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Abstract: (1) Background: Lysosomal aspartic protease Cathepsin D (CD) is a key regulator and
signaling molecule in various biological processes including activation and degradation of intracel-
lular proteins, the antigen process and programmed cell death. However, the function of fish CD
in virus infection remains largely unknown. (2) Methods: The functions of the CD gene response
to SGIV infection was determined with light microscopy, reverse transcription quantitative PCR,
Western blot and flow cytometry. (3) Results: In this study, Ec-Cathepsin D (Ec-CD) was cloned and
identified from the orange-spotted grouper, Epinephelus coioides. The open reading frame (ORF) of
Ec-CD consisted of 1191 nucleotides encoding a 396 amino acid protein with a predicted molecular
mass of 43.17 kDa. Ec-CD possessed typical CD structural features including an N-terminal signal
peptide, a propeptide region and a mature domain including two glycosylation sites and two active
sites, which were conserved in other CD sequences. Ec-CD was predominantly expressed in the
spleen and kidneys of healthy groupers. A subcellular localization assay indicated that Ec-CD was
mainly distributed in the cytoplasm. Ec-CD expression was suppressed by SGIV stimulation and
Ec-CD-overexpressing inhibited SGIV replication, SGIV-induced apoptosis, caspase 3/8/9 activity
and the activation of reporter gene p53 and activating protein-1 (AP-1) in vitro. Simultaneously,
Ec-CD overexpression obviously restrained the activated mitogen-activated protein kinase (MAPK)
pathways, including extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK).
In addition, Ec-CD overexpression negatively regulated the transcription level of pro-inflammatory
cytokines and activation of the NF-κB promotor. (4) Conclusions: Our findings revealed that the
Ec-CD possibly served a function during SGIV infection.

Keywords: Singapore grouper iridovirus (SGIV); grouper; cathepsin D; apoptosis

1. Introduction

Cathepsins are widely presented in eukaryotic cells and are roughly composed of
cysteine protease (cathepsin B, C, F, H, K, L, O, S, W, and Z), aspartic protease (cathepsin
D and E) and serine protease (cathepsin A and G) [1]. Most Cathespins are localized in
lysosomal acidic vesicles and depend on the acidic pH environment to exert their catalytic
activity. Cathepsin D (CD), which accounts for 11% of proteases in the lysosome, has
been characterized as a pepsin of the aspartic proteinase family and for its function in
shearing and degrading peptide chains [2–4], participating in antigen presentation and
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regulating cell cycle progression [5–7]. Moreover, much research has investigated the role
of CD in disease. For instance, CD can maintain neuronal cell homeostasis via mediating
proteolysis [8]. In human disease, CD was deemed to be a remedy related to candidate
targets in breast carcinoma and Alzheimer’s disease [9,10]. Given its regulatory role in
physiology, CD inhibitors such as Pepstatin A [11] and Tasiamide B [12,13], and synthetic
derivatives of Tasiamide B [14–16], have been developed. So far, CD has been identified in
bony fish such as lampreys, grass carp and rock breams [17–19]. However, the limitation of
current research is that it typically focuses on the role of CD in mammalian physiological
activities. Studies rarely focus on the features of CD in the antiviral response to DNA
virus invasion.

The orange-spotted grouper (Epinephelus coioides), belonging to the Perciformes, Ser-
ranidae, is favored by consumers and farmers because of its delicious meat and rich nutrition,
and is one of the main farmed fish in China. Singapore grouper iridovirus (SGIV), a high
fatality rate virus disease, resulted in enormous economic loss to the aquaculture indus-
try [17–21]. We previously found that cathepsins were the key element in the fight against
SGIV infection; however, whether CD is involved in antiviral response is unclear [21–23].

In this study, after cloning and characterizing Ec-Cathepsin D (Ec-CD), we analyzed
its expression pattern, subcellular localization, roles in viral infection and the impact on
cellular innate immunity. Taken collectively, these findings revealed the crucial role of
grouper CD in antiviral innate immunity.

