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In this study, we propose a simple and computationally efficient method based on the multifactor dimensional reduction algorithm
to identify gene-gene interactions associated with the survival phenotype. The proposed method, referred to as KM-MDR, uses the
Kaplan-Meier median survival time as a classifier. The KM-MDR method classifies multilocus genotypes into a binary attribute for
high- or low-risk groups using median survival time and replaces balanced accuracy with log-rank test statistics as a score to
determine the best model. Through intensive simulation studies, we compared the power of KM-MDR with that of Surv-MDR,
Cox-MDR, and AFT-MDR. It was found that KM-MDR has a similar power to that of Surv-MDR, with less computing time,
and has comparable power to that of Cox-MDR and AFT-MDR, even when there is a covariate effect. Furthermore, we apply
KM-MDR to a real dataset of ovarian cancer patients from The Cancer Genome Atlas (TCGA).

1. Introduction

In this era of precision medicine, one of the main goals of
human genetics is to understand the biological relationship
between diseases and their treatment so that each patient
receives the best treatment based on his or her genetic and/or
environmental exposures [1]. To achieve this goal, it is neces-
sary to identify the genetic or environmental factors associ-
ated with various diseases. With the recent development of
high-throughput technologies, information has been made
available on a large number of genetic variants, such as
single-nucleotide polymorphisms (SNPs), and genome-wide
association studies (GWAS) have successfully discovered
many susceptibility genes associated with various diseases.
As of June 20, 2019, the GWAS catalog contains 4,038 publi-
cations and 118,709 associations (http://http://www.ebi.ac
.uk/gwas). However, the SNPs identified in GWAS have lim-
itations in explaining missing heritability. One possible way
to overcome this problem is to identify the effects of gene-

gene interactions and/or gene-environmental interactions
on complex diseases [2].

The multifactor dimensionality reduction (MDR) method
has been widely applied to identify gene-gene interactions
(GGIs) [3]. The main idea of MDR is to reduce the dimension-
ality of multilocus information into one-dimensional binary
attributes by pooling multilocus genotypes into either a
high-risk group or a low-risk group. Then, cross-validation
is used to evaluate the ability of the generated binary variables
to classify and predict outcomes. Since its first introduction
for binary traits, numerous studies have modified and
extended the original MDR method [4]. Log-linear model-
based MDR (LM-MDR) improved factor combinations using
log-linear models and reclassifications of risk [5], whereas
odds-ratio-based MDR (OR-MDR) used odds ratios instead
of naive classifiers [6]. MDR methods for imbalanced data
[7] and incomplete data [8] have been also developed. For
continuous traits, the generalized MDR (GMDR) method
was proposed to extend the MDR algorithm to be applicable
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to both dichotomous and continuous phenotypes [9] by
using the residual score of the generalized linear model as a
new classifier. The model-based MDR (MB-MDR) method
was suggested as a flexible way to consider covariates or con-
tinuous traits [10] based on a regression model. In addition,
quantitative MDR (QMDR) was proposed as a simple and
efficient way to treat continuous traits [11]. QMDR classifies
multilocus genotypes into either a high- or low-risk group
by comparing the mean value of each multilocus genotype
to the overall mean and then uses the t test statistic as a
score to determine the best model. As multivariate exten-
sions of QMDR, multi-QMDR and multi-CMDR based on
Hotelling’s T statistic were also proposed [12, 13].

However, there have been relatively few attempts to
develop statistical methods to identify GGIs in the context
of survival analysis. In cancer research, survival time has
served as an important phenotype in association studies that
have investigated genetic factors as well as environmental
and clinical variables. Therefore, it is more informative to
consider the censored survival phenotype than simply to
treat the phenotype as a binary variable of death or survival.
The Surv-MDR method was first proposed to handle cen-
sored time-to-event data, in which log-rank test statistics
are calculated to compare the survival time between samples
with and without the specific genotype combination for each
multilocus genotype combination [14]. If the log-rank statis-
tic is positive, the corresponding genotype is labeled as high-
risk, and if not, it is classified as low-risk. Once all genotypes
are classified as high- or low-risk, a new binary attribute is
defined by pooling the high-risk genotype combinations into
one group and the low-risk genotype combinations into
another group. Next, the log-rank test is applied to compare
these two survival curves, and the square of this log-rank
statistic is used as the score to choose the best model, while
the remaining cross-validation procedure is the same as
done in the traditional MDR method [4, 14]. Although
Surv-MDR uses a computationally simple log-rank test, 37
log-rank test statistics should be calculated for each SNP
combination for a g"™-order interaction, which requires inten-
sive computing time.

