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Simple Summary: Milk production traits that are economically important in the dairy industry have
been considered the main selection criteria for breeding. The present genome-wide association study
was performed to identify chromosomal loci and candidate genes with potential effects on milk
production phenotypes in a Korean Holstein population. A total of eight significant quantitative trait
locus regions were identified for milk yield (Bos taurus autosome (BTA) 7 and 14), adjusted 305-d fat
yield (BTA 3, 5, and 14), adjusted 305-d protein yield (BTA 8), and somatic cell score (BTA 8 and 23)
of milk production traits. Furthermore, we discovered three main candidate genes (diacylglycerol
O-acyltransferase 1 (DGAT1), phosphodiesterase 4B (PDE4B), and anoctamin 2 (ANO2)) through
bioinformatics analysis. These genes may help to understand better the underlying genetic and
molecular mechanisms for milk production phenotypes in the Korean Holstein population.

Abstract: We performed a genome-wide association study and fine mapping using two methods
(single marker regression: frequentist approach and Bayesian C (BayesC): fitting selected single
nucleotide polymorphisms (SNPs) in a Bayesian framework) through three high-density SNP chip
platforms to analyze milk production phenotypes in Korean Holstein cattle (n = 2780). We identified
four significant SNPs for each phenotype in the single marker regression model: AX-311625843
and AX-115099068 on Bos taurus autosome (BTA) 14 for milk yield (MY) and adjusted 305-d fat
yield (FY), respectively, AX-428357234 on BTA 18 for adjusted 305-d protein yield (PY), and AX-
185120896 on BTA 5 for somatic cell score (SCS). Using the BayesC model, we discovered significant
1-Mb window regions that harbored over 0.5% of the additive genetic variance effects for four
milk production phenotypes. The concordant significant SNPs and 1-Mb window regions were
characterized into quantitative trait loci (QTL). Among the QTL regions, we focused on a well-known
gene (diacylglycerol O-acyltransferase 1 (DGAT1)) and newly identified genes (phosphodiesterase
4B (PDE4B), and anoctamin 2 (ANO2)) for MY and FY, and observed that DGAT1 is involved in
glycerolipid metabolism, fat digestion and absorption, metabolic pathways, and retinol metabolism,
and PDE4B is involved in cAMP signaling. Our findings suggest that the candidate genes in QTL are
strongly related to physiological mechanisms related to the fat production and consequent total MY
in Korean Holstein cattle.

Keywords: milk production; Holstein cattle; genome-wide association studies; fine mapping;
genomic selection
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1. Introduction

Milk production is an economically important trait affecting profitability in Holstein
dairy cattle. Holstein selection for genetic improvement with economic characteristics
in the past was based on a traditional best linear unbiased prediction together with an
estimated breeding value (EBV), a traditional animal breeding program that depends only
on phenotypic and pedigree information [1]. Recent advances in DNA-based marker
technology have allowed us to identify quantitative trait loci (QTL), which are genomic
regions related to complex characteristics such as milk yield in dairy cows, and it was
reported that integrating detected QTL into genetic evaluations would promote the ge-
netic improvement of productivity by providing a means to increase the accuracy of an
estimation of an individual’s genetic ability.

For dairy cattle, since Georges et al. [2] reported a QTL mapping study on milk yield
characteristics, more than 1350 QTL for traits related to milk production were reported
(https://www.animalgenome.org/cgi-bin/QTLdb/BT/index accessed on 1 October 2020).
The specific genes or mechanisms involved in the detection of QTL, however, have not been
sufficiently characterized because of the low resolution of the traditional positional cloning
approach using microsatellite markers [3] and the lack of whole-genome sequences. In
addition, the limitations of QTL mapping using linkage analysis or linkage disequilibrium
(LD) based on panels of low- to moderate-density markers are well documented [4].

Advances in DNA analysis technology led to the emergence of genome-wide panels
containing hundreds of thousands of single nucleotide polymorphisms (SNPs), which
have been widely used for detecting QTL for complex traits in many species [5], and its
usefulness for detecting mutations has been demonstrated. Genome-wide association
studies (GWAS) that use this high-density SNP chip technology were used to locate genes
related to complex traits and have advantages in detecting effective causal alterations
and defining narrow genomic regions containing causal alterations compared with the
traditional QTL mapping strategies [6]. These techniques make it possible to detect SNPs
and candidate gene markers related to the economic traits of dairy cattle accurately.