2. Materials and Methods
2.1. Fish, Cells and Virus

Grouper spleen (GS) cells were cultured in Leibovitz’s L15 medium supplemented
with 10% fetal bovine serum (Gibco, Waltham, MA, USA) at 28 ◦C, as well as fathead
minnow (FHM) epithelial cells [24,25]. SGIV was prepared as described previously [21].

2.2. Cloning of Ec-CD and Bioinformatic Analysis

The primers Ec-CD-F/Ec-CD-R (Table 1) were used in polymerase chain reaction
(PCR) condition for obtaining the open reading frame (ORF) of Ec-CD, which was based
on the expressed sequence tag (EST) sequences of grouper CD. The Conserved Domains
program (https://www.ncbi.nlm.nih.gov/cdd/, accessed on 10 May 2022) and the BLAST
program (http://www.ncbi.nlm.nih.gov/blast, accessed on 10 May 2022) were used to
analyze the sequence and predicted the specific construction of Ec-CD, respectively. Clustal
X1.83 software, the GeneDoc program and the MEGA 6.0 software were used for the amino
acid alignments and phylogenetic analysis.

Table 1. Primers used for silencing Ec-Cathepsin D.

Primers Sequences (5′–3′)

NC-F UUCUUCGAACGUGUCACGUTT
NC-R ACGUGACACGUUCGGAGAATT

Si-Cathepsin D-136-F GCCGACACACACUCCCUUATT
Si-Cathepsin D-136-R UAAGGGAGUGUGUGUCGGCTT
Si-Cathepsin D-341-F GCUGGCUUCACCACAAAUATT
Si-Cathepsin D-341-R UAUUUGUGGUGAAGCCAGCTT
Si-Cathepsin D-936-F GGUGAACUGUGACAAGGUUTT
Si-Cathepsin D-936-R AACCUUGUCACAGUUCACCTT

2.3. Virus Infection Assay

We infected GS cells and FHM cells with SGIV (multiplicity of infection (MOI) = 0.1)
to elucidate the changes of Ec-CD during SGIV stimulation. A light microscope (Zeiss,
Oberkochen, Germany) was used to visualize viral cytopathic effects and cells were harvested
for subsequent experiments.

https://www.ncbi.nlm.nih.gov/cdd/
http://www.ncbi.nlm.nih.gov/blast
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2.4. Ec-CD Expression Patterns

To probe the distribution of Ec-CD in tissues, spleen, muscle, head kidney, liver, brain,
gill, heart and kidney were gathered from fit groupers for qRT-PCR analysis. To explore
the influence of SGIV invasion on Ec-CD, GS cells were gathered at SGIV post-infection for
subsequent experiments.

2.5. Plasmid Construction and Cell Transfection

ORFs of Ec-CD sub-cloned into pEGFP-C1 vectors (Invitrogen, Los Angeles, CA, USA)
to generate recombinant plasmids pEGFP-CD. Primers used are listed in Table 1. Based
on the previous method [26], Lipofectamine 2000 transfection reagent (Invitrogen, Los
Angeles, CA, USA) was used in cell transfection. Briefly, monolayer cells were incubated
with Lipofectamine 2000 and plasmids in serum-free medium. At 6 h post-incubation,
serum-free medium was changed to serum-containing medium.

2.6. Cellular Localization Assay

Four percent paraformaldehyde and 4,6-diamidino-2-phenylindole (DAPI) were ma-
nipulated to fix and stain transfected GS cells, respectively. Fluorescence signals were
imaged under fluorescence microscopy (Leica, Wetzlar, Germany).

2.7. Ec-CD Knockdown Analysis

To explore the effects of Ec-CD knockdown on virus infection in cells, Small Interfering
RNA (siRNA) targeting three sequences of Ec-CD mRNA was synthesized by GenePharma,
Shanghai, China (Table 1). In addition, cells were transfected with siRNAs, and Si-Cathepsin
D-341 was used as si-Cathepsin D in follow-up experiments.

