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Abstract

Floret, leaf, and root tissues were harvested from broccoli and collard cultivars and

extracted to determine their glucosinolate and hydrolysis product profiles using high perfor-

mance liquid chromatography and gas chromotography. Quinone reductase inducing bioac-

tivity, an estimate of anti-cancer chemopreventive potential, of the extracts was measured

using a hepa1c1c7 murine cell line. Extracts from root tissues were significantly different

from other tissues and contained high levels of gluconasturtiin and glucoerucin. Targeted

gene expression analysis on glucosinolate biosynthesis revealed that broccoli root tissue

has elevated gene expression of AOP2 and low expression of FMOGS-OX homologs,

essentially the opposite of what was observed in broccoli florets, which accumulated high

levels of glucoraphanin. Broccoli floret tissue has significantly higher nitrile formation (%)

and epithionitrile specifier protein gene expression than other tissues. This study provides

basic information of the glucosinolate metabolome and transcriptome for various tissues of

Brassica oleracea that maybe utilized as potential byproducts for the nutraceutical market.

Introduction

Brassica crops have been domesticated by humans into morphotypes for which different tis-

sues are used for consumption [1]. Therefore, only a portion of Brassica crop biomass is har-

vested and utilized for food and feed. For example, broccoli florets represent less than 10% of

total aerial biomass of the plant [2]. Can residual biomass after harvest of Brassica vegetables

be utilized to yield value-added co-products?

Broccoli and cauliflower production values in United States of America (USA) during 2015

were $1.035 billion and $371 million, respectively [3]. Broccoli production in 2015 was 17.6

million tons [3]. Assuming only 10% of broccoli is used for food, then about 158 million tons
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of by-product of broccoli was produced at 2015 in USA. Like broccoli, cauliflower and other

Brassica crops also have considerable amounts of unused by-products after harvest. Despite

the potential economic value of these by-products, there is little information available on the

nutritional value and other potentially beneficial bioactivities of unharvested tissues of broccoli

(leaves and roots) and collards (roots) due to limited interest in these non-edible tissues. How-

ever, these tissues can potentially be utilized as anti-bacterial, anti-nematodal, allelopathic

(weed management) agents, or feedstocks for extraction of pharmaceutical products [4–6].

Glucosinolates are sulfur and nitrogen-containing secondary metabolites found primarily

in the Brassicaceae. Glucosinolate biosynthesis occurs from amino acid precursors through

chain elongation, core structure formation, and side-chain modifications [7]. Among these

glucosinolates, biosynthesis of side-chain groups and subsequent modification is attributed to

differences in bioactivity among the glucosinolates, and more specifically, their hydrolysis

products. Sulforaphane (SF) is one of the most potent chemopreventive agents in broccoli,

hydrolyzed from its precursor, glucoraphanin, by myrosinase [8]. The biosynthesis of glucora-

phanin is derived from methionine and goes through multiple steps to generate the

methylthioalkyl glucosinolates. A subclade of flavin-monooxygenases (FMOGS-OX1-5) catalyze

the conversion of methylthioalkyl glucosinolates (e.g. glucoerucin) into methylsulfinylalkyl

glucosinolates (e.g. glucoraphanin) [9]. An α-ketoglutarate-dependent dioxygenase called

AOP2 has been demonstrated to control the conversion of methylsulfinylalkyl glucosinolates

(e.g. glucoraphanin) to alkenyl glucosinolates (e.g. gluconapin) [10]. Thus, in order to accumu-

late glucoraphanin, the precursor to SF, the gene expression level of FMOGS-OX1-5 and AOP2
should theoretically be high and low, respectively.

Glucosinolates themselves are not bioactive compounds. It is their hydrolysis products,

formed by the removal of the glucose moiety by the endogenous enzyme, myrosinase, that

have been reported to possess many bioactivities, including cancer-prevention, biofumigation,

and anti-microbial activities [11, 12]. The chemical structure of these hydrolysis products

depends on the structure of the glucosinolate side-chain and reaction conditions such as pH,

concentration of Fe2+, and presence/absence of specifier proteins, such as epithiospecifier pro-

tein (ESP) [13]. There are a number of potential specifier proteins, including the epithiospeci-
fier modifier 1 (ESM1) gene in Arabidopsis, which encodes a protein shown to inhibit function

of ESP, leading to increased isothiocyanate production from glucosinolate hydrolysis [14]. In

the absence of specifier proteins, the addition of Fe2+ ions also promotes nitrile formation

[15]. Nitriles are weak chemopreventive compounds compared to the isothiocyanates like sul-

foraphane (SF) and phenethyl isothiocyanate (PEITC).

In the past few decades, research on glucosinolates in crop plants has increased following

the discovery of their putative role as cancer-prevention agents, primarily due to their induc-

tion of phase II detoxification enzymes, among other beneficial bioactivities [16]. Quinone

reductase (QR), a phase II enzyme, is present in mammalian tissues and has been used as a bio-

marker of anticarcinogenic activity from Brassica crops [17]. QR acts as a catalyst in the con-

version of reactive and toxic quinones into stable and non-toxic hydroquinones, reducing

oxidative cycling [18]. The health benefits of Brassica vegetables are strongly associated with

hydrolysis products created from glucosinolates by endogenous myrosinase. Isothiocyanate

hydrolysis products in particular, including SF, PEITC, erucin, and allyl isothiocyanate

(AITC), have been reported as quinone reductase enzyme inducers [19, 20].

In this study, we hypothesize that the differences in glucosinolate composition between B.

oleracea subspecies, as well as between the various tissues in a given subspecies, would correlate

with changes in expression of genes associated with side-chain modifications. If we understand

how this critical step of glucosinolate biosynthesis differs among various glucosinolate-
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containing plant species/subspecies and plant tissues, we may be able to manipulate glucosino-

late composition for the benefit of the grower (reduced pest damage) or for human/animal

health.

