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Using diffusion tensor imaging 
to detect cortical changes 
in fronto‑temporal dementia 
subtypes
M. Torso1,2*, M. Bozzali3,4, M. Cercignani5, M. Jenkinson6 & S. A. Chance1,2

Fronto-temporal dementia (FTD) is a common type of presenile dementia, characterized by a 
heterogeneous clinical presentation that includes three main subtypes: behavioural-variant FTD, 
non-fluent/agrammatic variant primary progressive aphasia and semantic variant PPA. To better 
understand the FTD subtypes and develop more specific treatments, correct diagnosis is essential. 
This study aimed to test the discrimination power of a novel set of cortical Diffusion Tensor Imaging 
measures (DTI), on FTD subtypes. A total of 96 subjects with FTD and 84 healthy subjects (HS) were 
included in the study. A “selection cohort” was used to determine the set of features (measurements) 
and to use them to select the “best” machine learning classifier from a range of seven main models. 
The selected classifier was trained on a “training cohort” and tested on a third cohort (“test cohort”). 
The classifier was used to assess the classification power for binary (HS vs. FTD), and multiclass (HS 
and FTD subtypes) classification problems. In the binary classification, one of the new DTI features 
obtained the highest accuracy (85%) as a single feature, and when it was combined with other DTI 
features and two other common clinical measures (grey matter fraction and MMSE), obtained an 
accuracy of 88%. The new DTI features can distinguish between HS and FTD subgroups with an 
accuracy of 76%. These results suggest that DTI measures could support differential diagnosis in a 
clinical setting, potentially improve efficacy of new innovative drug treatments through effective 
patient selection, stratification and measurement of outcomes.

Abbreviations
bvFTD	� Behavioural variant of frontotemporal dementia
svPPA	� Semantic variant primary progressive aphasia
nfvPPA	� Non-fluent/agrammatic variant primary progressive aphasia
AngleR	� Angle between the principal diffusion direction and the radial minicolumn direction within the 

cortex
PerpPD	� The component of the principal diffusion vector that was perpendicular to the radial minicolumn 

direction within the cortex
ParlPD	� The component of the principal diffusion vector that was parallel to the radial minicolumn direc-

tion within the cortex
GM	� Grey matter
MD	� Mean diffusivity

Fronto-temporal dementia (FTD) is one of the most common types of presenile (< 65 years) dementia1, charac-
terized by a heterogeneous clinical presentation that typically includes three main subtypes: behavioural variant 
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(BV), semantic variant (SV) and primary progressive aphasias. A correct diagnosis is important to better under-
stand the different subtypes and to develop more personalized treatments. Neuropathologically, patients with 
FTD show relatively selective frontal and temporal lobar degeneration (FTLD) characterized by atrophy, gliosis 
in atrophic cortices, and protein deposition forming distinct inclusion bodies in brain cells2.

Over the last decade, the continuing advances in neuroimaging have provided new opportunities to study the 
pathophysiological mechanisms of neurological diseases and to help in diagnosis. Structural MRI and CT show 
patterns of atrophy mainly in the fronto-temporal regions. Fluorodeoxyglucose positron emission tomography 
(FDG-PET), functional MRI, and single-photon-emission CT likewise show disproportionate hypoperfusion 
and hypometabolism in these regions3.

Some studies have suggested Tau imaging is a promising method with potential for further differentiating 
between Alzheimer’s disease, non-Alzheimer’s tauopathies, and tau-negative dementias3,4, although results are 
still contrasting5,6. Research in molecular PET imaging is very active, not only because of the specificity it allows 
for differentiation of fronto-temporal dementia from Alzheimer’s disease, but also because of its potential for 
further differentiating among frontotemporal lobar degeneration syndromes. However, the promising tau tracers 
require further development of novel compounds to detect different tau isoforms7. Detection of proteins using 
cerebrospinal fluid (CSF) biomarkers, instead of imaging methods, has potential to aid differential diagnosis 
between AD and FTLD, although it is an invasive method that still needs further investigation8.

An alternative to protein quantification is to further investigate the anatomy. While FTD is characterized by 
assessment of cortical atrophy, this is a relatively gross effect in neuropathological terms. Previous studies have 
suggested that the cellular organization in the cerebral cortex could be used as a potential biomarker of cortical 
damage in dementia9,10. For example, histological studies9,10 showed that changes in cortical architecture, caused 
by neurodegenerative processes and protein deposition, produced alteration in the cortical geometrical proper-
ties including disruption of minicolumnar cellular organisation. Minicolumn degeneration varies between brain 
regions, reflecting the typical pattern of tau tangle accumulation11. These differences between brain regions sug-
gest that microstructural changes in cortical grey matter could be sensitive for differentiating between dementia 
variants. Some of these cytoarchitectural changes have been found to be correlated with measurements from 
analysis of neuroimaging data based on Diffusion Tensor Imaging (DTI) in the cortical grey matter12. DTI can 
show widespread white-matter degeneration in frontotemporal dementia, exceeding that seen in Alzheimer’s 
disease13, but until now, relatively little attention has been paid to the use of DTI to examine diffusion proprieties 
in grey matter structures. The sensitivity of DTI to changes in microstructural properties suggests that DTI may 
be a useful modality to detect correlates of, or perhaps even the precursors of, macroscopic atrophy.

