher cutoff frequency of these simulated incoherent sys-
tems falls below the Rayleigh criterion threshold where the
features are indistinguishable. In FT-IR imaging instruments, the
lower spatial frequencies are attenuated because the Schwarzschild
objectives have an obscuration created by the secondary reflector
and this presents in the simulations as an additional loss in contrast.
Above the Rayleigh resolution, our confocal microscope outper-
forms and has substantially higher contrast levels compared
with the current state-of-the-art IR imaging instruments. The
spectral fidelity of the instrument was tested by measuring an
epoxy photoresist, at 1 cm−1 resolution from 770 to 1,940 cm−1.
The measurement accurately tracks the reference spectrum
acquired with a FT-IR spectrometer, as indicated in the
spectra in Fig. 2D. To provide the most representative noise
characteristics, the spectra and SNR calculations are from
data without deconvolution. Deconvolution provides substantial
smoothing of the background as well as feature sharpening.
Without postprocessing, we achieve noise levels on the order of
10−4 and 10−3 at 0.56 and 0.85 N.A., respectively. This data
quality is not feasible in an FT-IR imaging system and has not
been previously reported for an IR microscope.

High-Resolution and Rapid IR Imaging for Breast Tissue Segmentation.
We imaged breast tissue previously analyzed by FT-IR imaging
using the confocal microscope. Representative images and spec-
tral data are shown in Fig. 3 A and B, respectively. In Fig. 3A, both

the 0.56 and 0.85 N.A. objectives provide good quality data that
match well with the conventional H&E images; the 0.85 N.A.
images are sharper, as expected. Representative spectra from
histologic units in breast tissue (Fig. 3B) match those acquired
from FT-IR imaging and show the subtle spectral differences that
permit accurate classification. We selected 12 DFs from the FT-IR
6E and 6S models (Fig. 3C) and also show differences in major
classes as well as an average SNR of ∼1,000 for a single scan (Fig.
3D). This SNR enables high accuracy tissue classification with
fewer frequencies that is only achieved in FT-IR imaging systems
by extensive signal averaging and using mathematical noise re-
jection that needs hundreds of frequencies to estimate noise
characteristics. To quantify the comparison between the FT-IR
and confocal laser microscopes, scanning a full TMA shown
here with a typical commercial FT-IR imaging system would re-
quire nearly 25,000 individual frames of the 128 × 128 array de-
tector to cover the area and averaging each frame 32 times each
(1.8 min of total acquisition) in a total acquisition time of ∼40 d.
Due to the weak radiance from a FT-IR globar source, a large
number of coadditions are required to achieve the required SNR
for accurate tissue classification. To further increase the SNR, an
additional processing time (30 s per frame) is needed using the
most effective noise rejection algorithms available today (51),
which adds another ∼10 d. The high SNR of our system allows us
to avoid signal averaging and dispenses entirely with the need for
numerical noise rejection. Thus, the microscope reported here
permits imaging and analysis of the full TMA in feasible time
(8 h), cutting the time to validate imaging results from months to
1 d and greatly accelerating the potential of IR imaging for bi-
ological research. This ∼50-fold reduction in time to acquire the
needed quality data with the required set for obtaining a decision-
ready image presents a practical comparison between conven-
tional approaches and this instrument.
In addition to obtaining high SNR data, we demonstrate ac-