The objectives of this study were to determine the composition of glucosinolates, their

hydrolysis products, and health promoting bioactivity among different tissues from various

broccoli and collards cultivars. In addition, comparison of the gene expression and glucosino-

late profiles was performed in an effort to provide important information about the genetic

regulatory mechanism that may be used to manipulate glucosinolate concentration for the

improvement of human health promoting bioactivity or other agronomic purposes. In order

to address these objectives, we used microfluidic high-throughput reverse-transcription quan-

titative PCR (RT-qPCR) analysis using the Fluidigm system.

Materials and methods

Broccoli and collard cultivation

For this experiment, commercially available broccoli cultivars in the USA, ‘Arcadia’ and ‘Sul-

tan’, were chosen (Sakata Seed America, Salinas, CA). Two broccoli accessions originating

from Italy were obtained using the USDA Germplasm Resources Information Network

(GRIN) database: ‘Broccoli Neri (PI662531)’, and ‘Broccoli Grande Precoce (PI662712). We

also included a doubled haploid line called ‘VI-158’, originally procured from Dr. Mark Farn-

ham at the USDA-ARS U.S. Vegetable Laboratory in Charleston, South Carolina. Five collard

accessions were obtained from the USDA GRIN: PI143351 (originating from Iran), PI171531

(from Turkey), PI181720 (from Syria), PI204563 (Commonly cultivated in the USA), and

PI662840 (from Portugal). In the transcriptomic analysis results, broccoli and collard varieties

were coded in an effort to simplify the figure: B1 for ‘Arcadia’; B2 for ‘Broccoli Neri

(PI662531)’; B5 for ‘VI-158’; C2 for ‘PI171531’; C3 for ‘PI181720’; C5 for ‘PI662840’.

Seeds for all Brassica crops were germinated in flats in the greenhouse facility at the Univer-

sity of Illinois at Urbana-Champaign filled with Sunshine1 LC1 professional soil mix (Sun

Gro Horticulture, Vancouver, British Columbia, Canada) and were allowed to grow in the

greenhouse for three weeks under a 25˚C/18˚C and 14 h/10 h day/night temperature/photope-

riod regime with supplemental lighting. After three weeks, the flats were moved to raised beds

outside to allow for acclimation to the outdoor environment before being transplanted into the

field at the University of Illinois Vegetable Research Farm (40˚ 04038.89@ N, 88˚ 140 26.18@ W).

Transplanting took place between July 6 and July 20 in 2012. Varieties were grown in a ran-

domized complete block design with three replicates. All plants were supplied with supplemen-

tal water via aerial irrigation as needed in the first 30 days after transplanting. Mechanical and

hand weeding was done as needed. Various broccoli and collards tissues harvested as bulked

samples from five whole plants were flash-frozen in liquid nitrogen, and transported on dry ice

from the field to -20˚C storage until those samples could be lyophilized. For sampling of broc-

coli florets, one quarter of the florets from each head were harvested from five plants for each

biological replication. For sampling of the broccoli and collard leaves, three different leaf posi-

tions (one each from upper, middle, and bottom) were harvested from five plants for each bio-

logical replication. For sampling of broccoli and collard roots, whole taproots were harvested

from five plants for each biological replication. After freeze-drying, samples were ground to a

fine powder with coffee grinders and stored at -20˚C until analyses were conducted.

Analysis of glucosinolates

Glucosinolate contents were quantified according to Ku et al. [20] with slight modifications.

Freeze-dried floret, leaf, and root powder samples (200 mg) were placed in a 15 mL centrifuge
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tube and mixed with 2 mL of 70% methanol. After heating at 95˚C for 10 min in a heating

block followed by cooling on ice, 0.5 mL of internal standard were added. For the internal

standard, 1 mM sinigrin was used in the case of broccoli samples, while 1 mM glucosinalbin

was used for collards samples. The absence of those internal standards in each corresponding

crop was confirmed by preliminary experiments. After adding internal standards to the tubes,

the tubes were vortexed, followed with centrifugation at 8,000 × g for 5 min at 4˚C and the

supernatants were collected. The pellets were re-extracted with 2 mL 70% methanol at 95˚C for

10 min, and the supernatant was mixed with the previously collected supernatant. One mL of

pooled extract was transferred into a 2 mL microcentrifuge tube (Fisher Scientific, Waltham,

MA), and proteins were precipitated by adding 0.15 mL of a 1:1 mixture of 1 M lead acetate

and 1 M barium acetate. After centrifuging at 12,000 × g for 1 min, all supernatants were

loaded onto a column containing 1 M NaOH and 1 M pyridine acetate-charged DEAE Sepha-

dex A-25 resin (GE Healthcare, Piscataway, NJ). Desulfation was conducted by adding arylsul-

fatase (Helix pomatia Type-1, Sigma-Aldrich, St. Louis, MO) for 18 h at room temperature,

and the desulfo-glucosinolates were eluted with 3 mL ddH2O and filtered by 0.45 μm nylon

syringe filter. The filtered sample (100 μL) was injected into an Agilent 1100 HPLC system

(Agilent, Santa Clara, CA). Glucosinolates were separated by Kromasil RP-C18 column (250

mm × 4.6 mm) with mobile phase A (1% v/v acetonitrile containing 1mM ammonium acetate

solution) and B (100% acetonitrile) under following gradient conditions: 0 min 0% B, 7 min

4% B, 20 min 20% B, 35 min 25% B, 36 min 80% B, 40 min 80% B, 41 min 0% B, detected at

229 nm, and a flow rates of 1 mL/min. The UV response factors for various glucosinolates have

been published previously [21]. Typical HPLC chromatograms are available in S1 and S2 Figs.