In this study, we aimed to test some novel Diffusion Tensor Imaging (DTI) measures that had been previ-
ously validated in an ex-vivo comparison with post-mortem histology12. In the current study those measures 
were applied to in vivo scans in FTD patients based on the hypothesis that they may reflect cytoarchitectural 
changes in the cortex in FTD patients compared with a control group. We looked also for differences in the pat-
tern of cortical diffusivity changes between FTD subtypes. Machine learning has been used previously to try to 
improve dementia diagnosis14,15. Therefore we investigated the use of a machine learning approach to test the 
discrimination power of these new DTI measures.

Method
Participants.  A total of 96 subjects with probable FTD and 84 healthy subjects (HS) were included in the 
study.

The frontotemporal lobar degeneration neuroimaging initiative (FTLDNI) dataset was used to select sub-
jects’ scans for the “selection cohort” and “test cohort” (Table 1). FTLDNI was founded through the National 
Institute of Aging and started in 2010. The primary aims of FTLDNI are to identify neuroimaging modalities 
and methods of analysis for tracking frontotemporal lobar degeneration (FTLD) and to compare the value of 
neuroimaging with other biomarkers in diagnostic roles. The Principal Investigator of FTLDNI is Dr. Howard 

Table 1.   Demographic and clinical characteristics. a t-test. bChi-square. HS: healthy subjects; FTD: Fronto-
Temporal Dementia. MMSE: Mini Mental State Examination; CDR: Clinical Dementia Rating scale. For each 
group of subjects. The table shows the mean (SD) of age, years of formal education, MMSE and CDR scores 
and percentages of gender distribution. p < 0.05 after FDR correction. # Significant difference.

Dataset Diagnosis
Age
[years]

Gender
(F/M) [%]

Education
[years]

MMSE
Score [range] CDR

Selection cohort (NIFD)

HS
n = 30 68.3 ± 5.51 15/15 13.9 ± 3.10 28.8 ± 1.21 # 0 ± 0 #

FTD
n = 30 68.5 ± 6.07a 15/15b 13.4 ± 2.96a 21.2 ± 5.96a 0.74 ± 0.46a

Training cohort (Rome)

HS
n = 30 67.2 ± 6.37 16/14 13.0 ± 3.01 28.9 ± 1.72 # 0 ± 0 #

FTD
n = 24 66.2 ± 5.11a 15/9b 10.9 ± 4.96a 21.9 ± 5.63a 0.72 ± 0.48a

Test cohort (NIFD)

HS
n = 24 66.9 ± 5.84 14/10 16.2 ± 1.56 29.5 ± 0.72 # 0 ± 0 #

FTD
n = 42 67.5 ± 8.14a 16/26b 16.01 ± 3.09a 19.6 ± 5.68a 0.79 ± 0.51a
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Rosen, (University of California, San Francisco). The data is the result of collaborative efforts at three different 
sites in North America. For more information, please visit: https​://memor​y.ucsf.edu/resea​rch/studi​es/nifd [https​
://ida.loni.usc.edu/colla​borat​ion/acces​s/appLi​cense​.jsp]. Access to the FTLDNI data was approved by the data 
access committee.

In order to avoid potential bias due to differences in acquisition parameters for B0 and DWI images, just the 
subjects with comparable acquisition protocol were selected. A balanced cohort of 30 FTD patients (10 bvFTD, 
10 svPPA and 10 nfvPPA) and 30 HS was included in the “selection cohort”. The remaining subjects, 42 early 
FTD patients (15 bvFTD, 18 svPPA and 9 nfvPPA) and 24 HS were included in the “test cohort”.

The group of scans acquired in the Neuroimaging Laboratory of Santa Lucia Foundation in Rome was used 
as a "Training Cohort" (Table 1, inserted between “selection” and “test”) and included 24 FTD patients (5 bvFTD, 
13 svPPA, 6 nfvPPA) and 30 HS.

All subjects underwent an extensive clinical and neuropsychological evaluation and an MRI scan. The diag-
nosis of FTD was made according to the current criteria16,17. Patients with vascular, psychiatric or other neuro-
logical disorders were excluded.