2.8. RNA Extraction and qRT-PCR

A Cell Total RNA Isolation Kit (FORE GENE, Chengdu, China) was used to extract
total RNA, and a ReverTra Ace qPCR RT Kit (TOYOBO, Osaka, Japan) was used for
the reverse transcription of RNA, as described previously [26]. An Applied Biosystems
QuantStudio 5 Real Time Detection System (Thermo Fisher, Waltham, MA, USA) with the
cyclic conditions described previously was used for qRT-PCR analysis [22]. The primers
used in the experiment are listed in Table 2. The relative expression ratio of the selected
gene vs. β-actin (reference gene) was calculated using the 2−∆∆Ct method.

Table 2. Primers used for host and viral gene expression analysis.

Primers Sequences (5′–3′)

C1-Ec-Cathepsin D-F ATGAAGCTGTTGCTCCTCTTCGTGT
C1-Ec-Cathepsin D-R TCACTTGGACTTGGCAAAGCCC
Ec-Cathepsin D-RT-F GGTGCCCTCCGTTCACTGCTCCAT
Ec-Cathepsin D-RT-R GCCCGACAAACTGCCACTCCCATA

β-Actin-RT-F TACGAGCTGCCTGACGGACA
β-Actin-RT-R GGCTGTGATCTCCTTCTGCA

MCP-RT-F GCACGCTTCTCTCACCTTCA
MCP-RT-R AACGGCAACGGGAGCACTA
VP19-RT-F TCCAAGGGAGAAACTGTAAG
VP19-RT-R GGGGTAAGCGTGAAGACT
LITAF-RT-F GATGCTGCCGTGTGAACTG
LITAF-RT-R GCACATCCTTGGTGGTGTTG
Ec-IL-1β-F AACCTCATCATCGCCACACA
Ec-IL-1β-R AGTTGCCTCACAACCGAACAC
Ec-IL-6-F GGTTGGTCCAAGGTGTGCTTA
Ec-IL-6-R CTGGGATTGTCGAGGTCCTT
Ec-IL-8-F GCCGTCAGTGAAGGGAGTCTAG
Ec-IL-8-R ATCGCAGTGGGAGTTTGCA

Ec-TNFα-F GTGTCCTGCTGTTTGCTTGGTA
Ec-TNFα-R CAGTGTCCGACTTGATTAGTGCTT
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2.9. Reporter Gene Assay

GS cells in each of the 48-well plates were co-transfected with 300 ng pEGFP-C1 or
pEGFP-CD and reporter gene plasmids containing 150 ng NF-κB-Luc and 15 ng SV40. In
the apoptosis assay, FHM cells were co-transfected with 300 ng pEGFP-CD or pEGFP-C1
and luciferase plasmids including 15 ng SV40 and 150 ng AP1-Luc or P53-Luc. Luciferase
activities in cells were detected by the Dual-Luciferase® Reporter Assay System (Promega,
Madison, WI, USA).

2.10. Western Blot Analysis

To detect the synthesis of relative protein, GS cells were lysed with Pierce IP Lysis
Buffer (Beyotime, Shanghai, China). Next, 10% SDS-PAGE was used to isolate proteins and
Immobilon-polyvinylidene difluoride membranes (Millipore, Temecula, CA, USA) with
transferred proteins, which were incubated in 5% bovine serum albumin (BSA) and then in
different antibodies. Specific primary antibodies against β-tubulin (1:2000 dilution, Abcam,
Cambridge, UK) served as a loading control, SGIV major capsid protein (MCP) (1:4000 dilu-
tion), SGIV ORF162 (1:2000 dilution), ERK1/2 (1:1000 dilution, CST), JNK (1:1000 dilution,
CST), phospho-ERK1/2 (1:1000 dilution, CST), phospho-SAPK/JNK (1:1000 dilution, CST)
and cleaved caspase3 (1:1000 dilution, CST) in the experiment. After being washed in TBST
for 15 min, peroxidase-conjugated affinipure goat anti-rabbit IgG (1:6000 dilution, Abcam)
was tested, and immune-reactive proteins were visualized by enhanced chemiluminescence
(Thermo Fisher, Waltham, MA, USA).