Analysis of glucosinolate hydrolysis products

The glucosinolate hydrolysis product content in floret, leaf, and root tissue of broccoli and col-

lard were quantified according to Ku et al. [22] after slight modification. Freeze dried and pow-

dered sample (50 mg) was placed in a 2 mL microcentrifuge tube and 1 mL of ddH2O was

added. After 24 h of hydrolysis at room temperature in darkness followed by adding 150 μL of

phenyl isothiocyanate (1 mg/mL, to check consistency of GC analysis), vortexing, and centrifu-

gation at 12,000 × g for 5 min, 500 μL of the aqueous layer was taken and mixed with 500 μL of

dichloromethane in a Teflon centrifuge tube. After vigorous vortexing for 30 s and centrifuga-

tion at 12,000 × g for 3 min, the dichloromethane layer containing glucosinolate hydrolysis

products was transferred into a vial and analyzed by gas chromatography (Agilent 6890N, Agi-

lent Technologies, Santa Clara, CA) equipped with flame ionization detector and HP-5 capil-

lary column (30 m × 0.32 mm × 0.25 μm thickness). The injector and detector temperatures

were 200˚C and 280˚C, respectively, and nitrogen was used for the carrier gas at a flow rate 6

mL/min in splitless mode. The oven temperature was initiated at 40˚C, held for 5 min,

increased up to 260˚C at a rate of 10˚C/min, and maintained for 10 min. Identification and

quantification of each glucosinolate hydrolysis product was conducted by comparing the reten-

tion time and peak area to corresponding authentic standards. Agilent MSD (HP-5973N, Agi-

lent) was used to get mass spectra with the same GC condition as above to confirm the peak

identification with authentic standards (S1 Table) except for sulforaphane nitrile. In the case of

1-cyano-2,3-epithiopropane (CETP) and sulforaphane nitrile (SFN), relative response factors

of 0.894 and 0.762 were calculated [23] by using AITC and SF as a reference (1.0), respectively.

Quinone reductase (QR) inducing activity

Quinone reductase activity was measured according to Ku et al. [20] after slight modification,

especially in preparing hydrolyzed plant extracts due to the presence of volatile and water-
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insoluble hydrolysis products in different tissues and crops. Freeze-dried sample powder (50

mg) was hydrolyzed in a 4 mL amber vial with polytetrafluoroethylene (PTFE) liner by adding

3.0 mL of ddH2O for 24 h at room temperature in darkness. In order to capture and carry vola-

tile and water-insoluble hydrolysis products, 1 mL dimethysulfoxide (DMSO) was added and

mixed by vortexing for 30 s. An aliquot (1.5 mL) was transferred into a microcentrifuge tube,

and after centrifugation at 12,000 × g for 5 min, the supernatant plant extract was used for the

QR assay. For the QR assay, hepa1c1c7 murine hepatoma cells (ATCC, Manassas, VA, USA)

were cultivated in alpha-minimum essential medium (α-MEM) containing 10% fetal bovine

serum, 100 U/mL penicillin and 100 μg/mL streptomycin in a CO2 incubator (37˚C, 95%

ambient air and 5% CO2). The cells were divided every other day. Prior to plant extract treat-

ments, cells with 80–90% confluence were plated into 96-well plates (Costar 3595, Corning

Inc, Corning, NY, USA) at a population density of 1 × 104 cells per well, and incubated for

24 h. After removing α-MEM media, new media containing sample extracts [final concentra-

tion: 12.5 μg of freeze-dried sample in 200 μL of media] were added and incubated for a further

24 h. Growth media alone was used as a negative control. For the QR assay, treated cells were

rinsed with phosphate buffer at pH 7.4, and then lysed with 50 μL 0.8% digitonin in 2 mM

EDTA, incubated at 37˚C for 10 min with agitation at 100 rpm. A 200 μL aliquot of reaction

mixture [10 μM BSA, 82 μM Tween-20, 927 μM glucose-6-phosphate, 1.85 μM NADP, 57 nM

FAD, 2 units of glucose-6-phosphate dehydrogenase, 725 nM 3-(4,5-dimethylthiazo-2-yl)-

2,5-diphenyltetrazolium bromide (MTT), and 50 μM menadione (dissolved in acetonitrile) in

25 mM Tris buffer] was added to the lysed cells. Readings were made 5 times at every 50 s with

a microplate reader (μQuant, Bio-Tek Instruments, Winooski, VT, USA) at 610 nm. Immedi-

ately after the final readings, 50 μL of 0.3 mM dicumarol in 25 mM Tris buffer was added, and

the plate was read again (five time points, 50 s apart) to subtract basal MTT reduction non-

specific to QR. Total protein contents were also measured according to the protocols provided

by the BioRad assay (Bio-Rad, Hercules, CA, USA). Results for QR specific activity (nmol

MTT reduced mg/min) were expressed as a ratio of treated to negative control cells.

RNA extraction and quantitative real time-PCR

For transcriptomic studies, three varieties of broccoli (‘Neri’, ‘Arcadia’, and ‘VI-158’) and

three accessions of collard (‘PI171531’, ‘PI181720’, and ‘PI662840’) which showed distinctive

glucosinolate profiles compared to the others were selected. Total RNA was extracted from

selected samples with the use of an RNeasy Mini Kit (QIAGEN) according to the manufactur-

er’s instructions. RNA quality was verified using an Agilent 2100 Bioanalyzer (Agilent Tech-

nologies) and was quantified using a NanoDrop 3300 spectrophotometer (Thermo Scientific,

Waltham, MA). First-strand cDNA synthesis was performed with one μg of the total RNA

using Superscript™ III First-Strand Synthesis SuperMix for qRT-PCR (Invitrogen, Carlsbad,

CA, USA). Following synthesis, cDNA was diluted to 1/10 original concentration for use in all

further analyses. Primers were designed using Primer Express software (Applied Biosystems,

Foster City, CA, USA) from cDNA sequences annotated by previous publication [24]. These

sequence data saved at http://www.OCRI-genomics.org and a database, Bolbase, were pro-

duced by the Brassica oleracea Genome Sequencing Consortium (BoGSC). The one exception

to this were primers for AOP2, which were created from cDNA sequence obtained from NCBI

(AY044425.1) due to unavailability of AOP2 cDNA sequence on Bolbase. Some additional

cDNA sequences from Bolbase not identified/annotated as glucosinolate-related genes in Liu

et al. [24] were used for primer creation based on their BLAST bit-score for similarity to anno-

tated A. thaliana sequences. Primer amplification efficiency and specificity was tested with the

use of Power SYBR1 Green RT-PCR Master Mix (QIAGEN) and an ABI 7900HT Fast Real-
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Time PCR System (Applied Biosystems) according to the manufacturer’s instructions. Primer

amplification efficiency was tested using a 5-fold serial dilution of bulk cDNA from all samples

with the highest concentration being already 1/10 diluted from the original cDNA synthesis.