Previous GWAS were performed using various SNP chip platforms in cattle breeds.
Two SNPs related to milk yield on Bos taurus autosome 4 (BTA 4), two SNPs related to
fat yield on BTA 14/2, and one SNP related to fat percentage on BTA 1 were identified
using the Bovine SNP50K BeadChip platform (Illumina, San Diego, CA, USA) in the
Braunvieh cattle breed [7]. Dozens of SNPs related to milk yield or fat yield were found
on BTA 14 (1.2–2.8 Mb) in Italian Holstein cattle, also through GWAS [8]. In addition,
GWAS performed using the BovineHD SNP777K BeadChip in Canadian Holstein cattle
for milk production, fat production, and protein production traits found many candidate
SNPs and chromosomal regions [9], and many other candidate genes related to milk
production, such as diacylglycerol O-acyltransferase 1 (DGAT1), transcriptional repressor
GATA binding 1 (TRPS1), stearoyl-CoA desaturase (SCD), and growth hormone receptor
(GHR) were found in GWAS using a high-density SNP chip platform [10–15]. GWAS
of Korean Holstein were also performed using the Bovine SNP50K BeadChip platform
(Illumina), indicating significant genetic regions such as DGAT1 related to milk production,
fat, and protein [16,17].

The ultimate goal of GWAS is to elucidate the causative alteration rather than the
locus, and high-density SNPs are required to identify such causative alterations closely.
Furthermore, higher-density fine mapping was performed recently using a customized
SNP array in which SNPs were included in the existing commercialized SNP chip platform
through whole-genome sequencing methods or other genotyping techniques [18–20]. Al-
though causal alterations are not always directly identified by this approach, this GWAS
fine mapping method can highlight a narrower genomic region as potentially containing
the causal alteration [21,22].

Bioinformatics analysis provides useful information for understanding the biological
and biochemical mechanisms of genes at the molecular level [23]. Recent studies reported
highly reliable results by analyzing the pathway or protein-protein interaction (PPI) based

https://www.animalgenome.org/cgi-bin/QTLdb/BT/index
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on candidate genes associated with milk production in dairy cattle [24–28]. The aim of the
present study was to identify chromosome regions and candidate genes related to four
milk production traits—adjusted 305-day milk yield (MY), adjusted 305-day fat yield (FY),
adjusted 305-day protein yield (PY), and somatic cell score (SCS)—in a Korean Holstein
population using high-density SNP chip platforms and two models to perform GWAS and
fine mapping.

2. Materials and Methods
2.1. Animals and Phenotypes

The multi-lactation single-trait model considering parity, provided by the National
Institute of Animal Science, was applied to MY, FY, PY, and SCS traits. The estimates
for genetic, residual variances and heritability for each trait are shown in Table S1. The
deregressed EBV (DEBVs), as response variables used in this study, were re-estimated using
the EBVs and the reliabilities of each individual. In addition, to explain the heterogeneous
variance resulting from the different reliabilities for each individual from the re-estimated
response variables, the weighting factor was calculated using the following formula [29]
and was applied to GWAS:

ωi =

(
1 − h2)

c +
[

1−r2
i

r2
i

]
h2

(1)

where r2
i is the reliability of EBVs; h2 is the heritability estimated for each trait; and c is

the genetic variance ratio explained by the SNP marker information (assumed as 0.4) [30].
After converting response variables into DEBVs and excluding individuals with reliability
(reliability EBVs—reliability of parent average) of 0.1 or less, the analysis of model for
GWAS was performed with a group of 2780 animals (926 bulls and 1854 cows) whose
genotype and phenotype data were available. The distributions of reliabilities are shown
in Figure S1.

2.2. Genotyping

DNA samples (200 ng adjusted to 50 ng/µL) from 2780 Korean Holsteins (926 bulls
and 1854 cows) were prepared from sampled hair according to standard protocols. DNA
concentration and quality were measured using a NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies, Wilmington, DE, USA). Genotypic data were obtained using
three SNP panels: Illumina Bovine SNP50K v2 (n = 1095), Illumina Bovine SNP50K v3
(n = 1013), and Affymetrix Axiom Bovine Custom300K (n = 672) (Table S2).