MRI data acquisition and pre‑processing.  For the Selection Cohort and the Test Cohort, MR images 
were acquired on a 3  T Siemens Trio Tim system equipped with a 12-channel head coil at the UCSF Neu-
roscience Imaging Center, including the following acquisition: (1) T1 MPRAGE (TR/TE = 2,300/2.9  ms, 
matrix = 240 × 256 × 160, isotropic voxels 1 mm3, slice thickness = 1 mm); (2) Diffusion sequences were acquired 
using the following parameters: TR/TE 8,200/86  ms; , b factor = 2000s/mm2, isotropic voxels 2.2  mm3) this 
sequence collects 1 image with no diffusion weighting (b0) and 64 images with diffusion gradient applied in 64 
non-collinear directions.

The Training Cohort scanning was performed at the Neuroimaging Laboratory of Santa Lucia Founda-
tion in Rome using a 3 T Magnetom Allegra MRI scanner (Siemens Healthcare, Erlangen, Germany) oper-
ated with a 12-channel head coil, including the following acquisitions: (1) MDEFT (TR/TE = 1,338/2.4 ms, 
matrix = 256 × 224 × 176, resolution = 1 × 1 × 1 mm3, slice thickness = 1 mm); (2) diffusion-weighted (DW) twice-
refocused spin echo echo-planar imaging (TR/TE = 10,200/85 ms, b factor = 1000 s/mm2, isotropic voxels 2.3 
mm3), this sequence collects 7 images with no diffusion weighting (b0) and 61 images with diffusion gradients 
applied in 61 non-collinear directions.

The 3D T1-weighted image for each subject, was segmented using the recon-all script included in Freesurfer 
v 6.0 (https​://surfe​r.nmr.mgh.harva​rd.edu/).

The segmented masks obtained were used to estimate the volumes of cortical and subcortical grey matter, 
total white matter, brain stem, corpus callosum, left and right hippocampus, left and right thalamus, left and right 
caudate, left and right putamen, left and right pallidum, left and right amygdala and left and right accumbens. 
To account for head size, all volumes were normalised for total intracranial volume and expressed as fractions.

All DTI images were processed using the FMRIB software library, (FSL Version 5.0.9, FMRIB, Oxford, 
UK, https​://www.fmrib​.ox.ac.uk/fsl/). Data was corrected for eddy currents and head movement and the diffu-
sion tensor model at each voxel was fitted using DTIFIT.

To control for the effect of head movement18 in DTI maps, a displacement index generated using an in-house 
script was calculated. This index measured the absolute displacement of the head from one volume to the next 
and was calculated as the average of the absolute values of the differentiated realignment estimates obtained from 
eddy correction. This value was used as a covariate in the GLM multivariate analysis.

Cortical Diffusivity analysis.  Cortical Diffusivity analysis was performed using an in-house novel soft-
ware tool. The tool generates cortical profiles, i.e. lines within the cortex in the vertical direction based on the 
columnar organisation of the cortex. Values for the diffusion tensor derived metrics were averaged along the cor-
tical profiles, within the cortical grey matter12. The metrics calculated were MD, FA and three measures relating 
to the principal diffusion component12, namely: the angle between the cortical profile and the principal diffusion 
direction (AngleR); the principal diffusion component projected onto the plane perpendicular to the cortical 
profile (PerpPD, (× 10–3 mm2/sec)) and the principal diffusion component projected onto the cortical profile 
(ParlPD, (× 10–3 mm2/sec). All of the cortical values were averaged to reduce the influence of noise in the DTI 
scans, effectively smoothing the data, and ensuring only directionality with some local coherence would domi-
nate, guarding against the influence of random deflections from the radial direction. Previous work has found 
that measures of the cyto- and myelo-architecture are relatively stable within a cortical subregion19 indicating 
that it is valid to find an average value for that region. The whole-brain DTI maps were used to extract a single 
value for each cortical region segmented using the recon-all pipeline of the FreeSurfer V 6.0 software package 
(https​://surfe​r.nmr.mgh.harva​rd.edu/). The cortical regions segmented (for each hemisphere) were: banks of the 
superior temporal sulcus, caudal anterior cingulate, caudal middle frontal, cuneus, entorhinal, fusiform, inferior 
parietal, inferior temporal, isthmus cingulate, lateral occipital, lateral orbitofrontal, lingual, medial orbitofrontal, 
middle temporal, parahippocampal, paracentral, pars opercularis, pars orbitalis, pars triangularis, pericalcarine, 
postcentral, posterior cingulate, precentral, precuneus, rostral anterior cingulate, rostral middle frontal, superior 
frontal, superior parietal, superior temporal, supramarginal, frontal pole, temporal pole, transverse temporal, 
insula.