curate classification of the TMA using the above discussed 6E
and 6S models as shown in Fig. 4 A and C. The accuracy of both
the 6E and 6S models is assessed by ROC curves, as shown in
Fig. 4 B and D. The utility of IR imaging over conventional H&E
images used in pathology can be seen in representative images
(Fig. 4 E andG) from malignant to benign lesions. As opposed to
H&E images that present only the structure and require pa-
thologist decision-making, the classified IR images from the 6E
model (Fig. 4E) provide ready visualizations of the diseased
condition. This IR imaging approach offers an opportunity to be
truly all digital, in recognition of disease and in quantification of
the extent of disease, instead of manual staining, observation,
and segmentation. While useful for visualizing routine samples,
this digital approach is also an opportunity to leverage the rec-
ognition capabilities of computer algorithms for difficult cases or
those of unclear pathology in limited tissue that is often available
in modern biopsies. For example, epithelial hyperplasia with
atypia (D10 in Fig. 4 E–G) is illustrative of a challenge facing
pathologists. Although such cases are known to have specific
histological features of malignancy (52), they are difficult to in-
terpret and diagnose and are often confused with benign cases.
In our approach, these samples are recognized as atypical hy-
perplasia in the 6E (epithelial) model. Moreover, the case is
recognized as malignant epithelium surrounded by normal re-
gions in the 6S (stromal) model. The 6S model also adds in-
formation that is not easily apparent in contemporary imaging
(Fig. 4G). A desmoplastic reaction can be seen associated with
malignant samples and normal stromal patterns can be seen in
benign cases. Together, the 6E model shows efficacy for precise
assessment of the diseased state, whereas, at times when the
epithelial yield in biopsies is limited or inconclusive, the 6S
model detects alterations in the surrounding stroma, offering
unique avenues for precise and rapid detection of disease. This
approach utilizing both the epithelial and stromal compartments

Mittal et al. PNAS | vol. 115 | no. 25 | E5655

CH
EM

IS
TR

Y
PN

A
S
PL

U
S



enables analyses not possible without extensive, expensive, and
time-consuming staining with multiple targets.

Clinical Translation to Biopsy and Surgical Specimens. The impact of
the three developments thus far—accurate HD histology, high-
performance IR imaging, and fast histologic recognition—lies in
a translation of the approach to typical samples in screening or
operative care. We believe a primary utility of this technology
will lie in rapidly triaging biopsies. Fig. 5 shows fast and accurate
detection of tumor and characterization of the tumor microenvi-
ronment in needle biopsy sections. There are numerous implica-
tions of a clinically feasible (in both time and accuracy) imaging
technology. With the microscope shown here, for example, biopsy
results can now be provided on the day of biopsy itself, reducing
wait times for patients. Combined with stainless staining tech-
niques (13), both conventional and additional information can be
provided to aid precise and accurate diagnoses. In atypical cases,
additionally, both epithelial and stromal measurements (3) can be
used to help pathologists make more confident decisions. This
slide of biopsies shown in Fig. 5 can be imaged and classified in 3 h
using the same 6-class technique discussed previously. We clearly
see the spatial accuracy of the model wherein the cancerous re-

gions are being classified with a majority of malignant epithelium
surrounded by reactive collagen acting as further confirmation.
Needle biopsies are the standard for breast cancer diagnosis and
for many other solid tumors. Approximately 1.6 million biopsy sam-
ples are taken annually in the United States for breast cancer alone
(53), with typical needle sizes of 14–22 gauge (54) (2- to 0.7-mm-
diameter biopsy). There is an emphasis on returning biopsy results
within days both to confirm the diagnosis in patients with breast
cancer and to rapidly inform the large majority of biopsied women
who do not have cancer.

Discussion and Conclusions
Here, we demonstrate histologic recognition by high-resolution
imaging at a competitive level of morphological detail as optical
microscopy along with further information regarding disease state
and its progression; instrumentation for high-performance DFIR
microscopy; and, enabling histologic imaging in clinically feasible
times. This study forms a critical step toward practical IR imaging
toward digital pathology with the three advances. Given that we use
molecular composition in detection of disease, as opposed to
morphology in conventional pathology, the capability of IR imaging