Genome-wide SNP genotyping based on Ensembl Bos taurus UMD3.1 (http://oct2018.
archive.ensembl.org/Bos_taurus/Info/Index accessed on 1 October 2020) was performed
using either the Axiom Bovine Custom SNP300K array (Affymetrix Inc., Santa Clara, CA,
USA) containing 297,424 SNPs or the Illumina Bovine SNP50K v2 and v3 BeadChip (Illu-
mina, San Diego, CA, USA) containing 53,218 and 54,609 SNPs, respectively. To construct
the customized Axiom array, SNPs were collected from previous commercial SNP geno-
typing platforms (i.e., Illumina Bovine50K versions and Affymetrix Bovine Genotyping
array) and ranges of QTL regions (DGAT1, melanocortin 1 receptor (MC1R), EvC ciliary
complex subunit 2 (EVC2), annexin A10 (ANXA10), GDNF family receptor alpha 2 (GFRA2),
neurotrophin 3 (NTF3), argininosuccinate synthase 1 (ASS1), LDL receptor related protein 4
(LRP4), integrin subunit beta 2 (ITGB2), uridine monophosphate synthetase (UMPS), COPI
coat complex subunit alpha (COPA), coagulation factor XI (F11), enoyl-CoA hydratase,
short chain 1 (ECHS1), DNA polymerase lambda (POLL), myostatin (MSTN), zinc finger
imprinted 2 (ZIM2), and anoctamin 2 (ANO2)) associated with various phenotypes in cattle
including Holstein. Affymetrix Axiom Bovine Custom SNP300K Information of total SNPs
in Affymetrix Axiom Bovine Custom SNP300K is described in Table S3.

http://oct2018.archive.ensembl.org/Bos_taurus/Info/Index
http://oct2018.archive.ensembl.org/Bos_taurus/Info/Index
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2.3. Quality Control (QC) and Imputation

QC was performed with the SNPs and animals in each genotyping platform. First, for
SNPs, the unmapped SNPs and sex chromosome SNPs were excluded, and then SNPs with
a call rate < 0.95, minor allele frequency (MAF) < 0.01, and Hardy–Weinberg equilibrium
(HWE) with p-value < 0.0001 were removed. Secondly, 57 individuals did not pass the
call rate < 0.95 criterion, and additionally, 109 individuals whose genomic information
differed from their pedigree information were also excluded based on a paternity test.
After that, the imputation was performed based on the Affymetrix Axiom Bovine Custom
SNP300K using FImputeV3 [31]. Finally, 2614 individuals with 201,704 SNPs were used
for further analyses. Multidimensional scaling (MDS) was performed based on SNPs to
indicate similarities between individuals.

2.4. GWAS
2.4.1. Single Marker Regression (SMR)

PLINK 1.9 [32] was used to perform an association analysis between SNP markers
and DEBVs for each trait, which was tested with a single marker regression as follows:

y = µ + Xg + e (2)

where y is a vector of DEBVs for each trait (MY, FY, PY, and SCS); µ is overall mean; X is a
design matrix allocating records to the marker effect; g is the effect of the SNP marker; and
e is a vector of the random deviate eij ∼ N

(
0, σ2

e
)
, where σ2

e is the error variance. In this
additive model, the marker effect is treated as a fixed effect (0, 1, and 2). The results were
also clumped based on LD between SNPs using—clump flag in PLINK 1.9 with the default
option (index variants were formed with p-values < 0.0001, and SNPs which are less than
250 kb away from an index variant and have r2 larger than 0.5 with it were removed). The
significance threshold of the −log10 p-value ≥ 6.61 was determined based on Bonferroni
correction. In addition, Quantile-Quantile (Q-Q) plots for each phenotype were performed
to identify population stratification or cryptic relatedness.

2.4.2. Bayesian C (BayesC) Approach

The general statistical model for the BayesC method was used with a π value of 0.997
and was fitted as follows:

y = µ +
K

∑
k = 1

Zkαk + e (3)

where y is an N × 1 vector of DEBVs for each trait (MY, FY, PY, and SCS); µ is the overall
mean; K is the number of SNP markers; Z is an N × 1 vector of genotypes at SNP k; α is the
additive effect of that SNP marker; and e is a vector of residual effects. In the present study,
SNP genotypes were coded as the number of copies of one of the SNP alleles (i.e., −10,
0, and 10) using GenSel4R software [33]. The BayesC method assumes that SNP effects
follow a normal distribution as a priori, and all SNPs have common variance. SNP marker
effects were obtained using Gibbs sampling, and the initial 10,000 iterations out of a total of
110,000 Markov chain Monte Carlo (MCMC) iterations were excluded as part of the burn-in
period with a thinning interval of five iterations. The significance level of the informative 1
Mb window region was 0.5% of the additive genetic variance, which was estimated as a
portion of the total genetic variance explained by all SNPs.