Additionally, as extended versions of GMDR for the sur-
vival phenotype, both Cox-MDR and accelerated failure time
MDR (AFT-MDR) were proposed as methods in which the
residual score of the generalized linear model is replaced with
the appropriate measures corresponding to the survival
models [15, 16]. In other words, Cox-MDR uses the martin-
gale residual of a Cox model, and AFT-MDR uses the stan-
dardized residual from an accelerated failure time model to
classify multilocus genotypes into high- and low-risk groups.
Both Cox-MDR and AFT-MDR have the major advantage of
adjusting for the covariate effect because these methods are
based on regression models such as the Cox model and the
AFT model. The cross-validation procedure is the same as
the traditional MDR and uses balanced accuracy.

In this study, we propose a simple and computationally
efficient method using the Kaplan-Meier median survival
time, referred to as KM-MDR. This method conceptually
extends the key idea of QMDR to the survival phenotype by
replacing the mean value and the ¢ test statistic with the
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median survival time and a log-rank test statistic, respec-
tively. Since survival time is commonly censored and has a
skewed distribution, the median survival time is more useful
and popular statistic to make statistical inferences in survival
analysis. KM-MDR uses the Kaplan-Meier median survival
time to classify multilocus genotypes into the binary attribute
of high- and low-risk groups. Once all multigenotypes are
classified, we pool the high-risk genotype combinations into
one group and the low-risk combinations into another group.
Next, the log-rank test is applied to these two groups to
choose the best model among all possible SNP combinations.
Since the log-rank test is model-free, KM-MDR is nonpara-
metric, as is Surv-MDR. However, KM-MDR is more effi-
cient in the sense that the computing time for the median
survival time is shorter than that for the log-rank test. Fur-
thermore, Surv-MDR uses all data repeatedly by comparing
the survival time between samples with and without a specific
genotype combination, while KM-MDR uses all data once by
comparing the median survival time of a specific genotype
combination with the overall median survival time.

In Section 2 we detail the algorithm of the proposed KM-
MDR method and present simulation results to compare the
performance of KM-MDR with that of Surv-MDR, Cox-
MDR, and AFT-MDR in Section 3 We apply the KM-MDR
to a real dataset of ovarian cancer patients from The Cancer
Genome Atlas (TCGA) in Section 4 and a short discussion is
presented in Section 5.

2. Methods

As mentioned in the previous section, we propose a simple
and computationally efficient method, KM-MDR, as an
extension of QMDR to handle survival phenotypes. Instead
of using the mean value of the quantitative trait as done in
QMDR, we compare the Kaplan-Meier median survival time
of each multilocus genotype combination to the overall
median survival time. In addition, a log-rank test statistic is
used instead of the ¢ test statistic as a criterion for finding
the best model. To determine the g-loci that provides the best
model overall, we use 10-fold cross-validation as done in
QMDR as follows.

Step 1. Divide the dataset by 10-folds.

(i) Suppose that we have p SNPs in the dataset and select
q SNPs from p SNPs to consider a g-way interaction.
For 10-fold cross-validations, the samples are ran-
domly split into 10 subgroups of equal size. Then,
9/10 sets of samples are taken as the training dataset
and the remaining sample is used as a testing dataset
to evaluate the model.

Step 2. Classify multilocus genotypes into high- and low-risk
groups by the Kaplan-Meier median survival time.

(i) For a g-way interaction, we construct multilocus
genotype combinations defined by the g SNPs.
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(ii) Suppose that there are distinct and ordered death
times, 0 < t, < t,<---<t,, (d < n) for the n individuals
in the sample. First, we calculate the Kaplan-Meier
median survival time, ¢,,, from the overall sample,
which is the smallest time t at which S(t) <0.5,
where S(t) is a Kaplan-Meier estimate of the survival
function, S(t), which is defined as S(t) = [Tis< (1
—d,/n;). Here, d; and n; denote the number of

events and the number of individuals at risk at time
t;. Similarly, we calculate the median survival time,

Emj, for each cell having the j* genotype combina-
tion, (j=1,--+,39) in the training set.

t

(iii) We compare mj to fm and classify each cell into

either the high-risk group if ,,;<?,, or the low-
risk group, otherwise.