Primer specificity was verified through dissociation curve analysis. The final list of primers,

the gene model classifier from Bolbase, and the corresponding gene symbol used in this manu-

script can be found in S2 Table. Following primer validation, cDNA samples and primers were

submitted to the Roy J. Carver Biotechnology Center (University of Illinois at Urbana-Cham-

paign, Urbana, IL, USA) for final transcript expression profiling using a Fluidigm Dynamic

Array and Biomark HD high throughput amplification system (Fluidigm, South San Fran-

cisco, CA, USA) following 12 cycles of pre-amplification. Relative transcript quantification

was performed using standard curves produced from bulk cDNA 5-fold serial dilutions. Data

were normalized to each of the three endogenous control genes separately using the free Flui-

digm Real-Time PCR Analysis software. Averages of the normalized relative transcript quanti-

ties from each endogenous control were further normalized to the first sample in the data set

for each gene, so that the relative transcript quantity for each gene is equal to 1 for the first

sample (i.e., B1F1).

Statistical analysis

All analyses were done with three biological replications (five plants were collected for one bio-

logical replication). Gene transcript relative quantities were Z-transformed for all analyses to

normalize the numerical range of relative transcript abundance between genes. Univariate

analysis of variance (ANOVA) and Duncan’s multiple range test were performed using SPSS

(Armonk, NY, USA). Principle component analysis (PCA) and Pearson’s correlation analysis

was conducted by JMP Pro 12 (SAS Institute, Cary, NC, USA). The heatmap was generated by

using MetaboAnalyst 3.0 (http://www.metaboanalyst.ca/faces/home.xhtml): Euclidean dis-

tance measure and Ward clustering algorithm were chosen for data analysis from normalized

data with autoscale features as standardization. The top 25 most differentially expressed genes

were selected based on T-test/ANOVA method for both broccoli and collard data sets. Tukey’s

honest significant difference (HSD) test in MetaboAnalyst was used to examine significance of

gene expression differences among tissues. Partial least square discriminant analysis (PLS-DA)

in MetaboAnalyst was used to calculate variable importance in projection (VIP) value.

Results and discussion

Glucosinolate composition from various tissues of broccoli and collard

All five tested broccoli varieties showed similar tissue-dependent glucosinolate content differ-

ences, and mean total glucosinolate concentrations in root, floret, and leaf tissues of all tested

five varieties were 37.8 μmol/g DW, 10.8 μmol/g DW, and 5.20 μmol/g DW, respectively

(Fig 1A, 1B and 1C). There were variety-dependent variations in total glucosinolate concentra-

tions in floret (ranged from 7.71 to 12.3 μmol/g DW), leaf (1.98 to 10.2 μmol/g DW), and root

(28.5 to 59.1 μmol/g DW) tissues. Collards also showed tissue-dependent variation of total glu-

cosinolate concentrations in all five tested varieties; the mean total glucosinolate concentration

in collard roots was 48.9 μmol/g DW, which was over two-fold higher than that of collard leaf

tissue (22.3 μmol/g DW) (Fig 1C and 1D).

In addition to differences between tissues for total glucosinolates in both broccoli and col-

lards, there was also notable variation for the type of glucosinolates found in the different tis-

sues assayed. In the case of broccoli, the major glucosinolates in florets were glucobrassicin

(3.59 μmol/g DW, 33.2% of total glucosinolate), glucoraphanin (3.05 μmol/g DW, 28.2% of

total glucosinolate), and neoglucobrassicin (2.84 μmol/g DW, 26.3%), while glucobrassicin
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(2.50 μmol/g DW, 48.6%) and neoglucobrassicin (1.81 μmol/g DW, 35.1%) were the major

constituents in leaf tissue. In roots, however, gluconasturtiin (16.93 μmol/g DW, 44.8%) and

glucoerucin (9.79 μmol/g DW, 25.9%), which consisted of less than 1% of total glucosinolates

in floret and leaf tissues, were the dominant forms. Previous research indicates that root tissues

of several selected Brassica crops have significantly higher levels of certain glucosinolates,

including glucoerucin and gluconasturtiin, than leaves of the same crops [25].

In the case of collards, the total glucosinolate concentration in leaf and root tissues of the

five tested accessions ranged 11.4 to 36.4 μmol/g DW and 28.6 to 62.6 μmol/g DW with aver-

age values of 22.3 μmol/g DW and 48.9 μmol/g DW, respectively. Similar to broccoli, collards

also showed tissue-dependent differences in glucosinolate profiles in that glucobrassicin

(10.9 μmol/g DW, 48.3% of total glucosinolate) and glucoraphanin (5.38 μmol/g DW, 24.1%)

were the major glucosinolates in collard leaves, while gluconasturtiin (20.8 μmol/g DW,

42.6%) and glucoerucin (12.9 μmol/g DW, 26.3%) consisted of about 70% of total glucosino-

lates in collard roots.