2.11. Cell Apoptosis Analysis

To demonstrate the effect of Ec-CD on SGIV-induced cell apoptosis, the percentage
of apoptotic cells was detected by flow cytometry analysis according to the previous
method [27]. In brief, FHM cells transfected with pEGFP-C1/CD or si-Cathepsin D were
treated with SGIV infection and then gathered and fixed in 70% ethanol. A buffer solution
containing propidium iodide (PI; Sigma-Aldrich, St. Louis, MO, USA) was utilized to stain
centrifuged cells. FlowJo software was used to analyze the data obtained by flow cytometry.
A Caspase Glo® 3/8/9 Assay kit (Promega, Madison, WI, USA) was used to detect the
changes of caspase 3/8/9 activation. FHM cells transfected with pEGFP-C1 or pEGFP-CD
were infected with SGIV for 12 h or 24 h and then equal volumes as the culture medium of
the reagent were added to samples for reactions. At 1 h post-infection, a microplate reader
(Thermo Fisher, Waltham, MA, USA) was used to measure levels of caspase activation.

2.12. Statistical Analysis

GraphPad Prism 9 software was used to perform all the data analysis, and date were
expressed as means ± the standard deviations (SD). Student’s t-test was used for statistical
comparisons, and differences between the means were considered significant at p < 0.05.

3. Results
3.1. Sequence Characterization of Ec-CD

The ORF of Ec-CD consisted of 1191 nucleotides that encoded a 396 amino acid protein.
Ec-CD included one N-terminal signal peptide (1 aa−18 aa) and one propeptide (19 aa−61 aa).
Two key active sites were contained in the amino acid sequence of Ec-CD at position 94 aa and
281 aa, respectively. Moreover, two glycosylation sites were localized at position 131 aa and
249 aa, respectively (Figure S1A). Ec-CD shared 99.5% identity with the CD homolog of the giant
grouper (Epinephelus lanceolatus), but 62.9% compared to humans (Homo sapiens). Phylogenetic
analysis implied that Ec-CD showed the closest relationship to that of Epinephelus, and all the
fish Ec-CD were clustered into one group separated from amphibians, birds and mammals
(Figure S1B).
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3.2. Tissue Distribution, Expression Profiles and Subcellular Distribution of Ec-CD

The relative expression of Ec-CD in different tissues from healthy juvenile, orange-
spotted groupers was analyzed by qRT-PCR. The results revealed that Ec-CD was dis-
tributed in eight detection tissues and highly expressed in the spleen, kidney, head kidney
and brain (Figure 1A). In response to SGIV simulation, the mRNA expression of Ec-CD
was obviously down-regulated (Figure 1B). To evaluate the role of Ec-CD, subcellular
location was tested in GS cells. PEGFP-C1 and the recombinant plasmid, pEGFP-CD, were
transfected into GS cells, respectively. As shown in Figure 1C, the green fluorescent signals
representing pEGFP-C1 was equally distributed in the whole cell, whereas in pEGFP-CD-
transfected cells, the fluorescence signal was mainly observed in the cytoplasm, while some
was observed with dot-like aggregation forms near the nucleus, which might imply that
the function of Ec-CD was associated with vesicles (Figure 1C).
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Figure 1. Expression patterns of Ec-CD were determined by qRT-PCR analysis. (A) The expression
level of Ec-CD in different tissues from healthy groupers. Data are expressed as a ratio to the
Ec-CD mRNA expression in gills. (B) GS cells were infected with SGIV and the expression level
of Ec-CD was analyzed at different time points. β-actin (reference gene) was calculated using
the 2−∆∆Ct method. Results are presented as the means ± SD of data from four independent
experiments. * p < 0.05, ** p < 0.01. (C) Subcellular localization of Ec-CD in grouper cells. PEGFP-C1
and pEGFP-CD were transfected into GS cells. After 24 h, cells were fixed and stained with DAPI
and imaged by fluorescence microscopy. Green fluorescence indicated pEGFP-C1 or pEGFP-CD, and
blue fluorescence indicated the nucleus.