Fig. 3. High-definition imaging of breast tissue. (A) A selection of one normal and one malignant tissue sample from a 20- × 20-mm TMA, acquired at
0.56 and 0.85 N.A. at 2 and 1 μm per pixel, respectively. The absorbance at 1,658 cm−1, indicative of the amide I vibrational mode, is shown in the image and
enlarged subsections that are compared with an H&E-stained image of a serial section. (B) Point spectra from five tissue types at 1 cm−1 resolution; spectra are
offset for clarity. (C) Normalized and baselined point spectra from five tissue types at DFs. (D) Average SNR for important spectral features.
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opens the possibility of additional disease analysis. The first major
result is that higher resolutions offer increased analytical sensitivity
where comprehensive computational models, including those more
complicated than presented here, can be used to then relate back to
conventional spatial images. While the smaller pixels do indeed
provide greater chemical localization, the subcellular sensitivity also
implies that the heterogeneity in cellular responses may prevent

accurate classification. Here, we are able to find specific metrics
that allow differentiation of cell types and disease despite this lim-
itation. We emphasize that the 6E and 6S models we use here do
not reflect the full extent of information possible by IR imaging. We
selected these models as a compromise between detail and clinical
utility. Their successful implementation, however, implies that
development of more complex models is possible in subcellular

Fig. 4. DF epithelial and stromal classification for rapid breast cancer diagnosis. (A) TMA classified using the 6-class epithelial (6E) model. (B) Receiver op-
erating characteristic (ROC) curves represent the performance of each class in the 6E model. (C) TMA classified using the 6-class stromal (6S) differentiation
model. (D) ROC curves for the 6S model. (E) 6E model classified images of three samples from the TMA with malignant, normal, and atypical hyperplasia states
(Left to Right) along with their corresponding H&E-stained images in F. (G) Classification using the 6S model. A small region from the hyperplasia with atypia
sample is also shown, along with its H&E stain, to demonstrate the spatial distribution of normal and malignant cells. The letter and numbers below each
image correspond to the row and column of the TMA (A1 is the Top Left sample), respectively. All scale bars: 100 μm.
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domains, including those from 3D spectral imaging (55). While
only epithelial identification is considered here as this is the
dominant site of origin in breast cancer, we note that cancer can
arise in other cell types like mesenchymal cells (bone, cartilage,
nerve), hematopoietic cells (lymphoma, leukemia), and germ cells
(testicular cancer). The instrumentation and methods described
here can also be used for other cases, but critical features of each
disease will be different. Another possible outcome of this result is
the association of subcellular changes with disease in both breast
and other tissues that was not as definitively established using
older technology (36). The sensitivity of both epithelial recogni-
tion and stromal engagement with cancer presents increased op-
portunities for clinical translation on one hand and a detailed view
of the sample histology for research on the other. The quality of
images provides confidence in spatial detail and can be further
augmented by stainless-staining approaches as well as future tests
based on stromal transformations. For research purposes, facile
epithelial detection can aid in quantification of tumor volumes or
identifying regions for further chemical analysis. In this regard, the
stainless IR images preserve biochemistry for conventional anal-
yses while providing information on epithelial as well as stromal
transformations. While we have largely focused on the collagenous
stroma, we anticipate that the 6S model’s demonstration will spur
more detailed investigation into the microenvironment (4, 56)
focusing on classification of other cell types as well.
While many optical scanning confocal designs are available for

visible microscopy and several microscopy approaches available
in the IR, enabling the use of a broadly tunable IR laser is not
trivial. The large wavelength range in the mid-IR results in strong