2.5. Functional Annotations

The PPI analysis was performed based on each candidate gene with the 20 most
interactive genes using the Bos taurus database and STRING v11.0 [34]. To investigate the
functions of candidate genes, the Kyoto Encyclopedia of Genes and Genomes (KEGG) [35]
pathway analysis was performed using the Database for Annotation, Visualization and
Integrated Discovery (DAVID) v6.8 [36].
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3. Results
3.1. General Statistics

Statistical information of phenotypes (DEBVs) in Korean Holstein is indicated in
Table S4. The genotypes of the Korean Holstein population were analyzed using the
imputed genotype data, and after QC, 201,704 out of 297,424 SNPs were used in the
GWAS. For a total of 29 BTA autosomes, the average interval (± standard deviation) was
13,048.3 ± 14,905.6 bp. Among the 29 BTA autosomes after excluding sex chromosomes,
BTA 8 had the largest number of SNPs (n = 15,260), and BTA 27 had the smallest number of
SNPs (n = 2959). As for the average interval between SNPs, the longest and shortest were
found on BTA 15 (16,344.2 bp) and BTA 23 (3881.9 bp), respectively. In the MDS plot, high
similarities between individuals were identified (Figure S2).

3.2. GWAS Based on the SMR

For the four DEBV phenotypes (MY, FY, PY, and SCS) related to milk production,
significant SNPs were identified based on the SMR determined by the Bonferroni correction
(−log10 p-value ≥ 6.61) (Table S5 and Figure 1A–D). Q-Q plots for each phenotype indicated
the possibility of a spurious association by population stratification or cryptic relatedness
(Figure S3). The numbers of significant SNPs were 104, 491, 409, and 26 for MY, FY, PY,
and SCS, respectively. For the MY phenotype, the most significant SNP was AX-311625843
(rs211223469, 1.7 Mb on BTA 14) with MAF of 0.266 located in the intron of DGAT1, and
the highest SNP effect was observed in AX-115105679 (rs109608009, 39.0 Mb on BTA 16)
with MAF of 0.015 located in the intron of paired related homeobox 1 (PRRX1). For the FY
phenotype, the most significant SNP was AX-115099068 (rs109146371, 1.6 Mb on BTA 14)
with MAF of 0.284 located in the upstream region of forkhead box H1 (FOXH1), and the
highest SNP effect was observed in AX-320911501 (rs42774899, 46.8 Mb on BTA 17) with
MAF of 0.016 located in the intergenic region. For the PY phenotype, the most significant
SNP was AX-429486957 (rs383397306, 55.5 Mb on BTA 18) with MAF of 0.068 located in the
intron of transmembrane protein 143 (TMEM143), and the highest SNP effect was observed
in AX-429404258 (rs211516787, 45.0 Mb on BTA 19) with MAF of 0.010 located in the exon
of the meiosis specific with coiled-coil domain (MEIOC). For the SCS phenotype, the most
significant SNP was the AX-429899067 (rs210219823, 53.2 Mb on BTA 4) with MAF of 0.399
located in the intergenic region, and the highest SNP effect was observed in AX-310577007
(rs209990081, 35.9 Mb on BTA 21) with MAF of 0.053 located in the intergenic region. The
abovementioned SNPs are marked in red in Table S5.

