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Inflammation is a complex biological response to detrimental stimuli and can be a double-edged sword. Inflammation plays a
protective role in removing pathogenic factors, but dysregulated inflammation is associated with several major fatal diseases such
as asthma, cancer, and cardiovascular diseases. Asthma is a complex heterogenous disease caused by genetic and environmental
factors. TLRs are the primary proteins associated with the innate and adaptive immune responses to these fatal factors and play
an important role in recognizing pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns
(DAMPs), which initiates the downstream immune response. Due to the complex TLRs cascade and nowadays unsuccessful control
in asthma, new studies are focused on TLRs and other potential targets in TLR cascade to minimize airway inflammation.

1. Introduction

Inflammation is a complex host response to detrimental stim-
uli including tissue injury, microbial infection, and irritant
exposure. It is classically characterized by redness, swelling,
heat, pain, and tissue dysfunction [1]. When inflammation
involves mucosal surfaces, there are accompanying mucus
hypersecretions and epithelial shedding. Inflammation plays
a protective role in the body in negating pathogenic factors
such as microbial infections and oxidative stress and is a
healing process enabling repair of damaged tissue [2]. On the
contrary, persistence of inflammation with overproduction
of cytokines by immune cells including macrophages, neu-
trophils, eosinophils, dendritic cells, mast cells, natural killer
cells, and structural cells such as endothelial cells, mucosal
epithelial cells, and fibroblasts can be harmful. Dysregulated
inflammation is associated with several diseases including
asthma, cancer, cardiovascular disease, autoimmune diseases,
and metabolic disease.

Asthma is a complex heterogeneous disease associated
with local tissue chronic inflammation of the airway and is

characterized by variable and recurring symptoms (includ-
ing wheezing, coughing, chest tightness, and shortness of
breath), reversible airflow obstruction, airway remodeling,
and airway hyperresponsiveness. According to Chung [3],
asthma is ranked as the 14th most important chronic disease
worldwide regarding the prevalence, extent, and duration
of disability and affects 334 million individuals of all ages,
resulting in 90 and 170 deaths per million in female and
male individuals, respectively. In addition, asthma causes a
heavy economic burden for the government and individuals.
For example, in Europe, total cost per patient ranges from
£509 for controlled asthma to £2281 for uncontrolled asthma
[4]. Asthma is caused by a complex and incompletely under-
stood combination of genetic (polymorphisms of multiple
genes) and environmental (such as respiratory infections
and particulates PM2.5) factors, which induce an immune
response via the infiltration of inflammatory cells into the
airway and consequent cytokine release. Emerging evidence
shows that Toll-like receptors (TLRs) are associated with
the inflammatory response and chronic airway inflammation
in asthma [5]. TLRs are a subgroup of pattern recognition
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receptors (PRRs) that are expressed by cells of the innate
immune system and that sense two classes of molecules
such as pathogen-associated molecular patterns (PAMPs)
and damage-associated molecular patterns (DAMPs), which
then initiates the downstream immune cascades.

Many previous studies have focused on the discovery,
structure, and roles of TLR family members and related
signaling pathways in airway diseases, but few studies empha-
size TLR expression in asthma, especially in the different
phenotypes.This reviewwill highlight the roles of TLRmem-
bers in airway inflammation and their association with the
pathogenesis of distinct asthma phenotypes and in addition
will discuss the potential for TLR-targeted therapies in the
treatment of asthma.

2. TLRs Family and Related Signal Pathways

Toll-like receptors (TLRs) are a class of single, transmem-
brane, and noncatalytic proteins named PRR and are ex-
pressed on specific immune cells (i.e., macrophages and den-
dritic cells) aswell as nonimmune cells (e.g., epithelial, fibrob-
last, and endothelial cells) [6]. TLRs bind to and recognize
endogenousmolecules namedDAMPs (e.g., structurally con-
served components of microbes) and exogenous molecules
that are named PAMPs (e.g., viral and bacterial products).
Additionally, after the recognition by TLRs, downstream
cascades are initiated. TLRs are involved in the initiation of
innate immune responses and play a protective role against
microbial infections. Once microbes invade physical barriers
such as the skin or intestinal tract mucosa, TLRs on the
cellular surface respond to microbial membrane materials
(e.g., lipids and lipoproteins) and intracellular TLRs recog-
nize microbial nucleic acids to initiate a host response [7].