Glucosinolate composition of leaves and florets from the broccoli accessions were not dis-

tinctly different (Fig 2A). However, both broccoli and collards showed significantly different

glucosinolate composition between aerial tissue (leaves and/or florets) and underground tis-

sues (roots) (Fig 2A and 2C). A PCA score plot (Fig 2A) revealed that component 1 contrib-

uted to separation between aerial tissue and underground tissues for both broccoli (36.3%)

and collard (46.3%). The PCA loading plot (Fig 2B) showed glucoerucin, gluconasturtiin, and

several indole glucosinolates (4-methoxyglucobrassicin, 4-hydroxyglucobrassicin, and neoglu-

cobrassicin) were positively associated with PCA component 1 in broccoli. These compounds

also showed a similar association with PCA component 1 in collards (Fig 2D). Among tested

broccoli varieties, ‘VI-158’ exhibited distinctive glucosinolate profiles in leaf and root tissues,

where leaf tissues contained greater levels of glucobrassicin (6.53 μmol/g DW) and root tissues

contained higher levels of gluconasturtiin (36.1 μmol/g DW) compared to the other varieties.

‘Arcadia’ broccoli showed the highest glucoraphanin concentration in florets; ‘Neri’ broccoli

had the highest glucoiberin concentration in florets and lowest total glucosinolate concentra-

tion in leaf tissue.

Among the five tested collard accessions, the glucosinolate profile of collard accession

‘PI662840’ was unique because it contained the highest concentration of sinigrin (27.3% of

total glucosinolates) and lowest glucoraphanin (1.0% of total glucosinolates) in leaf tissue,

compared to other accessions. The root of ‘PI662840 displayed a comparatively high composi-

tion of sinigrin (14.7% of total glucosinolates) and low glucoerucin (6.4% of total glucosino-

lates) compared to other accessions. Collard accession ‘PI181720’ had significantly higher

Fig 1. Glucosinolate profiles in extracts of floret (A), leaf (B), and root (C) tissue of broccoli and in leaf

(D) and root (E) tissue of collards.

https://doi.org/10.1371/journal.pone.0185112.g001
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glucoerucin content in root tissue than other accessions. This accession also had the highest

glucoraphanin concentration in leaf tissue. Thus, it was distinct in its PCA score (Fig 2C).

Based upon their unique glucosinolate profiles (Fig 1) and PCA analysis results, three varie-

ties of broccoli (‘Neri’, ‘Arcadia’, and ‘VI-158’) and three accessions of collards (‘PI171531’,

‘PI181720’, and ‘PI662840’) were selected for transcriptomic analysis.

Fig 2. PCA analysis of glucosinolates from different tissues. Score(A) and loading (B) plot of various broccoli tissues: Different colors indicate

various broccoli tissues (red: leaf; green: floret; blue: root) from tested varieties (1: ‘Arcadia’; 2: ‘Neri’; 3: ‘Precoce’; 4: ‘Sultan’; 5: ‘VI-158’). Score

(C) and loading (D) plot of collard tissues: Different colors indicate various collard tissues (red: leaf; blue: root) from tested varieties (1: ‘PI143351’;

2: ‘PI171531’; 3: ‘PI181720’; 4: ‘PI204563’; 5: ‘PI662840’). Numbers in bold blue in figure (broccoli 1, 3, and 5 variety and collard 2, 3, and 5) were

selected for targeted transcriptomics.

https://doi.org/10.1371/journal.pone.0185112.g002
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Glucosinolate hydrolysis product content

As to be expected with the observed differences in glucosinolate profiles, extracts from differ-

ent tissues of broccoli and collards also showed different profiles and concentrations of gluco-

sinolate hydrolysis products (HPs; Fig 3). In the case of broccoli, the average total HP

concentration in root tissue extracts (8.88 μmol/g DW) was higher than in those from florets

(5.38 μmol/g DW) and leaves (0.61 μmol/g DW). The primary forms of HPs in broccoli floret

tissues were SF and crambene, which consisted of 51.3% and 20.6% of total HPs, respectively.

SF was the major HP in broccoli leaf and root tissue extracts (96.3% and 42.9%, respectively).

Erucin (37.1%) and PEITC (14.8%) were major HPs in broccoli root tissue extracts, which dif-

ferentiated roots from other tissues.

In the case of collards, the average total hydrolysis product content in root tissue

(19.08 μmol/g DW) was much higher than in leaves (9.93 μmol/g DW), the consumed portion

of collard greens. On average, the major HPs in collard leaf tissue were SF (56.8%), goitrin

(11.7%), crambene (11.7%), and iberin (10.1%), while erucin (32.2%), SF (20.2%), goitrin

(15.1%), and crambene (12.4%) were major HPs in collard root tissue.

For both broccoli and collards, relatively small amounts of PEITC (1.32 and 1.56 μmol/g

DW,, respectively) were detected in root tissues compared to its precursor, gluconasturtiin

(16.9 and 20.8 μmol/g DW, respectively) in the same tissues. This discrepancy is probably due

to its lower solubility in water compared to other compounds, which has been previously

reported [19, 26]. Although SF has a water solubility of 8.0 mg/mL, PEITC has only

0.051 mg/mL of water solubility [27]. For by-product utilization, lack of water solubility of

PEITC should be considered as an important factor. The primary glucosinolate HPs in broccoli

and collard roots were erucin and PEITC. These volatile hydrolysis products in broccoli and

collard roots may be associated with plant-pathogen soil interactions. A recent publication has

reported that AITC altered soil microbial community composition [28]. This suggests that non-

synthetic anti-microbial agents can be developed from broccoli and collards root materials.