3.3. Overexpression of Ec-CD Inhibited SGIV Infection

To elucidate the impact of Ec-CD on SGIV invasion, GS cells transfected pEGFP-C1 or
pEGFP-CD were infected with SGIV and then the viral gene replication was investigated.
The relative expression of Ec-CD was detected to prove the success of overexpression.
QRT-PCR showed that the expression of Ec-CD in the cells transfected with pEGFP-CD was
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200 times and 270 times higher, than that in the control group at 12 h or 24 h, respectively
(Figure 2A). In addition, the expression changes of viral capsid proteins-MCP, envelope
proteins-VP19 and early genes-LITAF and ORF162 were detected. Results suggested that
Ec-CD overexpression significantly weakened SGIV-related CPE, and the mRNA levels of
SGIV-MCP, SGIV-VP19 and SGIV-LITAF decreased (Figure 2B). Western blot indicated that
SGIV-MCP and SGIV-ORF162 protein synthesis was decreased in cells which overexpressed
Ec-CD (Figure 2C,D). In summary, the overexpression of Ec-CD inhibited the SGIV infection.
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Figure 2. Overexpression of Ec-CD significantly inhibited SGIV infection. Cells were infected with
SGIV after being transfected with pEGFP-C1 and pEGFP-CD 24 h later. (A) The relative expression
of Ec-CD was evaluated by qRT-PCR. (B) The severity of CPE induced by SGIV was weakened.
(C) The relative expressions of SGIV-MCP, SGIV-VP19 and SGIV-LITAF genes after SGIV infection
were evaluated by qRT-PCR. The relative expression ratio of the selected gene vs. β-actin (reference
gene) was calculated using the 2−∆∆Ct method. (D) SGIV-MCP protein SGIV-ORF162 protein and
cellular β-tubulin were analyzed by WB, and MCP/β-tubulin, ORF162/β-tubulin for each group
were calculated as above. (E). Data are means± SD from four experiments. Student’s t-test: * p < 0.05.

3.4. Overexpression of Ec-CD Hindered SGIV-Induced Cell Apoptosis

To access the effects of Ec-CD overexpression on cell apoptosis, we selected FHM
cells as a research model in which cell apoptosis occurred when cells were infected with
SGIV [28]. Results of flow cytometry showed that SGIV-induced a sub-G0/G1 peak,
indicating the apoptosis of cells at 24 h was higher than at 12 h; Ec-CD expression decreased
the peak of apoptosis at both 12 h and 24 h compared with the control group (Figure 3A).
Western blot results indicated that protein synthesis of cleaved caspase-3 was reduced in
cells overexpressing Ec-CD (Figure 3B,C). Compared with the control group, the activity
of caspase-3, caspase-8 and caspase-9 were all lower (Figure 3D). To further explore the
molecular mechanism of inhibiting apoptosis by Ec-CD overexpression, the ERK and
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SAPK/JNK signaling pathway related to virus-induced cell death was detected by Western
blots. The synthesis of total ERK1/2 protein and the phosphorylation of ERK1/2 were
both significantly decreased in cells transfected with pEGFP-CD (Figure 3E). Similarly, total
protein and phosphorylated proteins of SAPK/JNK were reduced in cells overexpressing
Ec-CD (Figure 3F). The effect of Ec-CD on critical transcription factors related to cell
apoptosis, including AP-1 and P53, were detected using the luciferase reporter gene assay.
The results revealed that Ec-CD overexpression resulted in adverse effects on the activations
of AP-1 (Figure 4A) and P53 (Figure 4B) at 24 h. The fold changes were reduced by 51.5
and 9.8%, respectively.
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Figure 3. The effect of Ec-CD overexpression on apoptosis of fathead minnow (FHM) cells during
SGIV infection. (A) Flow cytometry analysis of DNA content in SGIV-infected FHM cells. The
percentage of the sub-G0/G1 phase was calculated and is indicated on the histogram. (B) The level
of cleaved caspase-3 proteins was detected by WB, and cleaved caspase-3/β-tubulin for each group
was calculated as above (C). (D) The activities of caspase-3, caspase-8 and caspase-9 were examined
in SGIV-infected FHM. Date are expressed as a ratio to the caspase activity of cells transfected
with pEGFP-C1 at 12 h. Data are means ± SD from four experiments. Student’s t-test: * p < 0.05.
(E) Detection of ERK1/2 phosphorylation and (F) JNK1/2 phosphorylation expression during SGIV
infection by WB. Cell lysates from SGIV-infected FHM cells transfected with pEGFP-C1 or pEGFP-
CD were collected at the indicated times and subjected to WB. To verify equal loading, Western
blotting was performed with antibody against β-tubulin, ERK1/2, JNK, phospho-ERK1/2, and
phospho-SAPK/JNK.
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3.5. Ec-CD Knockdown Promoted SGIV Infection