(iv) If the median survival time is not available due to
heavy censoring or the sparsity of the sample for a
specific genotype combination, we make use of a
complementary sample corresponding to this spe-
cific cell to estimate the median survival time. Here,
this complementary sample is a pooled sample
excluding the sample with the specific genotype
combination. Since the complementary sample is
made up of (37— 1) cells, it may be large enough to
have the median survival time. If the median survival
time for the complementary sample is larger than
the overall median survival time, then this pooled
sample is considered as the low-risk group. Thus,
the sample with the specific genotype has smaller
median survival time, which leads to be classified
as the high-risk group.

Step 3. Calculate the log-rank test statistic to find the g-way
best model.

(i) Once all genotype combinations are classified into
high- and low-risk groups, we pool the high-risk
genotype combinations into one group, “H,” and
the low-risk combinations into another group, “L.”
For the training set, the log-rank test statistic is cal-
culated to test the equivalence of the two survival
curves for the H and L groups as follows: Let dj;
and n;; be the observed number of events and the
number of individuals at risk in the I group (I=1
,2) at time t; and let d, =d,; + d,; and n, =ny; + ny;
be the number of events and the number of at risk
in the combined sample at ¢;. Then, the log-rank sta-
tistic is defined as Z = Zil(dli - Eli)/ZfilV,», where
Ey;=d,(ny;/n;) and V; = (n; = d;)d;nynyl (n, — 1)n.

1

(ii) We take the square of the log-rank test statistic as the
score to characterize the relationship between sur-
vival time and gene-gene interaction. We use the
training score from the log-rank test to select the

best SNP pairs with the maximum training score
among all possible SNP pairs. Next, we predict high-
and low-risk status in the testing set corresponding
to the training set.

(iii) We repeated the above procedure 10 times so that
each partition is included in the testing dataset
once. Then, we calculate a testing score by using
the log-rank test for all possible 10 testing sets.
In addition, the number of times is counted that
each g-way model chosen from the training data-
sets is identified as the best model; this is called
cross-validation consistency (CVC). Then we
select the best g-way interaction model with the
maximum CVC.

Step 4. Find the overall best model.

(i) Repeat Step 3 above for all possible g-way models
of interest (g=1,2,---,p). Then we select the best
model that has the maximum testing score and
the highest CVC. The latter is used as a tie-break.
If both statistics are tied, then the more parsimoni-
ous model is selected as the overall best model as
done in [11].

As described in steps 1-4 above, any higher-order inter-
action model can be easily considered by the algorithm of
MDR through cross-validation procedure. If possible, this
cross-validation can be repeated to avoid the fluctuations
due to chance divisions of the data. Furthermore, we deter-
mine the statistical significance of the selected model by
comparing the testing score from observed data to the distri-
bution of the testing scores under the null hypothesis of no
association derived empirically from 1000 permutations.
The null hypothesis is rejected if this empirical p-value is less
than the significance level.

Here, we display the algorithm of KM-MDR for 2-way
interaction model in Figure 1.

3. Results

3.1. Simulation Study. In this section, we present the results
of simulation studies comparing the performance of the pro-
posed KM-MDR method with that of Surv-MDR, Cox-MDR,
and AFT-MDR. As discussed in the previous section, both
Surv-MDR and KM-MDR are nonparametric methods that
cannot adjust for covariate effects, while both Cox-MDR
and AFT-MDR are based on a regression model and can
adjust for covariate effects. We consider two different sce-
narios for the power comparison: the first one is a model
without a covariate effect, and the second is a model with
a covariate effect.

For the simulation study, we considered 10 SNPs that sat-
isfied the assumption of Hardy-Weinberg equilibrium and
linkage equilibrium. Among them, we let only two SNPs
(SNP1 and SNP2) have causal SNP interactions with the
survival time. We generated datasets based on different
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F1GURE 1: The KM-MDR algorithm for a 2-way interaction model with 10-fold cross-validation.

penetrance functions that define a probabilistic relationship
between the outcome and SNPs in which the outcome was
dependent on genotypes from two loci in the absence of
any marginal effects [8]. These models were distributed
across seven different heritability values (0.01, 0.025, 0.05,
0.1, 0.2, 0.3, and 0.4) and two different minor allele fre-
quencies (0.2 and 0.4). A total of five models for each of
the 14 heritability minor allele frequency combinations
were generated for a total of 70 epistatic models, which
are given in detail in [8].