Design and statistical analysis.  In the first part of the study, we compared the cortical diffusion meas-
urements of patient and control groups in all cohorts separately and together. In the second part of the study, 
we tested the discrimination power of our new diffusion measures for classifying participants into two groups 

https://memory.ucsf.edu/research/studies/nifd
https://ida.loni.usc.edu/collaboration/access/appLicense.jsp
https://ida.loni.usc.edu/collaboration/access/appLicense.jsp
https://surfer.nmr.mgh.harvard.edu/
https://www.fmrib.ox.ac.uk/fsl/
https://surfer.nmr.mgh.harvard.edu/
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(patients and healthy subjects) and into FTD subtypes (semantic variant-svPPA, behavioural variant -bvFTD, 
non-fluent/agrammatic variant primary progressive aphasia -nfvPPA) using a machine learning algorithm.

Statistical analyses were performed using IBM SPSS Statistics version 25 (SPSS, Chicago, IL).
The multivariate General Linear Model of SPSS was used to assess the between-group differences in corti-

cal diffusion measures and GM_fr in our cohorts, using the diagnosis as a fixed factor and head movement20, 
scanner and age as covariates.

T-test was used also to investigate age, education, MMSE and CDR between groups. To calculate statistical 
differences in gender, Chi-square analysis was used.

One-way ANOVA was used to compare regional values between FTD subtypes. All statistically significant 
results reported remained significant after false discovery rate correction (FDR < 0.05) 21.

Feature selection, classifiers and classification accuracy.  To investigate the classification power of 
the DTI cortical measures to distinguish between patient and control groups and between the control group and 
FTD subgroups (bvFTD, svPPA and nfvPPA) several steps were required: (i) feature selection; (ii) identification 
of the best classification model from a set of plausible models using a “selection cohort”; (iii) training of the 
chosen classifier using the features selected on a training sample (training cohort); (iv) application of the classi-
fier to an independent set (test cohort) that represented unseen data and provided an unbiassed test of accuracy 
(Fig. 1). In the binary classification all whole brain measures where used (AngleR, PerpPD, ParlPD, MD, GMfr 
and MMSE) while in the multiclass classification, the large number of initial features were reduced to improve 
the classification performance, removing irrelevant or redundant variables using principal component analysis 
(PCA) (SPSS Factor analysis) as a filter method on the “selection cohort”.

Many machine learning approaches have been trialed to classify subjects with dementia from elderly control 
subjects using a wide range of biomarkers22–24. In this study, a tenfold cross-validation scheme was used within 
the selection cohort to select the best classifier (evaluated on one fold and trained on the remainder) from a 
range of seven commonly used different supervised classification models: K-Nearest Neighbours (KNN), Sup-
port Vector Machine (SVM), ElasticNet (EN), Logistic Regression (LR), Random Forest classifier (RF), Gaussian 
NB (GNB) and Linear Discriminant Analysis (LDA). The best classifier was selected based on the majority vote 
from 1,000 runs of the cross-validation scheme, each using the same “best” features as calculated by principal 
component analysis in the selection cohort.

The classifiers were used to assess the classification power for both binary (HS vs FTD), and multiclass (HS 
vs bvFTD vs svPPA vs nfvPPA) classification problems.

The “best” model (the one with the highest accuracy) and features selected using the selection cohort, was 
trained on the training cohort. The final results reported are based on the performance in the test cohort.

In the binary classification all the features were used together and one at a time. All classification analyses 
were implemented in MATLAB 2018 (The Math).

The accuracy (ACC), sensitivity (SENS), specificity (SPEC), positive predictive value (PPV) and negative 
predicted value (NPV) were used to measure the discrimination performance.

To perform a more comprehensive classification among HS and the three clinical FTD subtypes, a multiclass 
classification was performed. This required a sub-regional analysis of all 68 brain regions. In order to avoid over 
testing, only the best cortical diffusivity measure was selected that had obtained the highest accuracy in the 
binary classification of global, whole brain data. This measure was then extracted from each brain region, for 
the 68 regional values in multiclass classification.

PCA analysis was applied to reduce the number of regional features in the selection cohort. The regional 
features selected in addition to the whole brain value, were used together in the classification.

The Accuracy (A), Sensitivity (SENS), Specificity (SPEC), positive predictive value (PPV) and the false dis-
covery rate (FDR) were estimated to investigate the classification performance.

Finally, to investigate if the selected regional measures that were used as features in the multiclass classification 
were consistent with the pattern of cortical damage commonly described in the literature for each subgroup, a 
further one-way analysis of variance (ANOVA) was used to compare group differences in those regional values.