chromatic aberrations and makes design difficult using refractive
optics; the use of reflective optics results in loss of light and
weighting of collected signal on scattering due to the central ob-
scuration in Schwarzschild objectives. Here, our optical design is
combined with real-time control algorithms to reduce errors and
achieve minimal-distortion images, demonstrating a performance
that has not been previously seen for IR microscopy. While
widefield configurations can typically provide greater speeds due
to their multichannel advantage and increasingly larger sensor
formats, area illumination using a laser typically suffers from a low
SNR due to miniaturized detectors and presents speckle patterns
across the image that can complicate spatial interpretation needed
in pathology. The low noise in our single-element detector, ability
to modulate the beam, and confocal geometry greatly reduce noise
within each spectral band, allowing accurate classification models
to be constructed from fewer number of DFs and without the need
for extensive signal averaging or mathematical noise rejection. By
providing enhanced spatial image quality, as shown by rigorous
contrast analysis, the classified images allow for detailed tissue
segmentation for tumor detection. The path to clinical translation
is also enabled by the demonstration of HD histology and the
instrument developed here. The key idea is that only a small
number of spectral frequencies provide accurate and robust clas-
sification that allows us to overcome the slow data acquisition. The
implementation of the presented approach on large biopsy sec-
tions emphasizes the potential of efficient clinical translation.
Precise detection of the epithelial and stromal signatures in a few
hours of tissue procurement can greatly complement and extend
the capabilities of the current clinical practices. The combined

Fig. 5. Rapid triaging of malignant sections using stainless imaging of human breast biopsy samples in feasible times. (A) Image of needle biopsy sections
using absorbance at 1,658 cm−1 with specific malignant regions enlarged for clarity. (B) The multispectral image was classified using a 6-class model separating
cancerous and normal epithelial cells from various collagen-rich stromal types (6S). (C) Pathologist annotations to the H&E-stained image of a consecutive
section demonstrate agreement with the IR-classified image.
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instrument and epithelial–stromal segmentation opens possibilities
for developing early detection automated algorithms, serve as a
confirmation tool for diagnosis, especially facilitating the patholo-
gists to focus on specific regions of interest. While focused on
breast cancer, this work also paves the way for development of
similar practical scanning for other tissues and disease types.

Methods
Sample Preparation. A paraffin-embedded serial breast TMA (BR1003; US
Biomax Inc.) consisting of a total of 101 cores of 1 mm diameter from
47 patients was obtained. Two sections were stained with H&E and smooth
muscle actin and imaged with a light microscope. Corresponding 5-μm-thick
adjacent unstained sections of the TMA were placed on a BaF2 salt plate for
transmission FT-IR imaging and on a low-emissivity glass (MirrIR; Kevley
Technologies) for reflective QCL-IR imaging. The sections were deparaffi-
nized using a 16 h hexane bath.

The QCL confocal microscope was calibrated using a negative chrome on
glass USAF 1951 test target (II-VI Max Levy) as well as a SU-8 photoresist target
to evaluate spectral fidelity. The multispectral images were acquired in
transflection configuration at 2-μm resolution with the 0.56 N.A. objective, at
1-μm resolution with the 0.85 objective, and at 12 distinct spectral frequencies
from the fingerprint region. Point spectra were acquired at 1 cm−1 resolution.

FT-IR Imaging. HD FT-IR imaging was conducted using a 680-IR spectrometer
coupled to a 620-IR imaging microscope (Agilent Technologies) at 0.62 N.A.
with a liquid-nitrogen–cooled MCT 128 × 128 focal plane array detector.
Data were acquired over the 900–3,800 cm−1 spectral range and averaged
over 32 scans per pixel. Afterward, the images were corrected against a
background acquired in an empty space of BaF2 slide with 120 scans and
Fourier transformed. The spectral resolution was 4 cm−1 with a pixel size of
1.1 μm. Resolutions Pro software was used for data collection and pre-
liminary data processing. Each sample was imaged by raster scanning an
∼140- × 140-μm tile. Each of these tiles took ∼2 min for scanning and 30 s of
processing. The individual spectroscopic image tiles were imported into ENVI +
IDL 4.8 and mosaicked using in-house software. This was further processed
using minimum noise fraction (MNF) for noise reduction. FT-IR images were
manually labeled using correlation with the consecutive marked H&E-stained
glass slide images under the supervision of a pathologist as ground truth for
our analysis. A tissue mask based on intensity of amide I band was applied, to
remove empty spaces and debris from further analysis.