3.3. GWAS Based on the BayesC

To identify the significant 1-Mb windows including SNPs, GWAS were performed
with four DEBV phenotypes (MY, FY, PY, and SCS) based on BayesC. We found 20 win-
dow regions including 40 informative SNPs based on their genetic effects (Table 1 and
Figure 1E–H). For the MY phenotype, seven significant windows (≥0.5% genetic variance)
were identified on BTA 14 (1 Mb), 6 (88 Mb), 8 (0 Mb), 23 (24 Mb), 23 (23 Mb), 7 (73 Mb),
and 8 (69 Mb) (Figure 1E). Seven informative SNPs (AX-371638654, AX-311625833, AX-
419656711, AX-311625845, AX-371657011, and AX-419792758) were identified in the win-
dow on BTA 14, which were annotated in heat shock transcription factor 1 (HSF1) and
DGAT1. In addition, two SNPs (AX-185121607 and AX-106735408) were identified in
the window on BTA 6, which were located in the intergenic regions. The remaining
five windows presented one informative SNP each, indicating relatively low genetic ef-
fects. For the FY phenotype, five significant windows were identified on BTA 14 (1 Mb),
5 (104 Mb), 8 (0 Mb), 23 (24 Mb), and 3 (79 Mb) (Figure 1F). Thirteen informative SNPs (AX-
429953677, AX-115099034, AX-371657011, AX-419793247, AX-419656711, AX-212342341,
AX-419792758, AX-117081655, AX-124353826, AX-311625843, AX-311625845, AX-311625833,
and AX-371638654) were identified in the window on BTA 14, which were annotated in
spermatogenesis and centriole associated 1 (SPATC1), DGAT1, and HSF1. In addition, two
SNPs (AX-106724308 and AX-169413290) were identified in the window on BTA 3, which
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were located in phosphodiesterase 4B (PDE4B). The remaining three windows presented
one informative SNP each, indicating relatively low genetic effects. For the PY phenotype,
four significant windows were identified on BTA 23 (24 Mb), 8 (69 Mb), 8 (0 Mb), and 1
(69 Mb) (Figure 1G), and for the SCS phenotype, four significant windows were identified
on BTA 8 (0 Mb), 23 (23 Mb), 23 (24 Mb), and 5 (104 Mb) (Figure 1H). Those windows in
the PY and SCS presented one informative SNP each, showing low genetic effects.
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Table 1. Summary of informative SNPs in the significant 1-Mb windows associated with DEBV phenotypes (MY, FY, PY,
and SCS) based on BayesC.

PHENOTYPE
(DEBV) a

BTA
(Mb) b

GV
(%) c

Informative
SNP

Rs
Number Position d SNP

Effect
Model

Frequency
Region

Annotation
Gene

Annotation

MY 14 (1) 2.60

AX-371638654 rs211016627 1,807,655 23.9100 0.1845 Intron HSF1

AX-311625833 rs384957047 1,793,616 −22.1900 0.1717 Upstream
gene

DGAT1
(dist = 1735)

AX-311625843 rs211223469 1,799,476 −20.4900 0.1617 Intron DGAT1

AX-419656711 rs211282745 1,805,963 −17.5500 0.1415 Downstream
gene

HSF1
(dist = 118)

AX-311625845 rs209876151 1,800,439 −15.9000 0.1300 Intron DGAT1
AX-371657011 rs208640292 1,806,875 12.8000 0.1095 Synonymous HSF1
AX-419792758 rs207655744 1,806,340 12.3300 0.1057 3 prime UTR HSF1
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Table 1. Cont.

PHENOTYPE
(DEBV) a

BTA
(Mb) b

GV
(%) c

Informative
SNP

Rs
Number Position d SNP

Effect
Model

Frequency
Region

Annotation
Gene

Annotation

6 (88) 1.03
AX-185121607 rs110775601 88,952,089 78.4400 0.6617 Intergenic NPFFR2

(dist = 100,121)

AX-106735408 rs110527224 88,592,295 17.9900 0.1741 Intergenic SLC4A4
(dist = 54,249)

8 (0) 0.78 AX-419764649 rs721532493 887,406 −1.0640 0.0183 Intron PALLD

23 (24) 0.77 AX-419655926 rs380223715 24,021,950 −1.3030 0.0180 Intron PKHD1

23 (23) 0.63 AX-419634159 rs517703887 23,999,941 −1.0560 0.0169 Intron PKHD1

7 (73) 0.51 AX-169404932 rs135477609 73,561,312 4.0460 0.0477 Intergenic ADRA1B
(dist = 49,805)

8 (69) 0.50 AX-419751453 rs524049037 69,514,127 −1.7210 0.0251 Intron GFRA2

FY

14 (1) 5.92

AX-429953677 rs110812136 1,991,225 1.9290 0.3670 Intron SPATC1
AX-115099034 rs109421300 1,801,116 1.5190 0.2793 Intron DGAT1
AX-371657011 rs208640292 1,806,875 −1.1010 0.2097 Synonymous HSF1
AX-419793247 rs208317364 1,800,399 −0.9766 0.1922 Intron DGAT1

AX-419656711 rs211282745 1,805,963 0.8508 0.1682 Downstream
gene

HSF1
(dist = 118)

