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Abstract: The bioenergetics of the vast majority of terrestrial mammals evolved to consuming
glucose (Glc) for energy production under regular atmosphere (about 21% oxygen). However,
some vertebrate species, such as aquatic turtles, seals, naked mole rat, and blind mole rat, Spalax,
have adjusted their homeostasis to continuous function under severe hypoxic environment. The
exploration of hypoxia-tolerant species metabolic strategies provides a better understanding of
the adaptation to hypoxia. In this study, we compared Glc homeostasis in primary Spalax and rat
skin cells under normoxic and hypoxic conditions. We used the targeted-metabolomics approach,
utilizing liquid chromatography and mass spectrometry (LC-MS) to track the fate of heavy Glc
carbons (13C6 Glc), as well as other methodologies to assist the interpretation of the metabolic
landscape, such as bioenergetics profiling, Western blotting, and gene expression analysis. The
metabolic profile was recorded under steady-state (after 24 h) of the experiment. Glc-originated
carbons were unequally distributed between the cytosolic and mitochondrial domains in Spalax cells
compared to the rat. The cytosolic domain is dominant apparently due to the hypoxia-inducible
factor-1 alpha (HIF-1α) mastering, since its level is higher under normoxia and hypoxia in Spalax
cells. Consumed Glc in Spalax cells is utilized for the pentose phosphate pathway maintaining the
NADPH pool, and is finally harbored as glutathione (GSH) and UDP-GlcNAc. The cytosolic domain
in Spalax cells works in the semi-uncoupled mode that limits the consumed Glc-derived carbons
flux to the tricarboxylic acid (TCA) cycle and reduces pyruvate delivery; however, it maintains the
NAD+ pool via lactate dehydrogenase upregulation. Both normoxic and hypoxic mitochondrial
homeostasis of Glc-originated carbons in Spalax are characterized by their massive cataplerotic flux
along with the axis αKG→Glu→Pro→hydroxyproline (HPro). The product of collagen degradation,
HPro, as well as free Pro are apparently involved in the bioenergetics of Spalax under both normoxia
and hypoxia. The upregulation of 2-hydroxyglutarate production detected in Spalax cells may be
involved in modulating the levels of HIF-1α. Collectively, these data suggest that Spalax cells utilize
similar metabolic frame for both normoxia and hypoxia, where glucose metabolism is switched from
oxidative pathways (conversion of pyruvate to Acetyl-CoA and further TCA cycle processes) to
(i) pentose phosphate pathway, (ii) lactate production, and (iii) cataplerotic pathways leading to
hexosamine, GSH, and HPro production.

Keywords: metabolome; hypoxia; proline cycle; GSH; adaptation; bioenergetics; Spalax; glucose

1. Introduction

Evolution created myriads of species well adapted to their environments. The vast
majority of terrestrial animals evolved to inhale about 21% oxygen. The metabolism
of these animals is fine-tuned to process glucose along the glycolytic axis and to ‘burn’
glucose (Glc) derived pyruvate in the oxidative phosphorylation process (OXPHOS) to
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generate energy. The metabolic pathways of many organisms are well documented both
on the cellular and organismal levels. However, there are vertebrate species that do not
necessarily follow the ‘full-oxygen supply addiction’ rule, such as the naked mole-rat [1],
some species of turtles [2], seals, and whales [3], whose metabolism is well adapted to low
oxygen availability. One of these outstanding group of animals is the blind mole rat of
Spalax ehrenbergi complex (spalacidae) (hereafter, Spalax). Spalax is an underground, solitary,
long-living mammal inhabiting sealed underground burrows under extreme fluctuations
in O2/CO2 levels. Spalax evolved during millions of years in low-oxygen atmosphere and
tolerates severe hypoxia (3% under laboratory conditions, and down to ~7% oxygen and
~6% carbon dioxide recorded in natural habitat [4]). Spalax extraordinary longevity (up
to 20 years) [5], oxidative stress tolerance [6] and cancer resistance [7] can probably be
attributed to their ability to bear hypoxia. Hypoxia is challenging for mammalian cells
for two main reasons: oxygen availability is crucial for mitochondrial ATP production
where it is used as an electron acceptor, as well as for maintenance of oxygen-dependent
cellular homeostasis (signaling, maintaining mitochondrial membrane potential, fatty acids
desaturation, hydroxylation processes, etc. [8–12]). A main respiration-related nutrient
is glucose. The steady-state respiration is fueled by complete oxidation of Glc, whereas
hypoxic mode is based on its anaerobic fermentation. The anaerobic Glc fermentation is
much less effective than OXPHOS and imposes additional challenges to the cell, such as
lactic acidosis [13]. The ability of Spalax to tolerate low oxygen atmosphere for extended
periods suggests specific adaptations that motivated us to explore the metabolic fate of
Glc in the cells with the lowest physioxic levels in the body, skin tissues. The aim of the
present study was to compare the metabolism of Glc in the primary cells of two species
similar by mass, size, taxonomy, but different in their adaptations: wild Spalax and white
laboratory rat (Rattus norvegicus). For this purpose, wild-captured newborn Spalax and
purchased newborn rats were used for the isolation of primary dermal fibroblasts. The fate
of Glc-derived carbons in primary Spalax and rat cells was explored and compared under
resting mode as well as under hypoxic conditions.