Results
Participants.  Table 1 summarizes the principal demographic and clinical characteristics of all subjects who 
fulfilled the inclusion criteria, and thus entered the study.

In the selection cohort, no significant difference was observed between groups for age, years of formal edu-
cation and gender. As expected, the t-test revealed between-groups differences in MMSE scores (t (58) = 5.979; 
p =  < 0.0001) and CDR (t (58) = − 6.460; p =  < 0.0001).

In the training cohort, no significant difference was observed between groups for age, years of formal edu-
cation and gender. The t-test revealed higher MMSE (t (52) = 6.620; p =  < 0.0001) and CDR scores in the FTD 
group (t (52) =  − 8.195; p =  < 0.0001).

In the test cohort, no significant difference was observed between groups for age, years of formal education 
and gender but the FTD group showed significantly higher MMSE (t (64) = 5.016; p =  < 0.0001) and CDR scores 
(t (52) = − 6.865; p =  < 0.0001).

Cortical diffusion and brain volumetric measurements.  Multivariate GLMs were used to test for 
main effects of diagnostic group, with cortical measures (MD, AngleR, PerpPD, ParlPD and GMfr) as dependent 
variables, diagnostic group as the between-subjects factor (independent variable) and age and head movement 
as covariates.
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In the Selection cohort the multivariate GLM showed significant effects of diagnostic group on cortical 
measures (F5,55 = 11.899; p =  < 0.0001). Age and head movement were not significantly associated with cortical 
measures and did not show interactions with diagnostic group.

The between-subjects effects for each cortical measures revealed a significant reduction of GMfr (F1,59 = 25.306; 
p =  < 0.0001) and increased MD (F1,59 = 18.151; p =  < 0.0001), AngleR (F1,59 = 41.151; p =  < 0.0001) and PerpPD 
(F1,59 = 23.153; p =  < 0.0001) values in FTD group compared to HS.

In the Training cohort the multivariate GLM showed significant effects of diagnostic group on cortical meas-
ures (F5,49 = 15.369; p =  < 0.0001). Age and head movement were not significantly associated with cortical meas-
ures and did not show interactions with diagnostic group.

Figure 1.   Overview of the study. (A) Image preprocessing and cortical diffusion measures extraction. (B) 
Binary classification using whole brain diffusion values. (C) Multiclass classification using subregional AngleR 
values. Both classifications were carried out including three different steps and cohorts: selection, training and 
test. (Image created using Microsoft Office Powerpoint 2010- www.micro​soft.com).

http://www.microsoft.com


6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:11237  | https://doi.org/10.1038/s41598-020-68118-8

www.nature.com/scientificreports/

The between-subjects effects for each cortical measures revealed a significant reduction of GMfr (F1,53 = 32.504; 
p =  < 0.0001) and increased MD (F1,53 = 25.877; p =  < 0.0001), AngleR (F1,53 = 36.808; p =  < 0.0001) and PerpPD 
(F1,53 = 18.959; p =  < 0.0001) values in FTD group compared to HS.

In the Test cohort the multivariate GLM showed significant effects of diagnostic group on cortical measures 
(F5,61 = 13.266; p =  < 0.0001). Age and head movement were not significantly associated with cortical measures 
and did not show interactions with diagnostic group.

The between-subjects effects for each cortical measures revealed a significant reduction of GMfr (F1,64 = 37.137; 
p =  < 0.0001) and increased MD (F1,64 = 22.933; p =  < 0.0001), AngleR (F1,64 = 33.041; p =  < 0.0001) and PerpPD 
(F1,64 = 36.574; p =  < 0.0001) values in FTD group compared to HS.

In another multivariate GLM, we compared all healthy subjects and FTD patients of all cohorts using cor-
tical measures as dependent variables (MD, AngleR, PerpPD, ParlPD and GMfr) diagnosis as independent 
variables and age, movement and scanner as covariates. Results showed significant effects of diagnostic group 
(F5,175 = 40.912; p =  < 0.0001).

As in the previous analyses, the between-subjects effects for each cortical measures revealed a significant 
reduction of GMfr (F1,179 = 27.137; p =  < 0.0001) and increased MD (F1,179 = 26.962; p =  < 0.0001), AngleR 
(F1,179 = 57.868; p =  < 0.0001) and PerpPD (F1,179 = 55.705; p =  < 0.0001) values in FTD group compared to HS.

The analysis revealed also a significant effect of scanner model (F5,175 = 28.221; p =  < 0.0001) on MD 
(F1,179 = 9.127; p =  < 0.0001).

The healthy subjects groups from the three different cohorts were compared, using cortical measures as 
dependent variables (MD, AngleR, PerpPD, ParlPD and GMfr) cohort group as independent variables and age, 
movement and scanner as covariates.