So far, a total of 10 TLR genes in humans (TLR1–TLR10)
and 12 (TLR1–TLR9 and TLR11–TLR13) in mice have been
discovered. The 10 TLRs family members in humans are
categorized into two subgroups. The first subgroup that
recognizes the components ofmicrobial membranes includes
TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10 of humans
and TLR11 and TLR12 of mice and is primarily expressed
on the cell surface [8]. The second subgroup that responds
to microbial nucleic acids includes TLR3, TLR7, TLR8,
and TLR9 and is expressed intracellularly in vesicles (e.g.,
lysosomes, endosomes, and the endoplasmic reticulum). TLR
signaling is divided into two distinct signaling pathways, that
is, themyeloid differentiation factor 88- (MyD88-) dependent
and Toll/IL-1 receptor-domain containing adapter-inducing
interferon-𝛽- (TRIF-) dependent pathway. Both pathways are
involved in innate immunity. MyD88 and TRIF bind inde-
pendently to TLRs, resulting in the production of cytokines
such as TNF-𝛼, IL-1𝛽, IL-6, and type I IFNs [9].

2.1. MyD88 Pathway. MyD88 possesses an amino- (N-)
terminal death domain (DD), a shorter linker sequence, and
a carboxy- (C-) terminal Toll/interleukin-1 receptor (TIR)
domain. MyD88 also has an intermediate domain (ID) that
interacts with IL-1R-associated kinases 4 (IRAK4) in TLR
signaling [10, 11]. MyD88-dependent signaling is used by all
TLRs except TLR3. The knockout of MyD88 in mice showed

no responses to the ligands of TLR familymembers including
TLR2, TLR4, TLR5, TLR7, and TLR9, indicative of the key
role of MyD88 in TLRs-mediated inflammatory responses
[12–16].

2.2. TRIF Pathway. TRIF is a large protein containing 712
amino acids in humans and directly binds to TLR3 and
indirectly binds to TLR4 via connectionwith another adaptor
protein, TRIF-related adaptor molecule (TRAM) [10]. The
knockout of TRIF in mice triggers defective expression of
IFN-𝛽 production and IFN-related genes that are mediated
by TLR3 and TLR4, although early-phase activation of NF-
𝜅B and TLR4-mediated activation of MyD88 pathway were
observed [17]. Similarly, TRIF was confirmed to have a
key role in the induction of inflammatory mediators con-
tributing to antiviral innate immune responses via MyD88-
independent signaling that is mediated by both TLR3 and
TLR4 [18].

3. What Is Asthma?

Asthma is a common heterogeneous disease characterized
by chronic airway inflammation and is defined by recurring
respiratory symptoms (such as wheezing, cough, shortness
of breath, and chest tightness) that vary over time and in
intensity, as well as by airflow obstruction according to GINA
report [19]. Asthma causes a serious global health threat to
patients of all age groups and is increasing in many countries
in its prevalence, especially among children. Some countries
have experienced a significant decline in hospitalizations and
mortality from asthma; however, asthma still imposes a heavy
burden on public health systems and on society through
productivity decreases.

Due to both exposures (such as allergen and micro-
bial infection) and treatment, there is heterogeneity in the
inflammatory response in asthmatic airway. Wang et al.
[20] previously categorized asthma into four phenotypes
such as neutrophilic, eosinophilic, mixed granulocytic, and
paucigranulocytic asthma according to inflammatory cell
counts in induced sputum. Individualized precise diagnosis
and treatment based on inflammatory phenotypes are now
advocated because of limitations on the premise of cur-
rent management of asthma. Individualized therapy is the
customization of health care tailored to the individual and
uses previously infeasible technologies based primarily on
recent cluster analyses, molecular phenotyping, biomarkers,
and differential responses to therapies, distinguishing a given
patient from other patients with similar clinical presentations
[21, 22]. Nowadays, the mainstay of asthma treatment is
daily long acting 𝛽