2. Results

The distributions of heavy glucose carbons through the metabolic landscape after one
day of the experiment demonstrated a complete 13C enrichment picture. These metabolites
were designated in the study as the metabolite’s name followed by ‘M + n’ (‘M’ stands
for molecular mass; n indicates the number of heavy carbons 13C in the metabolite). The
mass isotopologue distribution (MID) for most important metabolites of Glc is presented
in Supplementary Figure S1.

Glc M + 6 is a dominant mass isotopologue (MI) in the culture medium (>93% of Glc)
(Figure 1a) and further, the Glc homeostasis is discussed as transformations of consumed
heavy Glc M + 6 carbons. There was no difference in Glc consumption between Spalax and
rat cells under normoxia (Figure 1b); however, the intracellular distribution of consumed
carbons was remarkably different between the two species. Low oxygen conditions caused
the upregulation of Glc M + 6 uptake by both cells compared to normoxia; however, higher
values of Glc consumption were recorded for rat cells (Figure 1b).

2.1. An Upregulated Pentose Phosphate Pathway (PPP) in Spalax Cells Provides Higher Levels
of NADPH

PPP generates pentoses for nucleotide production and maintains an intracellular pool
of reduced NADPH. The levels of PPP oxidative products, ribose phosphates (Rib.5P) and
sedoheptulose-7-phosphate (S7P), were significantly higher in Spalax cells compared to the
rat under normoxia (Figure 1c,d), in line with elevated levels of NADPH (Figure 1e). The
value of the predominantly cytosolic NADPH/NADP+ ratio indicates that Spalax cells are
more reduced under normoxia (Figure 1f). The levels of PPP-derived ribose phosphates in
hypoxic Spalax cells were similar to those under normoxia and remained high compared
to hypoxic rat cells; on the other hand, the levels of Rib.5P M + 5 and S7P M + 7 were
decreased in rat cells under hypoxia (Figure 1c,d). The levels of NADPH were increased in
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both hypoxic cells. These observations provided evidence of a slowdown of reactions that
utilize NADPH. Interestingly, the decrease of NADPH-using processes is more pronounced
in hypoxic rat cells (Figure 1e,f).
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spectively; ns, (nonsignificant) p > 0.05; * p < 0.05; ** p < 0.01; **** p < 0.0001, error bars represent standard deviation of 6 or 
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Figure 1. Mass isotopologue distribution (MID) for Glc in the culture media and consumption of Glc M + 6 by growing
Spalax and rat cells. (a), Distribution of heavy carbons in culture media after 24 h; (b), the consumption of glucose by Spalax
and rat cells under normoxia (20%) and hypoxia (1%); characteristics of the pentose phosphates pathway in normoxic and
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(nonsignificant) p > 0.05; * p < 0.05; ** p < 0.01; **** p < 0.0001, error bars represent standard deviation of 6 or more biological
repeats. Every point on the chart represents one technical repeat.