Given the role of Ec-CD overexpression on SGIV invasion, we explored the influence
of Ec-CD by si-RNA interference to further confirm the results. The efficient knockdown of
Ec-CD was detected by qRT-PCR, which showed that at 24 h the expression of Ec-CD in
GS cells transiently transfected with si-Cathepsin D-341 was reduced (Figure 5A). Hence,
si-Cathepsin D-341 is regarded as si-Cathepsin D. Cells transfected with si-Cathepsin D
were detected after being infected with SGIV for 24 h. Results suggest that the CPE caused
by SGIV was aggravated (Figure 5B), and the mRNA expression of SGIV-MCP, SGIV-VP19
and SGIV-LITAF increased (Figure 5C) in si-Cathepsin D- transfected cells. Western blot
showed that SGIV-MCP and SGIV-ORF162 protein synthesis was promoted in si-Cathepsin
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D- transfected cells (Figure 5D,E). These data indicated that Ec-CD knockdown promoted
SGIV infection.
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Figure 5. Knockdown of Ec-CD promoted SGIV infection. (A) The knockdown efficiency of si-
Cathepsin D. After GS cells were transfected with si-control or si-Cathepsin D for 24 h, cells were
harvested for qRT-PCR. (B) GS cells were infected SGIV after being transfected with si-control or
si-Cathepsin D. Knockdown of Ec-CD reduced the CPE induced by SGIV. The red arrows show CPE.
(C) The relative expressions of SGIV-MCP, SGIV-VP19 and SGIV-LITAF genes after SGIV infection
were evaluated by qPCR. The relative expression ratio of the selected gene vs. β-actin (reference
gene) was calculated using the 2−∆∆Ct method. (D) Detection of SGIV-MCP and SGIV-ORF162
expression during SGIV infection by WB. and MCP/β-tubulin, ORF162/β-tubulin for each group
were calculated as above (E). Data are means ± SD from four experiments. Student’s t-test: * p < 0.05.

3.6. Ec-CD Knockdown Promoted SGIV-induced Cell Apoptosis

To explore whether Ec-CD knockdown impacted SGIV-induced cell apoptosis, Si-
Cathepsin D was transfected into FHM cells and the cells were collected after being infected
with SGIV for 24 h for cell apoptosis analysis, caspase-3/8/9 activity analysis and dual
luciferase reporter assays. Flow cytometry analysis showed that the percentage of apoptosis
cells increased in si-Cathepsin D transfected cells (Figure 6A). The activities of caspase-3,
caspase-8 and caspase-9 were all higher than that in the control group (Figure 6B). Ec-CD
knockdown promoted the activations of AP-1 (Figure 6C) and P53 (Figure 6D). These
results demonstrate that Ec-CD knockdown promoted SGIV-induced cell apoptosis.
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Figure 6. Knockdown of Ec-CD promoted apoptosis. FHM cells were infected with SGIV after being
transfected with si-control or si-Cathepsin D. (A) The percentage of apoptotic cells in the hypodiploid
DNA peak (sub-G1 population) was calculated by sub-G1 population/total cell cycle populations.
(B) The activity of caspase-3, caspase-8 and caspase-9 after SGIV infection. (C,D) FHM cells were
co-transfected with AP-1-Luc or P53-Luc and si-Cathepsin D, and then cells were infected with SGIV
at 24 h post-transfection. The luciferase reporter gene assay was used to detect the activities of the
AP-1 or P53 promoters. Control group: cells were co-transfected with AP-1-Luc or P53-Luc and
si-control. Data are means ± SD from four experiments. Student’s t-test: * p < 0.05.