The analysis revealed a significant effect of scanner model (F5,79 = 4.722; p =  < 0.0001) on MD (F1,83 = 2.325; 
p = 0.005). No other significant associations and interactions were detected.

Finally, the FTD group comparisons between the three cohorts, revealed just a significant effect of scanner 
model (F5,91 = 4.661; p =  < 0.0001) on MD (F1,95 = 2.285; p = 0.004).

Additional cortical and subcortical volumetric investigations were performed. (For more information see 
Supplemental).

Feature selection and classifiers.  Comparing the different classification models in the binary classifica-
tion, our analysis of the selection cohort revealed that KNN was the best classifier (selected as the best in 96.6% 
of runs). We used KNN in both classification tasks (binary and multiclass classification).

Concerning binary diagnostic classification (HS vs FTD) all the whole brain features (MD, AngleR, PerpPD, 
ParlPD, GM_fr and MMSE) were used together and one at a time in the training cohort by the KNN classifier 
to train models, which were subsequently applied to the test cohort. The discrimination indices calculated in 
the test cohort were used to quantify the classification accuracy in that (Test) cohort and are summarized in 
Table 2. The model with all features selected by PCA had the highest classification accuracy (88%). When using 
the features independently, AngleR was the single feature with the highest accuracy (85%). Therefore, in order 
to avoid over-testing of a dataset of limited size, this best feature was used as the key measure in the multiclass 
classification. (See Fig. 1 for the analysis pathway).

To perform the multiclass classification (HS vs bvFTD vs svPPA vs nfvPPA), we carried out a PCA on the 
regional AngleR values in the selection cohort. The whole-brain AngleR value was also used as an additional feature. 
Table 3 shows a list of the 12 anatomical features selected (from a total of 68 regional features plus the single whole-
brain feature) to perform the classification with the best classifier (KNN). The results on the test cohort revealed a 
classification accuracy of 76%. The confusion matrices, PPV, FDR, TP and FN percentages are shown in Table 4.

The ANOVA post-hoc comparison results are summarized in Table 5 and Fig. 2. Compared with the HS group, 
all the other groups showed significant differences, mainly in frontal and temporal cortical regions.

The analysis revealed that the svPPA group was more damaged than the bvFTD group in left fusiform 
(F3,62 = 15.374; p =  < 0.0001), right inferior temporal (F3,62 = 7.349; p = 0.004), right temporal pole (F3,62 = 8.281; 
p = 0.004) and in left fusiform cortex (F3,62 = 15.374; p = 0.002) compared with nfvPPA.

The bvFTD group appeared to have increased degeneration in right lingual cortex compared to the other two 
FTD groups (F3,62 = 12.176; bvFTD vs svPPA p =  < 0.0001; bvFTD vs nfvPPA p =  < 0.0001).

Finally, the nfvPPA group had more degeneration in left pars opercularis compared with the other two groups 
(F3,62 = 8.903; nfvPPA vs svPPA p =  < 0.0001; nfvPPA vs bvFTD p =  < 0.0001).

Table 2.   Accuracy indices of binary classification (HS vs FTD) in Test cohort. Accuracies for binary 
classification using whole brain measures (AngleR, PerpPD and Gm_fr) and MMSE. Abbreviations: ACC​ 
accuracy, SENS sensitivity, SPEC specificity, PPV  Positive predictive values, NPV negative predictive value.

Classifiers Variables N° of features ACC % SENS SPEC PPV NPV

KNN

All features 6 88 0.85 0.90 0.89 0.86

AngleR 1 85 0.95 0.67 0.83 0.89

PerpPD 1 79 0.90 0.60 0.79 0.79

PerpPD 1 77 0.80 0.75 0.76 0.79

MD 1 72 0.70 0.75 0.74 0.71

GM_fr 1 79 0.90 0.60 0.79 0.79

MMSE 1 69 0.57 0.88 0.89 0.55
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Discussion
In the present study, we used a new set of whole-brain DTI measures, related to cortical microstructure, and 
a machine learning approach to distinguish normally aged healthy subjects from subjects with FTD in two 
independent cohorts. We also tested the differential diagnostic performance of our DTI measures to classify the 
different FTD subtypes on the basis of a set of regional cortical values.

The main findings of this work are: i) using six features (AngleR, PerpPD, ParlPD, MD, GM_fr and MMSE) 
the model was able to classify HS and FTD subjects with an accuracy of 88%; ii) using one of the new cortical 
DTI measures (AngleR) it was possible to classify HS and FTD subjects with an accuracy of 85%; iii) using a set 
of AngleR values from 12 cortical regions it was possible to obtain a differential diagnosis for all participants 
(HS, svPPA, bvFTD , nfvPPA) with an accuracy of 76%.