2.2. Spalax Cells Branched Much More Consumed Glucose to Hexosamine Biosynthetic Pathway
(HBP), but Not to Hyaluronic Acid Production

A robust flux of heavy carbons (increased levels of the N-acetylglucosamine (GlcNAc)
M + 6 and Uridine Diphosphate N-acetylglucosamine (UDP-GlcNAc M + 8) was observed
along with the HBP in Spalax cells (Figure 2a,b). In contrast with our previous assumption
and other published data [14], Spalax cells did not direct glucose to hyaluronic acid (HA)
production (Figure 2c,d). The only known way for glucose in HBP besides HA path
is UDP-GlcNAc production together with the following glycosylation of proteins [14].
The extreme sensitivity of Spalax cells to treatment with tunicamycin (Figure S2(Aa)), an
inhibitor of GlcNAc phosphotransferase (the key enzyme of glycosylation) [15] in complex
with increased production of UDP-GlcNAc suggests an upregulation and critical role of
glycosylation in the Spalax cell viability.



Metabolites 2021, 11, 734 4 of 18

Metabolites 2021, 11, x FOR PEER REVIEW 4 of 19 
 

 

2.2. Spalax Cells Branched Much More Consumed Glucose to Hexosamine Biosynthetic Pathway 
(HBP), but Not to Hyaluronic Acid Production 

A robust flux of heavy carbons (increased levels of the N-acetylglucosamine (Glc-
NAc) M + 6 and Uridine Diphosphate N-acetylglucosamine (UDP-GlcNAc M + 8) was 
observed along with the HBP in Spalax cells (Figure 2a,b). In contrast with our previous 
assumption and other published data [14], Spalax cells did not direct glucose to hyalu-
ronic acid (HA) production (Figure 2c,d). The only known way for glucose in HBP be-
sides HA path is UDP-GlcNAc production together with the following glycosylation of 
proteins [14]. The extreme sensitivity of Spalax cells to treatment with tunicamycin (Fig-
ure S2(Aa)), an inhibitor of GlcNAc phosphotransferase (the key enzyme of glycosyla-
tion) [15] in complex with increased production of UDP-GlcNAc suggests an upregula-
tion and critical role of glycosylation in the Spalax cell viability. 

The levels of UDP-GlcNAc M + 6 remained elevated in hypoxic Spalax cells com-
pared to rat, but unchanged relative to its normoxic values (Figure 2a). The combination 
of UDP-GlcNAc M + 6 with Ac-CoA M + 2 -UDP-GlcNAc M + 8 increased in both types of 
cells under hypoxia, with the highest levels of GlcNAc M + 8 observed in Spalax cells 
(Figure 2b). This indicates an increased back flux of mitochondrial Ac-CoA M + 2 to the 
cytosolic production of UDP-GlcNAc in hypoxic Spalax cells. 

 
Figure 2. Characteristics of hexose amines pathway and glycolysis. Levels of (a), D-GlcNAc M + 6; (b), UDP-GlcNAc M + 
8; (e), GSH M + 2; (f), GSH M + 3; (h), NAD+ in Spalax and the rat skin cells extracts; concentrations of hyaluronic acid in: 
(c), Spalax and rat skin fibroblasts; (d), Spalax and rat skin tissues; (g), concentrations of Lact M + 3 secreted outside by the 
cells after 24 h of the experiment. S.20%, R. 20%, S.1%, and R1% represent Spalax (S) and rat (R) cells exposed to an at-
mosphere containing 20% or 1% O2, respectively; ns, (non-significant) p > 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 
0.0001, error bars represent standard deviation of 6 or more biological repeats. Every point on the chart represents one 
technical repeat. 

2.3. Spalax Cells Massively Redirect Glucose Carbons to the Synthesis of the Tripeptide 
Glu-Cys-Gly, Glutathione (GSH) 

Figure 2. Characteristics of hexose amines pathway and glycolysis. Levels of (a), D-GlcNAc M + 6; (b), UDP-GlcNAc M + 8;
(e), GSH M + 2; (f), GSH M + 3; (h), NAD+ in Spalax and the rat skin cells extracts; concentrations of hyaluronic acid
in: (c), Spalax and rat skin fibroblasts; (d), Spalax and rat skin tissues; (g), concentrations of Lact M + 3 secreted outside
by the cells after 24 h of the experiment. S.20%, R. 20%, S.1%, and R1% represent Spalax (S) and rat (R) cells exposed to
an atmosphere containing 20% or 1% O2, respectively; ns, (non-significant) p > 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001;
**** p < 0.0001, error bars represent standard deviation of 6 or more biological repeats. Every point on the chart represents
one technical repeat.