2
agonists and inhaled corticosteroids

(LABA/ICS) [3]. Maintenance treatment with LABA/ICS
relieves asthma symptoms and reduces the frequency of exac-
erbations; however, there are limits in treatment options for
people who do not gain control on combination LABA/ICS
[23]. Targeted therapies at IgE, interleukin-4 (IL-4), IL-4
receptor, IL-5, IL-13, tumor necrosis factor-𝛼, and CRTh2 are
new treatment paradigms for asthma [24]. Emerging studies
demonstrate that TLRs-targeted therapies potentially play a



Mediators of Inflammation 3

Gram(+) Gram(−)

TLR2 TLR4

MyD88

MAPK

TRIF

MyD88

Viruses (e.g., rhinovirus)

CytoplasmTLR3 TLR7/8

Endosome
ssRNAdsRNA

TRIF

Eosinophilic asthma Neutrophilic asthma

P50/P65 P38 MAPK

Nucleus

NF-𝜅B

IL-4, IL-5, IL-13 IL-1𝛽, IL-8

NF-𝜅B

Figure 1: Schematic overview of TLR signaling pathway in neutrophilic and eosinophilic asthma. Gram-negative and Gram-positive bacteria
as well as respiratory viruses (e.g., rhinovirus) are detected by TLRs. Subsequently, TLR3 and TLR7/8 trigger TRIF and MyD88 pathways,
respectively, followed by the transcription of NF-𝜅B in nucleus and the production of IL-4, IL-5, and IL-13, inducing eosinophilic asthma.
TLR2 and TLR4 induce MyD88 and MyD88 as well as TRIF cascades, respectively, followed by the transcriptions of MAPK and NF-𝜅B
into nucleus, triggering the release of IL-1𝛽 and IL-8 and the onset of neutrophilic asthma. MAPK: mitogen-activated protein kinase;
MyD88: myeloid differentiation primary-response gene 88; NF-𝜅B: nuclear factor-𝜅B; TLR: Toll-like receptor; TRIF: Toll/IL-1R (TIR) domain
containing adaptor protein inducing IFN-𝛽.

key role in effectively controlling airway inflammation in
asthma.

4. TLRs in Asthma

4.1. TLR2 and TLR4 in Neutrophilic Asthma. The role of
adaptive immune responses in asthma is well studied and
involves T helper type 2 lymphocyte activation by aller-
gen, accompanied by eosinophilic airway inflammation. The
innate immune system is also associated with the patho-
genesis of asthma and the onset of inflammation in the
airway. Simpson first discovered that an upregulation of
the innate immune receptors TLR2 and TLR4 as well as
proinflammatory cytokines IL-8 and IL-1𝛽 was involved in
neutrophilic asthma [25]. TLR2 plays an important role in
recognizing Gram-positive bacteria and TLR4 is responsible
for the detection of Gram-negative bacteria through their
microbial components such as lipopolysaccharides (LPS)
(Figure 1) [8].

4.2. TLR7 and Eosinophilic Asthma. TLR7 is intracellularly
expressed on the surface of airway epithelia and airway

smooth muscle as well as innate immune cells (such as
macrophages, natural killer cells, and dendritic cells) [26, 27]
and plays a significant role in the pathogenesis of autoim-
mune disorders such as Systemic Lupus Erythematosus (SLE)
and in the regulation of antiviral immune responses [28].
TLR7 recognizes single-stranded RNA, a commonmolecular
component to respiratory viruses, resulting in regulating
downstream interferon production and the activation of Th1
antiviral responses [28]. TLR7 exhibits its antiviral activity in
combination with TLR8, the homologue of TLR7 that also
recognizes single-stranded viral RNA (Figure 1).