As shown in Table 2, the best HS vs FTD classifications were obtained using the novel cortical diffusion meas-
ures (AngleR, PerpPD and ParlPD), MD, GM_fr and the MMSE score, but a good classification was obtained 
also using just the AngleR value. This cortical diffusion measure, with the selected classifier (KNN) obtained the 
best performance as a single feature, compared with other cortical diffusion measures (PerpPD, ParlPD and MD) 
and with the GM_fr. We compared the performance of AngleR with GM_fr (widely used as an index of severity 
of GM atrophy), to test the relative merits of our DTI cortical measure. Indeed, GM atrophy is well-established 
as one of the main criteria for the diagnosis of neurodegenerative disorders. As shown in previous studies using 
histology9–11, the minicolumnar cytoarchitectural organization changes can be relatively independent from grey 
matter volumetric changes, especially in the early stages of neurodegenerative disorders. This independence is 
a possible explanation for why AngleR performs better than GM_fr, as the DTI measure might be sensitive to 
GM microstructural changes at an earlier stage than volumetric changes.

AngleR appeared to be sensitive to changes in neurodegeneration with a good accuracy. Therefore, AngleR 
and other cortical diffusion measures could be useful additions to the set of measures that are being tested to 
aid differential diagnosis and the early diagnosis of FTD.

Concerning the differential diagnosis of FTD subtypes, Table 3 shows the performance of the classifier using 
a set of features, selected by PCA, based on a number of AngleR values from different cortical areas. More spe-
cifically, we used the AngleR whole-brain values plus 11 out of 68 regional AngleR values.

Considering the small number of subjects in our cohorts, we decided not to ‘over-interrogate’ the data, instead 
focusing on the single feature that gave the best whole brain classification power—AngleR. In a larger study it 

Table 3.   Accuracy for multiclass classification (HS vs. svPPA vs bvFTD vs nfvPPA) in Test cohort. Accuracies 
for multiclass classification of FTD subtypes.

Classifier PCA features selected N° of features Accuracy %

KNN

AngleR whole brain

12 75.75

AngleR caudalanteriorcingulate left

AngleR entorhinal left

AngleR fusiform left

AngleR parsopercularis left

AngleR precentral left

AngleR caudalmiddlefrontal right

AngleR inferiortemporal right

AngleR lingual right

AngleR precentral right

AngleR rostralmiddlefrontal right

AngleR temporalpole right

Table 4.   KNN multiclass confusion matrices of test cohort.

HS svPPA bvFTD nfvPPA HS svPPA bvFTD nfvPPA
SENS
%

SPEC
%

HS 88.88
(21)

11.11
(2)

6,66
(1)

11.11
(1) HS 84 84

svPPA 4,1
(1)

72.22
(13)

13.33
(2)

11.11
(1) svPPA 76.47 76.47

bvFTD 4.1
(1)

11.1
(2)

66.66
(10)

11.11
(1) bvFTD 71.42 71.42

nfvPPA 4.1
(1)

5.55
(1)

13.33
(2)

66.66
(6) nfvPPA 60 60

PPV % 88.88 72.22 66.66 66.66

FDR% 11.12 27.78 33.34 33.34
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could be possible to explore the sub-regional classification performance of other cortical diffusivity measures 
(e.g. PerpPD and ParlPD).

The performance of the classifier showed that using the selected set of features with the KNN classifier, an 
accuracy of 76% could be obtained for the differential diagnosis of the subjects into four different groups (HS, 
svPPA, bvFTD, nfvPPA). The classifier obtained a sensitivity of 84%, revealing a relatively high power to distin-
guish healthy subjects from FTD patients and therefore is encouraging if viewed in the light of the search for 
diagnostic screening power. However, the screening or diagnostic power of a test depends on threshold selection 
on the basis of a combination of sensitivity and specificity.

The confusion matrices (Table 4) describe the discrimination ability of the combination of whole-brain and 
regional AngleR values in classifying HS and subjects with an FTD subtype. The sensitivity (SENS) for each 
patient group shows that the selected features were able to classify more accurately svPPA patients (76%) with 
respect to patients with bvFTD (71%) and nfvPPA (60%). This difference could, in part, be due to the smaller 
number of samples in the Training and Test cohorts with nfvPPA diagnosis.