The levels of UDP-GlcNAc M + 6 remained elevated in hypoxic Spalax cells compared
to rat, but unchanged relative to its normoxic values (Figure 2a). The combination of
UDP-GlcNAc M + 6 with Ac-CoA M + 2 -UDP-GlcNAc M + 8 increased in both types
of cells under hypoxia, with the highest levels of GlcNAc M + 8 observed in Spalax cells
(Figure 2b). This indicates an increased back flux of mitochondrial Ac-CoA M + 2 to the
cytosolic production of UDP-GlcNAc in hypoxic Spalax cells.

2.3. Spalax Cells Massively Redirect Glucose Carbons to the Synthesis of the Tripeptide
Glu-Cys-Gly, Glutathione (GSH)

Notably, a massive redirection of glucose carbons to the GSH biosynthesis was ob-
served in normoxic Spalax cells. The unpredictable combinations of both labeled Glc-
derived and non-labeled Gly, Ser, Cys (not detected by the method) and Glu resulted in
the appearance of appropriate MIs of GSH presented in Figures 2e,f and S2B. The levels
of dominant MIs of GSH (Figures S1e and 2e,f) as well as the sum of all detected MI of
GSH (Figure S2(Bg)) were substantially higher in Spalax cells. Interestingly, the levels of
the oxidized form of GSH (GSSG) were significantly higher in rat cells under hypoxia and
normoxia (Figure S2(Bh)). Taking in account the specific intracellular redox-maintaining
function of GSH [16], this suggests a lower rate of oxidative processes in Spalax cells.
Hypoxia induces GSH production for both cell types; nonetheless, the levels of all major
measured MI of GSH in Spalax cells, as well as their sum, were significantly higher as
compared to the rat, with notably higher oxidation rate of GSH to GSSG in hypoxic rat
cells (Figures 2e,f and S2(Bg,Bh)).
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2.4. Upregulated Lactate Production in Spalax Cells Maintains NAD+ Pool for Glycolytic
Machinery and Rejects Glucose-Derived Carbons from Downstream Processing in the TCA Cycle

Pyruvate is mainly generated via the Embden–Meyerhof pathway that has several
possible fates, and mainly these two: pyruvate enters the mitochondria and is processed
in the TCA cycle, or is interconverted by alanine transaminase (ALT) to Ala, or by lactate
dehydrogenase (LDH) to Lact [17]. Resting (normoxic) Spalax cells produce and secrete
more Lact M + 3 than rat (Figures S1i and 2g). The cells secrete lactate to prevent lactic
acidosis development [18]; thus, the higher Lact M + 3 concentration secreted outside is
due to active LDH inside the cell. The LDH reaction of interconversion of Pyr to Lact
is redox-coupled and influences the redox state of the cell via NAD+ regeneration and
maintains the NAD+ pool for anaerobic glycolysis [17,18]. Seemingly, even resting Spalax
cells require LDH-derived NAD+ for glyceraldehyde 3-phosphate dehydrogenase for more
effective processing of trioses. Probably, because of activated LDH, the redox state of
Spalax cells is shifted to a more oxidized state than in the rat (Figures 2h and S2(Ab)).
Nonetheless, LDH activation positively maintains the intracellular NAD+ pool, while the
massive secretion of lactate by Spalax cells excludes glucose-derived carbons from further
metabolism. Interestingly, the conversion of pyruvate to alanine as well as its secretion
outside the cell in normoxic Spalax cells are dramatically diminished compared to the
rat cells (Figures S1h and S2(Ac,Ad)). Hypoxia induced an enormous increase of Lact
M + 3 production and secretion in both species’ cells at similar levels (Figures 2g and S1i).
Interestingly, hypoxic stress changes redox state manifested as a decreased ratio of NADH
over NAD+ in rat cells, while this value was not altered in Spalax (Figure S2(Ab)). Along
with increasing Lact M + 3 production, the conversion of Pyr M + 3 to Ala M + 3 was also
raised under hypoxia in both cells, whereas these values remained lower in Spalax cells
(Figures S1h and S2(Ac,Ad)).

2.5. Spalax Cells Metabolized Less Glc-Originated Pyruvate Entering via Pyruvate Dehydrogenase
Complex (PDC) Than the Rat Cells, While Pyruvate Carboxylase (PC)-Mediated Anaplerosis Is
More Pronounced in Spalax

The indicated PDH rate for normoxic Spalax cells is significantly lower than that in rat
cells (Figure 3l), and correspondingly, citrate (Citr) M + 2 levels and fractions in rat cells
are bigger than those of Spalax (Figure 3a).