3.7. Ec-CD Knockdown Promoted SGIV-induced Cell Apoptosis

To verify the roles of Ec-CD in inflammatory responses, we examined the expression of
proinflammatory cytokines including IL-1β, IL-6, IL-8 and TNF-α by qRT-PCR and the pro-
moter activities of NF-κB related to inflammatory genes expression in GS cells transfected
with Ec-CD-overexpressing cells. The transcription levels of IL-1β, IL-6, IL-8 and TNF-α
were all lower than that in Ec-CD overexpression cells (Figure 7A), and the overexpression
of Ec-CD substantially decreased the activity of NF-κB promoters (Figure 7B). Based on the
data above, we propose that Ec-CD impaired the inflammatory response.
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4. Discussion

Cathepsin D (CD) is a highly conserved protease in the lysosomal system and relies on
aspartic acid residues for its catalytic activity. Numerous studies have indicated that CD is
involved in biological processes during pathogen invasion [3,29]. In this study, we cloned
and characterized Ec-Cathepsin D (Ec-CD) and analyzed its expression in different tissues
of grouper. Moreover, we analyzed the effect of SGIV infection on CD expression and
investigated the effect of CD expression on SGIV replication and SGIV-induced apoptosis.
Although the underlying mechanism remains to be explored, we revealed that Ec-CD had
a regulatory function in SGIV infection.

Ec-CD was cloned and identified for the first time and was found to encode a 396 amino
acid protein. Sequence analysis showed that it was highly conserved with other CD se-
quences in bony fish. Ec-CD shared the highest homology with giant grouper Epinephelus
lanceolatus (99.5%), followed by Comb Rockfish Sebastes umbrosus, and shared 82.6% identity
with zebrafish Danio rerio. In the phylogenetic tree, all teleost fish are grouped together,
while birds and mammals are clustered into another group. Like CD sequences in other
species, Ec-CD includes a signal peptide, a propeptide and a mature domain containing
two glycosylation sites associated with proper transference and two critical catalytic ac-
tivity sites [3,17,19]. In view of the above, it was speculated that Ec-CD plays a similar
physiological function as in other species. However, studies have shown that in mam-
mals, the mature CD contains a light chain and a heavy chain, which rely on hydrophobic
interaction to form a β-sheet structure, while CD from fish and other non-mammalians
has single-chain molecules due to the lack of amino acid residues necessary to generate a
two-chain form [30,31]. To investigate the function of Ec-CD, we examined the subcellular
localization of Ec-CD using a green fluorescent protein, and the results showed that green
fluorescence representing Ec-CD was excluded from the nucleus, as is consistent with
previous reports [5]. Cathepsins are a concern with the immune response to pathogen
invasion [32]. To clarify the immune role of Ec-CD, we monitored the expression pattern
of Ec-CD in different tissues of grouper and with virus stimulation. Ec-CD mRNA was
abundantly expressed in the spleen of grouper, the main immune organ, followed by the
kidney and the head kidney. Compared with uninfected virus, the transcription level of
Ec-CD decreased significantly in GS cells (75% reduction at 48 h) as the SGIV infection time



Viruses 2022, 14, 1680 12 of 16

advanced. These changes suggest that Ec-CD might play a momentous role in the host’s
antiviral innate immune response.