AX-212342341 rs135258919 1,808,145 0.8499 0.1693 Missense HSF1
AX-419792758 rs207655744 1,806,340 −0.8430 0.1675 3 prime UTR HSF1
AX-117081655 rs109234250 1,802,265 −0.7752 0.1565 Missense DGAT1
AX-124353826 rs109326954 1,802,266 −0.6848 0.1395 Missense DGAT1
AX-311625843 rs211223469 1,799,476 0.6695 0.1367 Intron DGAT1
AX-311625845 rs209876151 1,800,439 0.6313 0.1319 Intron DGAT1

AX-311625833 rs384957047 1,793,616 0.5941 0.1243 Upstream
gene

DGAT1
(dist = 1735)

AX-371638654 rs211016627 1,807,655 −0.4948 0.1052 Intron HSF1

5 (104) 1.66 AX-419663582 rs43454033 104,831,727 −0.1767 0.0560 Intron ANO2

8 (0) 0.74 AX-419764649 rs721532493 887,406 −0.0319 0.0143 Intron PALLD

23 (24) 0.62 AX-419669189 rs435871639 24,210,330 −0.0168 0.0086 Intron PKHD1

3 (79) 0.60
AX-106724308 rs42314807 79,480,234 −1.8050 0.4151 Intron PDE4B
AX-169413290 rs41596885 79,508,402 0.7012 0.1766 Intron PDE4B

PY

23 (24) 0.73 AX-419655926 rs380223715 24,021,950 −0.0118 0.0086 Intron PKHD1

8 (69) 0.70 AX-419606850 rs211419403 69,542,993 −0.0259 0.0144 Intron GFRA2

8 (0) 0.67 AX-419764649 rs721532493 887,406 −0.0214 0.0137 Intron PALLD

1 (69) 0.53 AX-419771850 rs799074643 69,736,662 0.0607 0.0294 Intron UMPS

SCS

8 (0) 1.60 AX-419631051 rs109008410 668,048 0.0012 0.0253 Intron PALLD

23 (23) 1.20 AX-312701115 rs467721520 23,807,184 −0.0006 0.0150 Intron PKHD1

23 (24) 1.10 AX-106721976 rs109825181 24,117,682 −0.0012 0.0246 Intron PKHD1

5 (104) 0.54 AX-124344695 rs110571898 104,682,238 0.0005 0.0127 Missense VWF
a MY: Adjusted-305 days milk yield (kg); FY: Adjusted-305 days fat yield (kg); PY: Adjusted-305 days protein yield (kg); SCS: log2 transferred
somatic cell score; b Bos taurus autosome; c Genetic variance; d The positions were based on UMD3.1.

3.4. Fine Mapping and Candidate Genes

To identify the common significant regions, we compared the GWAS results between
SMR and BayesC in each phenotype (MY, FY, PY, and SCS). For the MY phenotype, the
common significant regions were the 1–2 Mb on BTA 14 and 73–74 Mb on BTA 7. It was
noted that AX-311625843 (rs211223469) in DGAT1 on BTA 14 showed significant effects
in both methods (Figure S4A). For the FY phenotype, the common significant regions
were the 1–2 Mb on BTA 14, 104–105 Mb on BTA 5, and 79–80 Mb on BTA 3 (Figure S4B).
AX-419663582 (rs43454033) in ANO2 on BTA 5 and AX-106724308 (rs42314807) in PDE4B
on BTA 3 were shown to have significant effects in both methods. Although no common
SNPs between SMR and BayesC were found on BTA 14, many significant and informative
SNPs were found in each method. The other significant region was the 69–70 Mb on BTA 8
for the PY (Figure S4C). That region in PY was indicated to contain no common SNPs but
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was closely located. Contrary to the MY and FY phenotypes, the BayesC results of the PY
and SCS showed that the informative SNPs had lower genetic effects (Table 1).

3.5. PPI and KEGG Pathway Analysis

The three candidate genes (DGAT1, ANO2, and PDE4B) were selected based on
GWAS using the two methods (SMR and BayesC) and were subjected to PPI identification
(Figure 2A–C). Twenty interactors for each gene were determined in PPI, and a KEGG
enrichment analysis was performed. DGAT1, the candidate gene for MY and FY, had
interactor genes annotated in four significant KEGG pathways (p-value < 0.1): glycerolipid
metabolism, fat digestion and absorption, metabolic pathways, and retinol metabolism
(Figure 2D). PDE4B, the candidate gene for FY, had interactor genes annotated in three
significant KEGG pathways: purine metabolism, morphine addiction, and cAMP signaling
(Figure 2D). ANO2, the candidate gene for FY, had interactor genes that were not annotated
in any significant KEGG pathways. Detailed information of the significantly enriched
pathways is indicated in Table S6.
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4. Discussion

We developed the Affymetrix Axiom Bovine Custom300K customized chip for dairy
cattle to utilize fine mapping methods and performed GWAS for four milk production
phenotypes (MY, FY, PY, and SCS) in a Korean Holstein population. The associations
between SNPs and phenotypes were analyzed based on two methods (SMR and BayesC).
Many previous studies reported comparisons between these two methods [37–41].