Let f,; be an element from the i™ row and the j™ column
of a penetrance function for the two causal SNPs (SNP1 and
SNP2), defined as.

fij=P(highrisk | SNP1=1i,SNP2 = j). (1)

We sampled 400 patients from each of the 70 penetrance
models to generate one simulated dataset and repeated this
process 100 times to generate 100 datasets for each model.
Then we simulated the survival times using both a Cox model
and an AFT model.

Let x be an indicator variable with a value of 1 for high-
risk patients and 0 for low-risk patients, and let z be an
adjusting covariate generated from N (0,1). For a Cox model,
given as A(f | x,z) = Ay(t) exp (xf +zy), we set $=1.2 and
y =0or 1. The baseline hazard function, A,(t), was assumed
to follow a Weibull distribution with a shape parameter of

5 and a scale parameter of 2, and the censoring time was gen-
erated from a uniform distribution U (0,4) as in [14]. For an
AFT model given as log (T) =y + xf3 + zy + o€, we set u =0,
B=-1.0, andy=0orl. For the error distribution, we
assumed that ¢ followed the normal distribution and that
0=1.0. We also considered four different censoring frac-
tions, (C): 0.0, 0.1, 0.3, and 0.5.

In all, 70 (penetrance model) x 2 (survival model) x 2
(covariate effect) x 4 (censoring fraction) = 1,120 different
simulated datasets were repeated 100 times. The power was
estimated as the percentage of times that each method cor-
rectly chose the causal SNP pairs (SNP1 and SNP2) as the
best model among all possible two-way interaction models
out of each set of 100 datasets. Parallel to the definition of this
power, the Type I error of MDR has estimated the percentage
of times that each method chose a certain SNP pair as the
best model among all possible two-way interaction models
under the null hypothesis. We generated 1000 null models
with 8 non-causal SNPs for the Type I error. Then the selec-

tion rate of each SNP pair under the null model is 1/(%) =

1/28 =0.03577. We considered five different minor allele fre-
quencies (0.05, 0.1, 0.2, 0.3, 0.4) and four different censoring
fractions (0.0, 0.1, 0.3, 0.5). As shown in Table 1, the Type 1
error was well controlled (<0.03577) and seemed to be
rather conservative.

For the power comparison, Figure 2 displays the power
obtained from a Cox model and Figure 3 shows the power
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TaBLE 1: Type I error of KM-MDR.

MAF Cf=0 cf=0.1 Cf=03 Cf=05
0.05 0.017 0.024 0.035 0.028
0.10 0.029 0.025 0.025 0.031
0.20 0.025 0015 0.029 0.032
0.30 0.026 0.029 0.031 0.029
0.40 0.028 0.022 0.024 0.020

MAF: minor allele frequency; Cf: censoring fraction.

obtained from an AFT model. In each Figure, eight different
plots are shown according to combinations of the presence of
a covariate effect (y =0, 1) and the four different censoring
fractions. In each plot, four different powers of KM-MDR,
Surv-MDR, Cox-MDR, and AFT-MDR are overlaid with
different types of lines across 70 models by ordering the com-
bination of MAF and heritability, where 5 different models
are given for each combination of MAF and heritability
(2 x 7 x5=70models).

First of all, a common property of all methods is that the
power tended to increase as heritability increased, but
decreased as the censoring fraction increased. In addition,
the power seemed to be greater with MAF = 0.2 than with
MAF =0.4. It is also noted that both KM-MDR and Surv-
MDR have almost the same power across all cases.

The power of KM-MDR was greater than that of both
Cox-MDR and AFT-MDR when there was no covariate
effect, while KM-MDR had a somewhat lower power than
either Cox-MDR or AFT-MDR when there was a covariate
effect. However, the power of KM-MDR was comparable
with that of Cox-MDR when the censoring fraction was
greater than 0.3, although there was a covariate effect. The
power of KM-MDR also seemed to be robust to the censoring
fraction, similarly to Cox-MDR. However, the power of AFT-
MDR was very sensitive to the censoring fraction because it
was very low under a Cox model and had the lowest power
even under an AFT model when the censoring fraction was
greater than 0.3.

In summary, KM-MDR had a power almost identical to
that of Surv-MDR across all cases and outperformed Cox-
MDR under a model without a covariate effect. In addition,
KM-MDR had reasonable power even under heavy censoring
and showed comparable power to that of Cox-MDR even
when there was a covariate effect.