TLR7 plays an important role in reduction of airway
inflammation, promoting Th1 responses in immune cells,
reversing airway hyperresponsiveness, and preventing air-
way remodeling. Airway inflammation is essential to the
pathogenesis of asthma and is triggered by respiratory viral
infections and inhaled allergen, leading to the activation
of T helper 2 (Th2) cell differentiation and the secretion
of Th2 cytokines such as IL-4, IL-5, and IL-13 [29]. IL-
5 matures eosinophils in the bone marrow and, together
with chemokines such as eotaxins, promotes recruitment of
eosinophils into the airways, resulting in local eosinophilic
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inflammation [30]. TLR7 stimulation suppresses eosinophilic
airway inflammation in a variety of animal models of asthma
through reducing Th2 cytokines such as IL-4 and IL-5 as
well as eotaxin in the lung [31] and IgE [32]. On the other
hand, IL-5 induced airway eosinophilia can act as negative
regulator of TLR7 expression and antiviral responses [30].
The role of TLR7 is not limited toTh2 responses; besides, it is
involved in Th1 responses in immune cells. TLR7 activation
promotes the reduction of Th2 cells and the enhancement
of Th1 cells, which results in increases in Th1-cytokine
release and decrease in IgE production [33–35], exhibiting the
immunomodulatory activity of TLR7 inmaintainingTh2/Th1
balance. IL-13 is responsible for inducing airway hyperreac-
tivity (AHR) and mucus production in eosinophilic asthma
[36]. TLR7 stimulation ameliorates ovalbumin-inducedAHR
when animals are treated with TLR7 agonists. A number
of emerging studies suggest that the suppression of AHR
involves NF-𝜅B and p38 MAP intracellular signaling and is
dependent on iNKT cells and IFN-𝛾 production [26, 37];
however, in vivo investigation on the mechanism of AHR
amelioration remains incomplete. Additionally, TLR7 ligand
prevents chronic irreversible asthmatic airway remodeling
including smooth muscle proliferation and goblet cell hyper-
plasia [38, 39].

4.3. TLR Genetic Polymorphisms and Asthma. Genetic poly-
morphisms in TLRs may be responsible for individual sus-
ceptibility and severity of asthma.Genetic diversity in specific
alleles determines the differences in susceptibility to a specific
disease to some extent [40]. Polymorphisms in the TLR4
gene affect sensitivity to allergens [41, 42]. Zhang et al. [42]
discovered a harmful effect of the TT homozygote allele in
the TLR4 gene rs1927914 on the forced expiratory volume in
1s (FEV

1
), implicating impaired lung function. Additionally,

the AA homozygote genotype and A allele in Asp299 Gly of
the TLR4 gene may correlate with a reduced asthma risk, as
indicated by the association between TLR4 polymorphisms
and the development of asthma in the study by Tizaoui et al.
[43]. In addition to TLR4, variants of the TLR2 gene were
reported to have some association with childhood asthma
in Caucasians [44], and TLR2 polymorphism affects the
asthma risk and lung function [45]. It has been shown that
variants in the TLR7/8 genes as well as the TLR10 gene
showed no significant association in some alleles despite the
relevance between other polymorphisms in the TLR10 gene
and asthma [42, 45–48]. In terms of TLR1 and TLR5, studies
on the association between genetic polymorphisms and the
development of asthma have not been reported. Future
investigations should emphasize TLR genetic variants such as
haplotype analysis and gene-environmental interaction [43].

4.4. TLR and Viral Infection. Viral infection is a com-
mon acute trigger of asthma and exacerbation of asthma.
Approximately 80% of asthma exacerbations are caused by
respiratory viral infection [49, 50].The PRRs in the detection
of viral infection include TLR7 and TLR8 which detect
single-stranded RNA and TLR3, retinoic acid-inducible gene
I (RIG I), and melanoma differentiation associated gene 5
(MDA5) that are activated by double-stranded RNA. TLR7