For SF, conversion rate from glucoraphanin averaged 108% from floret and leaf tissues in

broccoli and collard (n = 13, two very high outlying conversion rates were excluded due to

Fig 3. Glucosinolate hydrolysis product concentrations of floret (A), leaf (B), and root (C) tissue of broccoli and in leaf (D) and root (E) tissue of

collards. 3-B-1-ITC stands for 3-buten-1-yl Isothiocyanate; 4-PN stands for 4-pentenenitrile; SF stands for sulforaphane; SFN stands for sulforaphane

nitrile; AITC stands for allyl isothiocyanate; CETP stands for 1-cyano-2,3-epithiopropane; PEITC stands for 2-phenethyl isothiocyanate; 3-PPN stands for

3-phenylpropionitrile.

https://doi.org/10.1371/journal.pone.0185112.g003
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very low glucoraphanin concentrations). Surprisingly conversion of glucoraphanin to SF was

213% from broccoli and collard roots. This is likely due to to the reported conversion of erucin

to SF following hydrolysis [29]. The conversion rate of glucoraphanin to SF (SF concentration

/ glucoraphanin concentration) was significantly correlated with glucoerucin concentration in

root tissues from both broccoli and collard (r = 0.691, p = 0.027, n = 10). Previously, conver-

sion of SF to erucin was reported as S-oxide reduction by reductase in gut bacteria [29, 30].

However, the interconversion mechanism from erucin to SF is currently unknown.

Nitrile formation percentage was significantly different in the various broccoli tissues

assayed (S3 Table). Floret tissues had an average of 30.6% of nitrile forms among all HPs, while

leaf and root tissues had a significantly lower nitrile formation percentage (0 and 2.2%, respec-

tively). Collard leaves and root tissues averaged 19.5% and 14% nitrile formation, respectively.

It has been reported that broccoli florets have considerable ESP activity, which is associated

with enhanced nitrile formation [15].

Quinone reductase activity

Unlike the prominent differences in glucosinolate and their HP concentrations, the QR induc-

ing effects exhibited significant variation only between plant tissues, not between accessions.

Extracts from root tissues of broccoli and collards were not significantly different from the QR

inducing activity of broccoli florets and collard leaves, respectively (Fig 4). Relatively low QR

inducing activity of root samples despite of high glucosinolate and HP concentration could be

explained by volatility of HPs in root samples. As mentioned previously, PEITC and erucin

have very low water solubility, which has been previously reported [19, 26]. Previous studies

could not detect PEITC in hydrolyzed watercress extracts due to water solubility [31]. Thus,

Fig 4. Relative quinone reductase-inducing activity of floret, leaf, and root extracts of broccoli (A) and

collards (B). Vertical bars represent mean and standard deviation of 3 independent biological replications.

Different letters within a variety represent a statistically significant difference at p<0.05 by Duncan’s multiple

range test.

https://doi.org/10.1371/journal.pone.0185112.g004

Chemopreventive glucosinolate accumulation in various broccoli tissues

PLOS ONE | https://doi.org/10.1371/journal.pone.0185112 September 25, 2017 10 / 18

https://doi.org/10.1371/journal.pone.0185112.g004
https://doi.org/10.1371/journal.pone.0185112


only trace amounts of these compounds were likely dissolved in water hydrolysis extracts used

for the QR assay, even though PEITC and erucin were well-extracted by conducting liquid to

liquid solvent extraction for hydrolysis product analysis (Fig 3). This difference between QR

inducing ability and glucosinolate/HP profile has been reported previously [31, 32].

To the best of our knowledge, this is the first report of bioactivity from broccoli and collard

roots, since they are not typically consumed plant tissues. QR inducing activities of broccoli

floret extracts were significantly higher than broccoli leaf extracts of all correspondant culti-

vars/accessions. QR inducing activity of collard leaf tissues was much higher than broccoli leaf

tissues, even though they are both Brassica oleracea. The higher concentration of SF in collard

leaf tissue may explain this difference in this QR inducing activity. Possibly, the different devel-

opmental stages of broccoli (reproductive stage) and collards (vegetative stage) when harvested

affect glucosinolate accumulation in leaf tissues. Long-distance phloem transport of glucosino-

lates has been shown to occur in Arabidopsis [33]. No data on glucosinolate accumulation in

broccoli leaf tissue at various development stages could be found at this time, and therefore,

more research is required to confirm this hypothesis.

Significant correlations were found between precursor glucosinolates and their hydrolysis

products (S4 Table). There were significant correlations between QR inducing activity and sev-

eral phytochemicals, including: total aliphatic glucosinolates, r = 0.581, p = 0.023, n = 15; total

glucosinolates, r = 0.592, p = 0.020, n = 15; SF, r = 0.597, p = 0.019, n = 15; and total isothiocya-

nates, r = 0.545, p = 0.017, n = 15. Of the glucosinolate HPs, SF is often reported to have the

highest induction capability for Phase II antioxidant enzymes, including QR [8]. However,

Phase II induction has also been described for other isothiocyanate HPs (reviewed by Becker

and Juvik, 2016), lending credence to the almost equally strong correlation between QR and

total isothiocyanates seen in our results.

Targeted transcriptomics of glucosinolate biosynthesis and hydrolysis

In an effort to better understand the transcriptional control of the glucosinolate biosynthetic

mechanism, three broccoli and three collard cultivars were selected on the basis of their com-

paratively unique glucosinolate profiles and PCA results (Figs 1 and 2). From the heatmap

(Fig 5A), gene expression patterns of each tissue type were distinct. Transcript abundance of

ESM1, IPMI-SSU2, IPMDH1, AOP2, MAM3, MYB28.2,MYB122,MYB29, TGG2, NSP2, and
UGT74C1was significantly higher in root tissue than aerial tissues, while gene expression levels

of ESP2, ESP, IPMI-SSU3, GGP1, FMOGS-OX2, and BCAT3 from root tissue were significantly

lower than aerial tissues (by Tukey’s HSD at 0.01; S5 Table). In addition, a leaf-specific higher

gene expression pattern was observed for MYB34.2 CYP81F3, IGMT1, CYP81F1 compared to

other tissues (by Tukey’s HSD at 0.01; S5 Table). TGG1.2, IPMDH2, and MVP1 showed signifi-

cantly higher gene expression in floret tissue compared to the other two tissues, while FMOG-
S-OX2 transcript was significantly more abundant in root tissue (by Tukey’s HSD at 0.01; S5

Table).