3.2. Real Data Analysis. We illustrate the proposed method
by analyzing ovarian cancer patient data from The Cancer
Genome Atlas (TCGA) at https://gdc.xenahubs.net. This data-
set consists of 433 ovarian cancer patients with 565 SNPs, in
which 207 patients died from ovarian cancer, whereas 226
patients were censored. We first analyzed this data with all
565 SNPs using both KM-MDR and Surv-MDR and com-
pared these two sets of results. In addition, 20 of the 565 SNPs
showed a significant main effect in a single SNP analysis using
a Cox regression model. In order to distinguish a true multi-
plicative model from an additive effect model, we also reana-
lyzed this dataset with 545 SNPs after removing the 20 SNPs

that had significant main effects. We present the 20 SNPs
with a significant main effect when we fit a Cox regression
model with only each single SNP in Table 2. We applied
10-fold cross-validation by keeping the censoring fraction
the same for alandomly split samples.

For simplicity of comparison, we display the top three
two-way interaction models identified by KM-MDR and
Surv-MDR with all 565 SNPs and with 545 SNPs, respec-
tively, in Table 3. Similarly, we display the top three two-
way interaction models identified by Surv-MDR in Table 4.
We implemented 10-fold cross-validation and selected the
best pair of SNPs by comparing both the CVC and testing
scores. As displayed in Figure 1, the CVC was used for select-
ing the best pair, and the testing score was used as a tie-
breaker. However, the maximum value of CVC only identi-
fied one of the pairs in 10-fold cross-validation, and thus
the testing score was used to select the top three pairs. In
Tables 3 and 4, the training score is the average of 10 training
scores across 10-fold cross-validation, whereas the testing
score is a log-rank test statistic calculated from the whole
dataset by combining all 10 disjoint testing sets. We also con-
ducted 1000 permutations to obtain a p value to check the
statistical significance of the selected model. Each table pro-
vides the selected model, training score, testing score, CVC,
and permutation p value.

Comparing the results shown in Tables 3 and 4, four SNP
pairs overlapped between KM-MDR and Surv-MDR, and
their testing scores were very similar. This result is consistent
with the finding from the simulation studies that the power
of both KM-MDR and Surv-MDR is almost the same. When
all 565 SNPs were included in the analysis, only one pair
(rs143372586 and rs61937629) included the rs143372586
SNP, which had a significant main effect, as shown in
Table 2. This pair was identified as one of the top three pairs
by both KM-MDR and Surv-MDR but did not appear in the
analysis with 545 SNPs because the rs143372586 SNP was
excluded. It can also be noted that all the permutation p
values were significant for both KM-MDR and Surv-MDR.

Furthermore, we plotted the survival curves for high-risk
versus low-risk groups defined by the KM-MDR and Surv-
MDR attribute for SNP pairs listed in Tables 3 and 4. For a
given pair of SNPs, we implemented KM-MDR (or Surv-
MDR) to classify high- and low-risk groups for the training
set (9/10 sets) and applied this classification rule to the corre-
sponding testing set (1/10 sets). By repeating this procedure
10 times, all patients could be assigned into high- or low-
risk groups by KM-MDR (or Surv-MDR), and the Kaplan-
Meier survival curves for these two groups are plotted in
Figure 4. Since the same procedure is implemented in calcu-
lating the testing score of the corresponding SNP pairs, the
log-rank test statistic is the same as the testing score in
Tables 3 and 4.

As shown in Figures 4(a) and 4(b), all six of the survival
curves obtained by both KM-MDR and Surv-MDR for the
attribute of SNP pairs are substantially separated, with a sig-
nificant p value of the log-rank test. Since the 10-fold cross-
validation process randomly divides the sample into 10 even
groups, the results shown in Figure 4 could be a randomly
chosen set of results. Nonetheless, the groups representing


https://gdc.xenahubs.net

Power

HO0.01 0025 005 0.1 02 03 04 001 0025 005 0.1 02 03 04
MAF 0.2 0.4
1
0.8
b
o 0.6
2
o
A~ 04
0.2
A A SN
HO0.01 0.025 005 0.1 02 03 04 00l 0025 005 01 02 03 04
MAF 0.2 0.4