QCL Confocal Microscope. The QCL confocal microscope contains of a quantum
cascademultilaser source (Block Engineering) that contains four individual tuner
modules with beams combined into a single collinear output spanning the mid-
IR fingerprint region from 770 to 1,940 cm−1. The general layout is illus-
trated in Fig. 1. The alignment of these tuners is assisted by a two-axis
galvanometer pair (θXY) (6215H; Cambridge Technology). Imaging is per-
formed by two interchangeable high-N.A. aspheric collimating lenses with
0.56 and 0.85 N.A. (LightPath Technologies) that focus the beam to a diffraction-
limited spot. Complicated aberration corrected optics are not required as the
instrument design compensates for many optical aberrations. When imaging
via high-speed stage scanning (HLD117; Prior Scientific), all optics are illumi-
nated with a zero-field angle where performance is optimal. Off-axis light rays
due to scattering are rejected by the illumination (AI) and detection (AD) ap-
ertures limiting the focal area, thus increasing resolution and minimizing ab-
errations. The instrument also corrects for chromatic distortion using a
calibration curve generated in optical design software (Code V; Synopsys). The
instrument is also capable of running an autofocus subroutine per wavenumber
by sweeping the axial position of the objective maximizing the signal.

The laser is split using a KBr beam splitter (BS) (Spectral Systems) with half
discarded (BB) and the rest used to illuminate the sample in transflection
mode. Light is absorbed by the sample and the remaining intensity is focused
onto a cryogenically cooled, 0.5-mm active area, photovoltaic MCT detector
with matched preamplification (MCT-13-0.5PV and MCT-1000PV; InfraRed
Associates) using a 100-mm focal length parabolic mirror (OAP). After pre-
amplification, the detector signal (VAC) is measured with a lock-in amplifier
(MFLI; Zurich Instruments). A data acquisition card (PCIe-6361; National In-
struments) generates the pulse reference frequency for the laser and the
lock-in amplifier as well as the analog drive signal for the galvanometer pair.
The demodulator samples are triggered by the stage encoder, and the
magnitude (R) of the demodulator vector represents the pixel intensity.
Since the stage velocity is not constant, this minimizes distortion since the
image is formed as function of spatial distance rather than time. At 2-μm
pixels, approximately half the size of the PSF and the lowest wavelength,

with 50-nm encoder spacing, the counter outputs a single TTL pulse per
40 ticks (EncXY). The instrument can acquire images at any resolution as long
as the pixel size is rounded to an integer multiple of the encoder spacing.

System performance is optimally stabilized by automatically adjusting
several important parameters when tuning the laser, including repetition
rate, pulse width, pointing angle, and detection sensitivity. These parameters
are saved as a system configuration file for a subset ofwavenumbers, typically
the key classification bands. For hyperspectral scans where a predefined
configuration is not available, a default set still provides acceptable per-
formance for most wavenumbers. When a scan is first initiated, two sub-
routines are performed. First, the instrument finds the optimal focal point at
various points across the scan field and calculates the best-fit plane that
represents the substrate. The autofocus algorithm sweeps across z coordi-
nates while monitoring the detector signal, which approximately follows a
sinc-squared profile, until the global maximum is found. First, the operator
must bring the sample near the focal point before the automation takes
over the remaining fine adjustments. During the search, the signal is
smoothed and the search window restricted to >5 μm to avoid converging
onto errant local maxima. We autofocus only on bare substrate to avoid
situations where the reflection off the sample surface exceeds the trans-
flected signal resulting in an offset to the desired focal point. All system
coordinates are then transformed by this matrix so its accuracy is critical.
Small tilts can defocus the image by several microns for large specimens and
create artifacts such as fades and ripples. The plane is shifted axially
depending on the focal point of the objective at the specified wavenumber.
Second, the system performs a test sweep calculating the minimum pixel
dwell time as a function of stage velocity and setting the lock-in amplifier
time constant to one-third this value. The instrument scans in both direc-
tions, creating a forward image and a backward image.