The SMR has been used in many studies to address data from GWAS. The SMR and its
modified methods were developed to detect the large effects of each SNP, but they are likely
to overestimate the genetic effect of SNPs because they ignore the effects of other SNPs [42].
Although the Q-Q plots showed inflations by population stratification or cryptic relatedness
(Figure S3), it can be postulated by features of the Axiom Bovine Custom300K involving
high-density SNPs in QTL regions such as DGAT1 that MDS indicated high similarities in
this population (Figure S2). The BayesC method that estimates all feasible genetic effects
has been used as an alternative or improved method for QTL mapping or GWAS [42–44].
Although both SMR and BayesC methods are effective for detecting markers with large
effects, the latter is more effective for detecting markers without overestimation [45,46].
BayesC with a high π value tends to highlight SNPs with large effects (variance), as they
assume the prior distribution of the selected SNP effects (variances), suggesting that the
SNP effect may be detected more clearly in the BayesC method than in the SMR [43].
Considering that these two methods have their own strengths and weakness, the present
study focused on common regions and SNPs detected by both methods.

Five regions were identified to have significant effects in both methods in the GWAS
and fine mapping of four phenotypes (MY, FY, PY, and SCS) (Figure S3). The BTA 14
(1–2 Mb) region that was found to be significant in both MY and FY has been reported to be
significant in Chinese and U.S. Holstein populations [14,47]. In addition, BTA 7 (73–74 Mb)
for MY and BTA 5 (104–105 Mb) for FY have also been reported to be significant in a
Chinese Holstein population [11,48]. However, two remaining regions (BTA 3: 79–80 Mb
and BTA 8: 69–70 Mb) were first reported in the present study.

AX-311625843 (rs211223469) at the 1–2 Mb in DGAT1 on BTA 14, in particular, is one
of the most important SNPs, as it affects both MY and FY phenotypes. It was suggested
that BTA 14 is an important QTL region [49–51] and that the DGAT1 gene is a causal gene
related to the QTL region [52–54]. The DGAT1 gene produces an enzyme that catalyzes
the final step in synthesizing triglyceride, which makes up about 98% of milk fat [55,56],
and plays an important role in synthesizing triglyceride in mammary glands [57,58]. In
addition, the DGAT1 gene encodes a key metabolic enzyme catalyzing the biosynthesis
of triacylglycerols and participates in glycerolipid metabolism, retinol metabolism, and
fat digestion and absorption as indicated by the KEGG pathway analysis and as reported
previously [11,59]. The DGAT1 gene is considered to affect FY as well as MY in dairy cattle
through physiological mechanisms.

AX-106724308 (rs42314807) at the 79–80 Mb in PDE4B on BTA 3 was identified to have
a significant effect on FY in both methods. Previous studies observed a significantly strong
relationship between the PDE4B gene and milk-related traits (MY, FY, and PY) [60–62].
PDE4 is cAMP-specific, known to be inhibited by rolipram [63,64], and is the biggest PDE
family encoded by four genes (PDE4A, PDE4B, PDE4C, and PDE4D), which has been
reported to be involved in various functional activities such as cell desensitization or
adaptation, signaling cross-talk and cAMP signal compartmentalization. Although the
correlation between the level of PDE4 and cAMP concentration remains unclear, this family
is considered to be an important cAMP homeostatic regulator [65]. PDE4 transcripts and
proteins were previously detected in cattle mammary glands, as were active enzymes,
suggesting a functional role [66]. There were three significant KEGG pathways (purine
metabolism, morphine addiction, and cAMP signaling pathway) based on the PDE4B with
20 interactor genes revealed by the KEGG enrichment analysis. Among the significant
KEGG pathways, the cAMP signaling pathway was related to FY through the regulation of
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AMP-activated protein kinases by cAMP in adipocytes. This physiological mechanism was
reported in previous studies [66–68].