MAF: minor allele frequency; H: heritability; Cf: censoring fraction

BioMed Research International

Power

=

0 == A
H0.01 0.025 0.05 0.1 02 03 04 001 0.025 0.05 01 02 03 04
MAF 0.2 0.4

0.8 | cf=05

0.6
0.4
0.2

Power

H0.01 0.025 0.05 0.1

02 03 04 001 0025 005 0.1 02 03 04

MAF 0.2 0.4
—— Surv.MDR —— Cox.MDR
— KM.MDR Aft. MDR

(a) Cox model without a covariate (y = 0)

— Surv.MDR —— Cox.MDR
— KM.MDR Aft. MDR
1
cf=0
0.8
5 0.6
Z
~Q 04 . . - .
0.2 /—/\ ‘ ‘/\‘
0 MW M»/‘(!\Q/
H0.01 0.025 0.05 0.1 02 03 04 0.01 0.025 0.05 0.1 0.2 03 04
MAF 0.2 0.4
f=03
0.8 .
5 0.6
Z
a 04
0.2 . .
0 Lx b ?g;;-om“
Ho0.01 0.025 005 01 02 03 04 001 0025 005 0.1 02 03 04
MAF 0.2 0.4

MAF: minor allele frequency; H: heritability; Cf: censoring fraction

— Surv.MDR
— KM.MDR

— Cox.MDR
Aft MDR

H001 0025 005 0.1 02 03 04 001 0025 005 01 02 03 04
MAF 0.2 0.4
cf=0.5

H0.01 0.025 0.05 01 02 03 04 001 0.025 0.05 0.1

02 03 04
MAF 0.2 0.4
— Surv.MDR — Cox.MDR
— KM.MDR Aft MDR

(b) Cox model with a covariate (y =1)
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with a covariate (y=1).

the six pairs of SNPs enable appropriate separation of the two
survival curves and show significant associations with the
survival time.

4. Discussion

In this paper, we propose a simple and computationally effi-
cient method, KM-MDR, to identify GGIs associated with
the survival phenotype. The KM-MDR method can be con-
sidered as an extension of QMDR to the survival phenotype

by replacing the mean value of the quantitative trait with
the Kaplan-Meier median survival time to classify multilocus
genotypes into high- and low-risk groups. Since the survival
time is commonly censored and often has a skewed distribu-
tion, the median survival time is a more useful and robust
statistic for the central measure than the mean survival time
in survival analysis. Therefore, it is natural to consider the
median survival time as a new classifier to reduce high-
dimensional genotypes into a binary attribute for the survival
phenotype. In addition, the log-rank test statistic is most
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FIGURE 3: Power comparison of KM-MDR, Surv-MDR, Cox-MDR, and AFT-MDR for an AFT model (a) without a covariate (y = 0) and (b)

with a covariate (y = 1).

popularly used to compare the survival times between two
groups, analogously to the ¢ test in QMDR.

When comparing the process of KM-MDR with that of
Surv-MDR, either the median survival time or a log-rank test

statistic should be calculated nine times for two-way interac-
tion model, because there are nine different genotypes avail-
able for two SNP pairs. As shown in the simulation results for
the power comparison, the power of KM-MDR is almost the
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TaBLE 2: The 20 SNPs (out of 565 SNPs) with a main effect by fitting a Cox model.

SNP Coeflicients p value SNP Coeflicients p value

rs372182118 -0.4443 0.0018 rs371397657 -0.3218 0.0304

rs142576028 -0.4463 0.0024 rs530110275 -0.3645 0.0308

rs147716822 -0.3879 0.0067 rs751038000 -0.3198 0.0320

rs143372586 0.4279 0.0074 1s76548941 0.3191 0.0323

rs143657395 0.3523 0.0133 rs187800837 -0.3060 0.0355

rs201622956 0.3353 0.0214 rs747796926 -0.2985 0.0374

rs745834619 -0.3325 0.0241 rs372938746 -0.3542 0.0386

rs80271292 0.3566 0.0274 rs142473318 -0.3029 0.0429

15777282900 0.3128 0.0278 rs778818914 0.3147 0.0451

rs80039782 -0.3186 0.0301 rs760718931 -0.3145 0.0488

TaBLE 3: Top three two-way models identified by KM-MDR.

With all 565 SNPs With 545 SNPs excluding 20 SNPs with main effects

Model TRSC TSSC CVC  pvalue Model TRSC TSSC CvVC  pvalue

rs145504996

140557984 19.6297 23.0881 1 0.001 rs779634111 rs777122838 19.6297 23.0881 1 0.000

18143372586 16.7108 22.4748 1 0.000 rs145504996 rs140557984 15.2993 21.3833 1 0.000

rs61937629

rs779634111

777122838 15.2993 21.3833 1 0.000 rs201471889 rs150956058 16.5755 20.5237 1 0.001

TRSC: training score; TSSC: testing score; CVC: cross-validation consistency.