For each image, the background intensity is generated by surface fitting
against empty regions of the image, predominantly along the edges. This
compensates for slow power fluctuations as well as any residual sample tilt
leftover from the mechanical correction. Forward and reverse images are
then interlaced. These images have an offset due to system delays. When the
pixel is triggered, assuming a constant time delay will still result in a spatial
delay since velocity is constantly changing. The instrument records data
throughout most of the acceleration period to maximize acquisition time.
Any residual distortions are a function of velocity and signal delay. They are
small, ∼0.02%, yet result in a misalignment gradually increasing to a several
pixels over 10 s of millimeters. Therefore, aligning the odd and even rows in
these forward and reverse images is a nonrigid image registration task. We
estimate these local distortions and the displacement field that registers the
reverse scan with the forward scan and the corrected images are warped and
resampled using the original pixel grid (MATLAB; MathWorks). Next, to
compensate for microscope drift over time arising from environmental
changes, we register the adjacent wavenumber bands and aligning the entire
stack using affine transforms (ImageJ; NIH). Last, the PSF of the optics at each
wavenumber is simulated and used to deconvolve (50) the image according to
the Tikhonov–Miller algorithm. The spectral images are rubber band baselined
and visualized in ENVI + IDL (ITT Visual Information Solutions).

Supervised Classification. First, regions of interest are identified by consulting
the H&E-stained images annotated by a pathologist. These served as training
data points for the algorithm to identify the spectral signatures associated
with each class. These signatures were then used by the random forest
classifier to map unknown pixels to the given classes (different histologic
states). Random forest is an ensemble of decision trees in which a random
subset of the training data (regions of interest) and random sampling of the
features (spectral markers) is used to build a decision tree. Each decision tree
votes for a particular class to be assigned to the sample at hand. The ma-
jority vote from all of the decision trees is used for the final class assignment.
As random forest uses a parallel training algorithm, it is suitable for large
datasets. The first set of spectral markers was manually determined by ex-
amining the individual cell spectra of all of the biological samples and also
the average regions-of-interest spectra. The average spectra for different
classes used in the model development is illustrated in SI Appendix, Fig. S4. It
is evident from the average spectra that the absolute absorbance values are
not that different across classes. Therefore, peak height and peak area ratios
that can be mapped to known chemical features were used; 134 features
(metrics) were defined, listed in SI Appendix, Table S2. Some of the most
important features in both the models with their corresponding biochemical
significance are listed in SI Appendix, Table S3. A supervised selection based
on the classification error associated with each feature was also applied to
the manually selected metrics to generate promising metrics candidates for
a resilient approach in breast histopathology and future clinical applications.
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The number and type of histologic classes were identified based on breast
histopathology. Breast cancer mainly comprises of four epithelial sub-
types (hyperplasia, atypical hyperplasia, malignant, and normal) and
three stromal compartments (dense, loose, and desmoplastic). Next, to
ensure that both tumor and microenvironment features can be detected
by the presented approach, an epithelial and stromal model were chosen.
The epithelial model (6E) was composed of the four epithelial subtypes,
all three stromal components combined into one as “stroma” and the
remaining cellular entities (lymphocytes, red blood cells, necrosis, mucin,
and secretions) merged into the “others” class. Similarly, the 6S model
has three stromal components, malignant epithelium, benign epithelium
(hyperplasia and normal combined together), and the “others” class.
Both of these models are also described in SI Appendix, Fig. S4. The la-
beled pixels from the entire TMA were randomly split into half and
assigned into the training and the validation sets. To assess the perfor-

mance of the classifiers, prior distributions of different classes were var-
ied to generate the ROC curves. This approach of ROC curve generation
for a multiclass random forest classifier has been described in detail in our
other work.

Finally, the top few features in the fingerprint region responsible for class
differentiation were used to identify the frequencies for the DF measure-
ment. A combination of these collected frequencies were then used for the
classification of the DF-IR data.
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