AX-419663582 (rs43454033) at the 104–105 Mb in ANO2 on BTA 5 was identified
to have a significant effect on FY in both methods. In previous studies, this region of
BTA 5 was shown to have many QTL related to milk fat content, a characteristic of milk
production [9,54,62,69]. The functions of the ANO2 gene in this region, however, were not
reported in relation to milk content.

The region identified by both methods to have a significant effect on PY was the
69–70 Mb region on BTA 8, which was also shown to be a QTL region related to PY in
previous studies [11,70]. The results of BayesC showed that, among the 2,288 SNPs across
1 Mb, there were almost no differences between the largest marker effect and the remaining
ones. Therefore, these results indicate that the PY phenotype has a lower genetic effect than
the MY and FY phenotypes.

As milk is produced through mammary glands, the health status of these glands is
especially important, and the SCS is used as an index of health status. The somatic cells refer
to the leukocytes of milk in cows. For example, as the leukocytes around the mammary
glands of a dairy cow suffering from mastitis increase rapidly, and these leukocytes are
reflected in the SCS of milk, this score indicates the presence of infection and the health
status of the cow. A lower SCS represents a healthier cow as well as a higher quality of
milk [71–75]. QTLs related to SCS were previously detected on BTA 5, 6, 8, 11, 17, 18, 20, and
23, and we detected them on BTA 8 (0–1 Mb), BTA 23 (23–25 Mb), and BTA 5 (104–105 Mb)
associated with the SCS phenotype [76–78]. Similar to the results for the PY phenotype,
the BayesC results showed no specific SNPs with significantly high genetic effects which
were shared without noticeable difference. Therefore, we recommend that additional fine
mapping should be performed, and the candidate gene approach should be more precisely
applied to detect causal genes of PY and SCS phenotypes in Korean Holstein.

5. Conclusions

A GWAS was performed to analyze milk production phenotypes (MY, FY, PY, and
SCS) in a Korean Holstein population, and six QTL regions (MY: 1–2 Mb on BTA 14 and
73–74 Mb on BTA 7; FY: 1–2 Mb on BTA 14, 104–105 Mb on BTA 5, and 79–80 Mb on BTA
3; PY: 69–70 Mb on BTA 8) were detected. In addition, DGAT1, ANO2, and PDE4B were
subjected to PPI network and KEGG enrichment analyses, and the results showed that the
DGAT1 gene is involved in glycerolipid metabolism, fat digestion and absorption, metabolic
pathways, and retinol metabolism pathways, affecting the MY and FY phenotypes. The
PDE4B gene was found to be closely involved in metabolic activity through the cAMP
signaling pathway, affecting the FY phenotype. No strong candidate genes, however,
were selected for the PY and SCS phenotypes, though significant regions were identified,
suggesting the necessity of further studies. Our findings are expected to provide important
information for the genomic selection of those phenotypes to improve milk production in
Korean Holstein cattle.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ani11051392/s1, Figure S1: The distribution for reliabilities of EBVs in each phenotype: (A)
MY, (B) FY, (C) PY, and (D) SCS; Figure S2: Multidimensional scaling (MDS) plot based on SNPs
for Korean Holstein population; Figure S3: Quantile-Quantile (Q-Q) plots for 4 milk production
phenotypes based on single marker regression (SMR). (A) Q-Q plot for MY. (B) Q-Q plot for FY. (C)
Q-Q plot for PY. (D) Q-Q plot for SCS; Figure S4: Visualization of the fine mapping in common
significant regions by genome-wide association studies (GWAS) based on single marker regression
(SMR) and Bayesian C (BayesC). (A) Common significant regions for MY. (B) Common significant
regions for FY. (C) Common significant region for PY. Left Y- and Right Y-axis present effect (β,
blue) in SMR and 1-Mb window genetic variance (red) in BayesC, respectively. Genes included
in 1-Mb windows were annotated; Table S1: Variance components and heritability for four milk
production phenotypes in Korean Holstein (n = 2780); Table S2: Summary of genotyped animals in
each SNP genotyping platform; Table S3: Information of total SNPs in the Affymetrix Axiom Bovine
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Custom300K chip platform; Table S4: General statistics of DEBVs for 4 milk production phenotypes
in Korean Holstein; Table S5: Summary of significant SNPs associated with DEBV phenotypes (MY,
FY, PY, and SCS) based on SMR; Table S6: Significantly enriched KEGG pathways based on DGAT1
and PDE4B with 20 interactors.
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