To further elucidate the molecular mechanism of Ec-CD involving the host immune
response to viral infection, the effects of Ec-CD overexpression and knockdown on SGIV
infection were explored. The results show that the transcription and protein synthesis of
viral genes were impeded after Ec-CD overexpression, but were induced by Ec-CD knock-
down. Viral infection could induce the secretion of proinflammatory factors by cells, which
was confirmed to lead to complications and organism damage [29,33–35]. Accordingly, nu-
merous reports have focused on the vital role of anti-inflammatory properties in defending
against viral attack. For example, the application of Lianhuaqingwen in inhibiting SARS-
CoV-2 infection was related to its anti-inflammatory activity [36], and anti-inflammatory
factors are involved in the cGAS-STING defense pathway against viruses [37]. As in previ-
ous reports, Cathepsins could be a therapeutic target for inflammatory diseases [38], and
the expression of pro-inflammatory cytokines in CD-overexpressing cells was examined to
prove the impact of Ec-CD on the host immune response. The results reveal that transcript
levels of pro-inflammatory cytokines were decreased in CD-overexpressing cells. Given that
NF-κB can activate inflammatory responses [39–41], and it has been reported as a potential
therapeutic target in metabolic disease and swine-origin influenza A (H1N1) virus [39–42],
we subsequently carried out the fluorescein reporter gene assay and the results showed
that Ec-CD reduced the promoter activity of NF-κB. These results suggest that Ec-CD can
protect against SGIV damage by attenuating cellular inflammatory responses through the
NF-κB pathway.

Apoptosis can serve as a host defense mechanism, while virus-induced apoptosis is
associated with viral escape from host immune responses. Reports indicate that West Nile
virus (WNV), and Japanese encephalitis virus (JEV) use apoptosis as a virulence factor to
promote their pathogenesis [43–45]. The human immunodeficiency virus (HIV) envelope
protein induced apoptosis in immune cells [46,47]. It is known that SGIV infection of
FHM induces canonical apoptosis and facilitates the activation of caspase 3/8/9, which is
associated with the activation of p53 and AP-1 pathways [48–50]. The involvement of CD
in apoptosis has also been widely reported. CD can not only act on caspase8 to promote
apoptosis, but also participate in the anti-apoptotic effect [51,52]. We overexpressed Ec-CD
in FHM cells, analyzed Ec-CD influence on SGIV-induced apoptosis by flow cytometry
and detected caspase activity. The results indicate that Ec-CD overexpression impaired
apoptosis caused by SGIV and caspase-3/8/9 activity, while Ec-CD knockdown induced
SGIV-induced apoptosis and stimulated caspase activity. At the same time, the Dual-
luciferase reporter gene assay confirmed that the activities of the promoters AP-1 and p53
were both reduced in Ec-CD-overexpressing cells, while Ec-CD knockdown showed the
opposite. Interestingly, it was also previously reported that in Tet21N cells, overexpression
of CD attenuated doxorubicin-induced apoptosis [53]. Therefore, we speculated that Ec-CD
could inhibit apoptosis by the AP-1 and p53 pathway.

The MAPK signaling pathway plays a key role in the process of cell death [54]. The
ERK signal pathway was shown to be involved in SGIV- and soft-shelled turtle iridovirus
(STIV)-induced apoptosis, and the JNK signal pathway was shown to be required for CIV-
induced apoptosis [28,55,56]. To prove whether the inhibition of SGIV-induced apoptosis
by Ec-CD involved the MAPK pathway, we examined the phosphorylation of ERK and
JNK in Ec-CD-overexpressing cells. The results demonstrate that the overexpression of
Ec-CD prevented the phosphorylation of ERK and JNK, suggesting that the ERK and
JNK pathway responded to the regulation of Ec-CD on apoptosis. In addition, JNK1
can enhance the infectivity of SGIV and participate in blocking of the cellular immune
response [50]. Consequently, the inhibition of JNK activation by Ec-CD is pivotal for
resistance to SGIV infection.



Viruses 2022, 14, 1680 13 of 16

5. Conclusions

We cloned and characterized Ec-CD, and investigated the response of Ec-CD to SGIV
invasion. As shown in Figure 8, Ec-CD expression was reduced by SGIV stimulation, and
overexpression of Ec-CD inhibited SGIV infection and SGIV-induced apoptosis in vitro.
In addition, Ec-CD negatively regulated the inflammatory responses. Our findings reveal
that the regulation effects of the Ec-CD in host innate immune response during DNA virus
invasion, and provides novel insights to the biological functions of Ec-CD.
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