expression is associated with the severity of the disease
[51]. Airway cells from asthmatic patients are vulnerable to
viral infection due to impaired innate antiviral responses
compared to healthy subjects. This vulnerability is triggered
by aberrant production of type I IFN, an antiviral cytokine
[51]. TLR7 deficiencywas discovered in alveolarmacrophages
from severe asthmatic and affected the interferon responses
to rhinovirus infection. In the same study, the abnormal
expression of the threemicroRNAs such asmiR-150,miR-152,
and miR-375 was the trigger of TLR7 deficiency. When these
miRs were blocked, this resulted in restored TLR7 expression
and augmented interferon responses to rhinovirus infection,
indicating that TLR7 is associated with the vulnerability of
asthmatic subjects [51]. In addition to this finding, in vivo
research shows that a lack of TLR7 signaling in a rhinovirus-
induced asthma exacerbation leads to reduced IFN produc-
tion and exaggerated Th2-driven inflammation, suggesting
the role of TLR7 signaling in rhinovirus-induced asthma
exacerbation [30]. Other investigations support this finding.
Bronchoalveolar lavage (BAL) cells from nonsevere asthma
possess a deficient IFN response to rhinovirus infection [52,
53]; additionally, TLR7 dysfunction was shown in asthmatic
peripheral blood mononuclear cells [54]. TLR3 also detects
double-stranded RNA genome of respiratory virus which
represents the replication of RNA viruses and protects the
host by the induction of inflammatory responses including
type I IFN production and activation of NK cells and
cytotoxic T lymphocytes [55]. In an investigation by Parsons
et al. [56], although no difference in the expression of TLR3
was observed, primary bronchial epithelial cells (pBECs)
from asthmatics demonstrated an ineffective innate immune
response following RV infection, with impaired type I and
type III interferon responses to the infection. In addition, RV
infection of healthy pBECs triggered a robust upregulation of
TLR3, while inhibition of TLR3 signaling leads to a marked
inhibition of both type I and type III interferon responses.

4.5. TLR9 and Asthma. TLR9 is intracellularly expressed
in the immune cells such as B lymphocytes, monocytes,
and plasmacytoid dendritic cells and detects unmethylated
CpG motifs in microbial DNA molecules [57]. In allergic
asthma subjects, TLR9 expression on plasmacytoid dendritic
cells and TLR9-induced responses are upregulated by IL-
25 that originates from airway epithelial cells [58]. In an
in vivo investigation in severe asthma, Duechs et al. [59]
discovered that TLR9 activation significantly reduced some
features of the asthmatic phenotype such as a reduction in
eosinophil influx and IgE levels in serum. The same study
also observed a decreased release of cytokines such as IL-
4, IL-5, IFN-𝛾, IL-1𝛽, and IL-12, indicative of enhanced Th1
response, suggesting that TLR9 activation may suppress the
Th2 response via promoting a Th1 response. Similarly, a Th1
response induced by the exposure to CpG DNA opposes a
Th2 response in a murine model of asthma [60]. TLR9 is
also involved in the inhibition of airway remodeling [61–64],
suggesting a potential protective role of TLR9 in asthma.This
was evaluated in in vivo models where TLR9 activation was
found to be associated with a reduction in antigen-induced
respiratory allergic responses [65, 66], suggesting that TLR9
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ligands could be used as prophylactic and therapeutic agents
in asthma [67]. However, TLR9 targeted treatment was
not found to be efficacious in preexisting severe allergic
inflammation in the airway, in either animal experiments or
clinical trials [68, 69]. The role of TLR9 agonists in asthma
requires further evaluation.

5. TLRs Targeted Therapeutics

5.1. Effect of TLR Agonists in Asthma. The typical treat-
ment for asthma and asthma exacerbations includes inhaled
corticosteroids for their ability of enhancing 𝛽-adrenergic
responses and repressing inflammation in airways [70]. Nev-
ertheless, in the treatment of severe asthma, corticosteroids
are ineffective in alleviating symptoms, probably because
oxidative stress as well as subsequent DNA damage leads
to decreased activity of transcriptional corepressors such as
histone deacetylase-2 (HDAC-2) [8]. Recently, TLRs agonists
have been considered as agents in controlling asthma. TLRs
agonists can be categorized into cellular surface TLRs ago-
nists and intracellular TLRs agonists based on the distribu-
tion of TLRs. Cell surface TLRs sense structural components
of microbia ranging from Gram-positive bacteria to Gram-
negative bacteria and some respiratory viruses in the onset
and development of asthma and asthma exacerbation [67].
Targeting TLR4 to treat asthma is based on the activation
of TLR4 as an adjuvant in allergy vaccines to induce tol-
erance and inhibition of TLR4 expression. TLR4 agonists
such as MPL� (monophosphoryl lipid A) seem to work
effectively as allergy vaccines due to overexpression of TLR4
in asthmatic patients [8]. Another cell surface TLRs agonist is
Pam3CSK4 that acts as a synthetic TLR2 agonist and exhibits
antiasthmatic effects by reducingTh2 cytokine release, AHR,
IgE levels, airway inflammation, and asthmatic symptoms in
animal models of asthma [67]. Intracellular TLRs agonists
such as TLR7/TLR8 agonists have also been evaluated in
asthma. Resiquimod is a typical TLR7/TLR8 agonist and in
vivo suppresses AHR as well as airway remodeling in asthma
[31, 39, 71–73]. In addition, this drug was also found to
suppress both Th1 and Th2 cytokine production in the lungs
of experimental animals and decrease lung eosinophilia,
goblet cell hyperplasia, and IgE levels [39, 67, 71]. Many
other agents that target TLRs have been found to control
airway inflammation, eosinophilia, and AHR in distinct
animal models of allergic inflammatory diseases [67]. It is
obvious that in the future a wide variety of TLR agonists are
likely to be evaluated as effective asthma controllers. On the
contrary, future emphasis should be on the side effects of TLR
agonists, especially on asthmatic children due to a lack of
investigation on allergic children. Nowadays clinical trials are
mainly conducted in adults, and besides uncertain targeting
of the immature immunity in children as well as timing,
dosage, and patient selection regarding the formulation to
best employ TLRs agonists still needs further studies, which
may hinder wider application of TLRs agonists.