TaBLE 4: Top three two-way models identified by Surv-MDR.

With all 565 SNPs

With 545 SNPs excluding 20 SNPs with main effects

Model TRSC TSSC CVC  pvalue Model TRSC TSSC CVC  pvalue
rs779634111 rs777122838  20.8030  23.0881 1 0.000 rs779634111 rs777122838  20.8030  23.0881 1 0.000
rs143372586 rs61937629 14.1778  22.4748 1 0.000 rs377381727 rs772984846  14.3477  22.3364 1 0.000
rs377381727 rs772984846  14.3477  22.3364 1 0.000 rs201471889 rs150956058  12.6174  20.5237 1 0.001

TRSC: training score; TSSC: testing score; CVC: cross-validation consistency.

same as that of Surv-MDR for all cases. However, KM-MDR
has the advantage of faster computation. Comparing the run
time for one loop of the two-way interaction model, KM-
MDR took 31.55 seconds and Surv-MDR took 37.49 seconds
for the same procedure. In the analysis of ovarian cancer
data, the KM-MDR method took 5.577 hours to search over
all two-way models with 565 SNPs and 432 patients, while
Surv-MDR took 6.003 hours. Thus, KM-MDR is computa-
tionally more efficient than Surv-MDR. Furthermore, the
information of each cell is used once in KM-MDR, but it is
used multiple times in Surv-MDR because the log-rank test
compares the survival time between samples with and with-
out the genotype, which may cause the distinction between
the high- and low-risk groups to be contaminated. However,
when only a few events are observed due to either a small size
of the sample or heavy censoring, the classification for high-
and low-risk groups may be not available in KM-MDR. In
fact, there were a few cases in which a median survival time

was not reached in the process of real data analysis with 10-
fold cross-validation. Even if the sample is large enough,
the median survival time may not be obtained when most
patients are cured of a disease. In cases where overall median
survival time is not available due to heavy censoring, KM-
MDR cannot be applicable, whereas Surv-MDR has no such
restriction. However, for the case that the median survival
time of a specific cell is not obtained, we proposed an alterna-
tive method using complementary samples.

As shown in the simulation studies, KM-MDR has
greater power than Cox-MDR and AFT-MDR when there
is no covariate effect and seems to be robust even under
heavy censoring, whereas the power of AFT-MDR decreases
very rapidly when the censoring fraction becomes greater
than 0.3. In addition, KM-MDR has moderate power even
when there is a covariate effect and has a similar power to
that of Cox-MDR as the censoring fraction increases.
Although KM-MDR has the weakness of not being able to
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Survival curves based on KM-MDR
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FIGURE 4: Survival curves for the high-risk group versus low-risk groups by the KM-MDR and Surv-MDR attribute of SNP pairs. (a) Survival

curves based on KM-MDR. (b) Survival curves based on Surv-MDR.

adjust for the covariate effect, it is at least as powerful Cox-
MDR to detect GGIs for heavily censored survival data.

In this paper, we did not perform the simulation study for
the higher-order interaction model due to heavy computa-
tion time for the higher-order model. However, we imple-
mented the simulation study by considering only a 3-way
interaction model which referred in [12]. We found that
the power trend of all methods is similar to that shown in
the 2-way interaction model though not given here.

In the analysis of a dataset of ovarian cancer patients
from TCGA, the two methods showed similar results to those
obtained in the simulation study. Four pairs of SNPs over-
lapped, and the testing scores were also similar over all pairs.
In addition, all the permutation p values were very low, which
implies that all of the top three pairs were significant interac-
tion models. Furthermore, we plotted the survival curves
between the high- and low-risk groups identified by the
KM-MDR and Surv-MDR attributes of SNP pairs using 10-
fold cross-validation. All survival curves showed a significant

separation of the two groups in terms of the p value of the
log-rank test.

5. Conclusion

We propose KM-MDR, a new extension of the MDR algo-
rithm that enables an efficient identification of gene-gene
interactions in a survival setting. Because it is simple and
requires less computation, it is highly advantageous for deal-
ing with high-dimensional biological data. We expect that
KM-MDR will contribute to the identification of gene-gene
interactions associated with numerous human diseases.
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