The gene expression data help to explain why roots contained high glucoerucin concentra-

tions compared to leaves and florets, since these tissues displayed significantly lower expres-

sion levels of FMO GS-OX2 and FMO GS-OX5.1, genes which are responsible for the synthesis

of glucoraphanin from glucoerucin (S5 Table). Moreover, high AOP2 gene expression explains

relatively lower glucoraphanin concentration than glucoerucin in root (Fig 5A). Broccoli flo-

rets usually have high glucoraphanin levels, which indicates that FMOGS-OX and AOP2 are

usually expressed at high and low levels, respectively, for the accumulation of glucoraphanin.

The redundant homologs of FMOGS-OX were complementarily expressed in broccoli florets

dependent on the broccoli variety. For example, ‘Arcadia’ and’ VI-158’ had high expression of
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FMOGS-OX5.1 rather than FMOGS-OX2, while ‘Neri’ and all three broccoli leaf tissues sur-

veyed show the opposite pattern (Fig 5A). Higher gene expression levels of ESP in broccoli flo-

rets and ESP2 in broccoli leaf tissues with lower levels of ESM1 in leaf and floret compared to

root tissues may explain the observed high nitrile formation percentage (S3 Table). The gene

expression mean value of ESM1 in root tissue was 104 and 25-fold higher than floret and leaf

tissues, respectively (calculated from relative quantification). The gene expression of ESP in

root was 16-fold lower than floret tissue (calculated from relative quantification). There was a

weak correlation between ESP gene expression and nitrile formation percentage (r = 0.490,

p = 0.065, n = 15). However, there was significant correlation between ESM1 and ESP (r =

-0.873, p<0.0001, n = 15) as well as between ESM1 and ESP2 (r = -0.806, p = 0.0003, n = 15).

The weak correlation between nitrile formation and gene expression of ESP may be explained

by the fact that ESM1 regulates ESP activity [11, 14]. Broccoli and collard roots appear to be an

excellent source of active myrosinase without high ESP activity, ensuring high rates of SF for-

mation from available glucoraphanin.

These two genes were the top two variables of importance in projection (VIP) from the par-

tial least square discriminant analysis (PLS-DA, S6 Table). The VIP values of ESM1 and ESP
were 1.87 and 1.71, respectively. VIP values greater than 0.8 make an important contribution

to the dimensionality reduction involved in PLS compared to variables less than 0.8 [34]. Four-

teen variables had a VIP value higher than 1.2 for broccoli tissue transcript abundance profiles

(S6 Table). These could be useful transcript level biomarkers to indicate different broccoli tis-

sues. Certain paralogous genes were expressed differently in various tissues (i.e, TGG1.2 and

TGG2; IPMI-SSU2 and IPMI-SSU3; IPMDH1 and IPMDH2). As previously discussed, TGG1
and TGG2 have redundant function in glucosinolate hydrolysis and insect defense [35]. TGG2
seems highly expressed in broccoli root compared to TGG1.2.

Fig 5. Heatmap of gene expression from various broccoli (A) and collard (B) tissues. The top 25 most differentially expressed genes were selected.

B1: ‘Arcadia’ broccoli; B3: ‘Broccoli Neri (PI662531)’ broccoli; B5: ‘VI-158’ broccoli. C2: ‘PI171531’ collard; C3: ‘PI181720’ collard; C6: ‘PI662840’ collard.

https://doi.org/10.1371/journal.pone.0185112.g005
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In the case of collards, similarly, transcript abundance of MYB28.1, FMO GS-OX2, ESP2,

ESP, IPMI-SSU3, GGP1, TGG1.2,MYB34.1, and MYB34.2 in collard root tissues were signifi-

cantly lower compared to leaf tissue (by T-test at α = 0.01; S7 Table). Gene expression of

TGG2, FMOGS-OX5.2,CYP81F4, IPMI-SSU2, MYB29,MAM3, AOP2, MYB122, ESM1, NSP2,

and CYP81F4 in collard roots showed significantly greater transcript abundance compared to

leaf tissue (by T-test at α = 0.01; S7 Table). To a slightly lesser extent, gene expression of

IGMT2, CYP81F3,UGT74C1, FMOGS-OX5.2was also significantly greater in collard root tis-

sue compared to leaf tissue (by T-test at α = 0.05; S7 Table). Although FMOGS-OX5.2was rela-

tively highly expressed in root tissue, FMOGS-OX2 in roots was suppressed compared to leaf

tissue (Fig 5B). This suggests that this may be the limiting factor in glucoerucin accumulation

in collards. Unlike broccoli, FMOGS-OX5.2may be a non-functional gene or not a contribut-

ing factor in the conversion of glucoerucin to glucoraphanin. VIP values of ESM1 and FMOG-
S-OX2 were 1.57 and 1.56, making them the top two genes, followed by ESP2 (VIP = 1.53). 16

variables in the collards data generated VIP values greater than 1.2 (S6 Table). Similar to the

broccoli samples, certain paralogous genes were expressed differently in various tissues (i.e,

TGG1.2 and TGG2; IPMI-SSU2 and IPMI-SSU3; FMOGS-OX2 and FMOGS-OX5.2).

Gene expression of ESP2 was negatively correlated with QR activity (r = -0.829, p<0.0001,

n = 15) while gene expression of ESM1 was positively correlated with QR activity (r = 0.551,

p = 0.003, n = 15) (S4 Table). Total isothiocyanate concentration was positively correlated with

the transcript abundance of glucosinolate side-chain elongation genes (MAM3, IPMDH1,

BCAT4, and IPMI-SSU2), core structure formation genes (UGT74C1), transcription factors

associated with aliphatic glucosinolate biosynthesis (MYB28.2 and MYB29), side chain modifi-

cation genes (AOP2), and the myrosinase cofactor, ESM1. Total isothiocyanate concentration

was negatively correlated with ESP2 (r = 0.607, p = 0.016, n = 15). Previously, it was reported

that increased expression of MYB28 homologs achieved by the introgression of chromosomal

segments from Brassica vilosa (a wild Brassica species) led to high accumulation of glucorapha-

nin in ‘Beneforte’, a recently released broccoli hybrid [36].