5.2. Effect of Corticosteroid on TLR Expression. Corticos-
teroids are the most effective agents in inflammation man-
agement in asthma, and classical corticosteroids such as

budesonide are recommended by guidelines for asthma
treatment [74]. When inhaled corticosteroids (ICS) were
introduced into asthma management, symptom control of
asthma and lung function were improved, and exacerbations
and asthma-related mortality decreased [19]. Corticosteroids
influenceTLRs and can upregulate TLR4 expression in vivo in
peripheral blood mononuclear cells from asthmatic patients
[75]. In addition to this finding, after in vitro stimulation
with LPS, the production of both TNF-𝛼 and IFN-𝛾 in
PBMC supernatant was significantly increased by oral corti-
costeroids [75]. Similarly, Pace et al. [76] reported that TLR4
and TLR2 expression were increased in Treg lymphocytes
from allergic asthmatic subjects after budesonide treatment
compared to healthy controls, providing further understand-
ing of the action mechanism of budesonide on the control of
inflammation in asthma. Furthermore, an increased level of
IL-10 and decreased level of IL-6 and TNF-𝛼 were observed
after budesonide administration, confirming the modulatory
potential of budesonide in immune responses to allergic
subjects.

6. Conclusions

The invasion of antigens into airways causes the activation
of PRRs such as TLRs in response to PAMPs. TLRs play
an important role in the detection of invading pathogens
by the innate immune system, and a total of 10 TLRs
family members have been discovered in humans (TLR1–
TLR10). TLRs induce the activation of MyD88 and TRIF
signaling pathways, resulting in the production of inflamma-
tory mediators via the NF-𝜅B pathway. Different pathogens
trigger distinct immune activation of TLRs. TLR2 plays an
important role in recognizing Gram-positive bacteria and
TLR4 is responsible for the detection of Gram-negative
bacteria, leading to the production of cytokines such as IL-
1𝛽 and IL-8 and to the infiltration of neutrophils in asthmatic
airways. In addition, TLR7 senses single-stranded viral RNA
which inhibits Th2 immune responses and eosinophilic
asthma, and TLR9 detects unmethylated CpG motifs in
microbial DNAmolecules in the development of asthma and
asthma exacerbation. Furthermore, genetic polymorphisms
affect the susceptibility and severity of asthma, making
effective control of airway inflammation in asthma more
complex. Nowadays, corticosteroid therapy is commonly
used for asthma treatment, and some findings confirmed the
modulatory role of corticosteroid in the mediation of TLR
expression in asthmatic subjects. Combination therapy of
corticosteroid and TLRs agonists may be potentially more
effective in controlling inflammation in asthmatics compared
to the traditional treatment by corticosteroid. However, the
timing, dosage, patient selection, and many other questions
regarding the formulation to best employ TLRs agonists
remain unclear, and future work needs to address these
difficulties in order to hold airway inflammation in check in
asthma.
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