The cortical regions used in the multiclass classification correspond to those usually associated with FTD 
subtypes. To better understand the role of each regional value in the classification, we used the ANOVA post-hoc 
comparisons to identify the key regions for each group (Table 5). For the svPPA subtype our post-hoc compari-
sons showed that the main regions distinguishing svPPA and other groups were the left fusiform and entorhinal 
cortex, right temporal pole and right inferior temporal cortex. The left fusiform is one of the key regions involved 
in semantic tasks and can be particularly involved in semantic variant degeneration similar to the right temporal 
pole25, another brain region considered an important hub for semantic tasks26. In the svPPA group we also found 
higher values of AngleR in the right inferior temporal27 and the entorhinal cortex28.

Table 5.   Post-hoc comparisons. One-way ANOVA. All p values reported remained statistically significant 
after false discovery rate correction (FDR < 0.05; 66 tests).

FTD subgroups Features selected vs HS vs svPPA vs bvFTD vs nfvPPA

svPPA

AngleR caudalanteriorcingulate left n.s n.s n.s

AngleR entorhinal left p =  < 0.0001 n.s n.s

AngleR fusiform left p =  < 0.0001 p =  < 0.0001 p = 0.002

AngleR parsopercularis left n.s n.s n.s

AngleR precentral left p =  < 0.0001 n.s n.s

AngleR caudalmiddlefrontal right p =  < 0.0001 n.s n.s

AngleR inferiortemporal right p =  < 0.0001 p = 0.004 n.s

AngleR lingual right n.s n.s n.s

AngleR precentral right p =  < 0.0001 n.s n.s

AngleR rostralmiddlefrontal right p =  < 0.0001 n.s n.s

AngleR temporalpole right p =  < 0.0001 p = 0.004 n.s

bvFTD

AngleR caudalanteriorcingulate left p =  < 0.0001 n.s n.s

AngleR entorhinal left n.s n.s n.s

AngleR fusiform left n.s n.s n.s

AngleR parsopercularis left n.s n.s n.s

AngleR precentral left p =  < 0.0001 n.s n.s

AngleR caudalmiddlefrontal right p =  < 0.0001 n.s n.s

AngleR inferiortemporal right n.s n.s n.s

AngleR lingual right p = 0.001 p = 0.002 p = 0.002

AngleR precentral right p =  < 0.0001 n.s n.s

AngleR rostralmiddlefrontal right p =  < 0.0001 n.s n.s

AngleR temporalpole right n.s n.s n.s

nfvPPA

AngleR caudalanteriorcingulate left n.s n.s n.s

AngleR entorhinal left n.s n.s n.s

AngleR fusiform left n.s n.s n.s

AngleR parsopercularis left p =  < 0.0001 p =  < 0.0001 p =  < 0.0001

AngleR precentral left p = 0.0001 n.s n.s

AngleR caudalmiddlefrontal right p = 0.0001 n.s n.s

AngleR inferiortemporal right n.s n.s n.s

AngleR lingual right n.s n.s n.s

AngleR precentral right p = 0.0001 n.s n.s

AngleR rostralmiddlefrontal right p = 0.0001 n.s n.s

AngleR temporalpole right
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Figure 2.   Multiclass classification. The regional AngleR values entered in the multiclass classification were used 
to compare FTD subgroups. The yellow dots indicate the cortical regions that were significantly different in 
post-hoc comparisons. (Image created using Microsoft Office Powerpoint 2010- www.micro​soft.com).

http://www.microsoft.com
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The bvFTD group was characterized mainly by two cortical regions, left caudal anterior cingulate cortex and 
right lingual gyrus. As shown in previous studies, the left caudal anterior cingulate cortex is particularly involved 
in social-emotional functions29,30 and is more damaged in bvFTD compared to other FTD subtypes31 . The right 
lingual cortex has an important role in emotional processes like visual identification of facial expressions32 and 
could be part of the neural correlates for apathy33.

The nfvPPA group was classified mainly on the basis of the AngleR values in the left pars opercularis. This 
region includes Broca’s Area for motor language function and has a central role in distinguishing nfvPPA from 
other groups, consistent with previous studies34,35.

Other key regions used to classify the FTD subgroups were the right caudal and rostral middle frontal cortices. 
As shown by previous studies, these regions are important for executive functions36 and are usually involved in 
FTD progression37.

Finally, in line with the recent literature of motor dysfunction in FTD patients38, bilateral precentral cortex 
changes were found in all patient groups.

The main limitation of the present study is the modest sample size of all cohorts. The small sample size could 
have an effect on feature selection and the classification power. Future research on a larger cohort will help to 
further advance and support the findings. Additional measures such as assessment of tau protein quantification 
using CSF or PET markers could also be useful.

In conclusion, we suggest that cortical diffusion measures are promising non-invasive neuroimaging features 
that could be help to support the diagnosis of FTD and FTD subtypes. With further validation as FTD subtype 
biomarkers, these cortical measurements, could help to identify the characteristics of vulnerable brain regions 
to be targeted for new drug treatments.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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