For breeding purposes, high accumulation of glucoraphanin requires high expression of

FMOGS-OX and low expression of AOP2 (Fig 6). For high glucoraphanin conversion to SF,

high expression of ESM1 and low expression of ESP homologs is required. Thus, these genes

should be considered as important biomarkers. In a previous study, RNAi knockout in Bras-
sica juncea of AOP2, responsible for the conversion of glucoraphanin to other downstream glu-

cosinolates, resulted in an increase in the concentration of glucoraphanin from approximately

0 μmole/g to greater than 40 μmole/gram in one transformant [37]. Thus, comparison among

various tissues that have distinct glucosinolate and transcriptional profiles may provide insight

into how we may best be able to manipulate glucosinolate biosynthesis to produce valuable

compounds in specific plant tissues.

Using the Fluidigm system, we were able to measure gene expression for our selected target

gene set (n = 45, without references genes) for 44 samples within 2 days with minimized

human pipette error by utilizing microfluidic reaction. Note that a few sample spots were used

for establishing a relative calibration curve for quantification. The Fluidigm system allows us

to measure gene expression for a selected gene set (up to 96) and samples (up to 96) with far

greater ease and speed compared to conventional RT-qPCR with 384 well microtiter plates.

This system allows for a 50–100 fold reduction in the amount of material/reagents consumed,

with 5 to 20 fold increased throughput compared to conventional single-plex RT-qPCR [38].

Therefore, this system could be an excellent tool for scientists to conduct targeted transcrip-

tomics research.

Given our results, broccoli and collard roots can be good sources for glucosinolates with

favorable molecular conditions for isothiocyanate production during hydrolysis by
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endogenous myrosinase, if desired (very low ESP activity and high ESM1 expression). There

has been some research aimed at producing glucosinolates using a hairy root culture system

with broccoli and Arabidopsis [39, 40]. A broccoli hairy root culture system with supplemented

auxins has been shown to be more effective to produce indole glucosinolates compared Mura-

shige and Skoog medium [41]. These methods may be a more feasible practice to utilize root

tissue for bioactive glucosinolate production. However, research using the broccoli hairy root

culture system has focused on indole glucosinolate production, although we have shown broc-

coli roots to have high concentrations of gluconasturtiin and glucoerucin. Modifying the broc-

coli hairy root culture system to include production of these aromatic and aliphatic

glucosinolates requires more research. Harvesting broccoli or collard roots for bioactive com-

pound extraction may not be feasible due to harvest and labor costs. Broccoli and collard roots

have many small or hairy roots, meaning only a portion of the root biomass is available for har-

vesting in the form of the taproot. Considering the harvesting and transporting of these by-

Fig 6. Proposed gene regulation of glucoraphanin biosynthesis in various tissues of broccoli and quinone reductase inducing activity. Upper

part indicates glucosinolate biosynthesis in broccoli florets and leaves. Bottom part indicates glucosinolate biosynthesis in broccoli roots. Each reservoir

indicates pool of glucosinolate concentration. Size of each pipeline attached to reservoir indicates expression level of each gene. Accumulated

glucoraphanin concentration is associated with limited expression of the AOP2 gene (narrow pipeline) and elevated expression of FMOGS-OX2, 5 (thick

pipeline). High concentrations of glucoraphanin in broccoli florets contribute to quinone reductase (QR) inducing anticancer activity. However, roots have

shown high expression of ESM1 and low expression of ESP homologs, resulting in a high percentage of isothiocyanate over nitrile form, which contributes

to QR inducing activity in root tissues. Elevated concentrations of gluconasturtiin and glucoerucin likely did not contribute to quinone reductase inducing

anticancer activity because of high hydrolysis product volatility.

https://doi.org/10.1371/journal.pone.0185112.g006
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products also requires labor and efforts, by-product utilization for on-site control of soil-born

disease may be feasible utilization. In a previous study, broccoli residue incorporation into the

soil effectively reduced Verticillium wilt incidence on cauliflower and eggplant [42, 43]. In

order to utilize glucosinolates from root tissues for bioactive compound production, additional

economic and logistic based research is needed to determine feasibility.

Conclusions

This study has found that root tissues have a high concentration of gluconasturtiin and glu-

coerucin, and their isothiocyanate HPs, compared to other tissues in broccoli and collards.

Low nitrile formation capacity in root tissues, possibly related to the high observed ESM1 and

low ESP gene transcription, make the roots of broccoli and collards, and perhaps all Brassica
oleracea crops, a good source of active myrosinase and precursor glucosinolates of bioactive

HPs. In addition, comparative analysis reveals the metabolomic and transcriptomic differences

among various tissues and between different Brassica oleracea crops. This information may be

helpful for the utilization of by-products of broccoli and collards, either for human health, pest

management, or anti-pathogen agents. In addition, the mechanism of glucoraphanin biosyn-

thesis and hydrolysis in broccoli florets was generally associated with transcript abundance,

providing us with insight on how to best manipulate glucosinolate levels for any number of

possible breeding goals.
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S1 Fig. Typical HPLC chromatogram of glucosinolates in broccoli ‘Arcadia’ floret (A), leaf

(B), and root (C).

(TIF)

S2 Fig. Typical chromatograms of glucosinolates in collard (Acc. 662840) leaf (A) and root

(B).

(TIF)
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S3 Fig. Typical chromatogram of glucosinolate hydrolysis products in broccoli ‘VI-158’

floret (A), leaf (B) and root (C).

(TIF)

S4 Fig. Typical chromatogram of glucosinolate hydrolysis products in collard (Acc.

662840) leaf (A) and root (B).

(TIF)
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