The alternative processing of Pyr M + 3, pyruvate anaplerosis, occurs via PC and
serves as the way of compensation of the anabolic metabolites leakages [19,20]. In this case,
Pyr M + 3 converts into OAA M + 3 (not detected by the present methodology) and further
appears as Mal M + 3; Asp M + 3; Asn M + 3. Seemingly, pyruvate anaplerosis that occurs
via pyruvate carboxylase is more essential for normoxic Spalax cells. The fractions of Mal
M + 3, Asp M + 3, and Asn M + 3 are bigger in Spalax cells, which indicate the Pyr M + 3
flux via PC. Interestingly, the PC-processed carbons in normoxic Spalax cells are diverted to
Asn M + 3 production, not to Mal M + 3, as it was observed in rat cells (Figures S1m,s,t, S3B
and S5Ac). Alternatively, pyruvate anaplerosis can be detected as the levels of Citr M + 5
(as a result of combination of OAA M + 3 and Ac-CoA M + 2 [21]), which were increased in
normoxic Spalax cells (Figure S4). The indicated lower PDH rate in Spalax hypoxic cells
was unchanged compared to normoxic values and stayed significantly lower than that
in rat cells (Figure 3l). Remarkably, both Citr M + 2 levels and calculated PDH rate were
significantly increased in rat cells under hypoxia (Figure 3a,l).
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* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001, error bars represent standard deviation of 6 or more biological repeats.
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2.6. Succinate Is Essential for Hypoxic Spalax Cells

Notably, hypoxic levels of Succ M + 1, M + 2, M + 3 in Spalax hypoxic cells were slightly
increased compared to normoxia levels, while the corresponding levels of the downstream
TCA cycle’s metabolite—Mal M + 1, M + 2, M + 3—were almost unchanged (Figure S3).

2.7. A Large Part of Glc-Originated Carbons Was Diverted to the Metabolism along with the Axis
αKG→Glu→Pro→HPro Instead of Processing in the TCA Cycle Reactions

Paradoxically, only a small fraction of Glc-derived carbons was processed through
TCA cycle reactions after their conversion to αKG (Figures 3a–d and S3). A significant part
of all detected heavy carbons was rejected from the TCA cycle metabolism in both normoxic
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and hypoxic Spalax cells and subjected to a parallel with the TCA cycle metabolism after
being tunneled via the αKG-leakage point (Figures 3e–i and S4). These findings were
evidenced by the detection of high heavy HPro levels secreted by Spalax cells to the growth
medium (Figure S2(Ae–Ah)).

2.8. Spalax Cells Possess Upregulated Flux of PC-Metabolized Glc Carbons into
2 Hydroxyglutarate (2HG)

PC-metabolized Glc-derived carbons were processed to αKG and further to 2HG
(2HG M + 3; +4) in normoxic Spalax cells (Figure 3i; Figure S2(Aj,Ak)). Both fractions,
2HG M + 3 and 2HG M + 4, in MID for 2HG are almost equal to 2HG M + 2 in Spalax
cells, while in rat cells, 2HG M + 2 is dominant over both 2HG M + 3 and 2HG M + 5
(Figure S1p). This indicates an upregulated flux of PC-metabolized carbons into 2HG in
normoxic Spalax cells. Alongside with the indicated increase of PDH-mediated pyruvate
delivery in hypoxic rat cells, a rising of PC pyruvate processing (evidenced as M + 3 MI)
was observed (Figure 3g,i). Similar to the observed fraction in normoxic Spalax cells, a
bigger fraction of Glc-derived carbons branched away from the TCA cycle reactions (Figure
S3Ae, OGDH rate) and processed to Glu (Figure S3Af, GDH rate) in rat cells under hypoxia.

2.9. The Newly-Produced Ac-CoA Forwards to Acetyl Carnitine (ALCAR) Synthesis More Than to
De-Novo Fatty Acids Production in Spalax Cells

As it was observed in normoxia, Spalax cells more readily metabolize Pyr M + 3-
derived Ac-CoA M + 2 into ALCAR M + 2 instead of its processing into Citr M + 2 or fatty
acid (Figure 3a,j,k). Both cell types amplified the redirection of Glc-originated Ac-CoA
M + 2 to the ALCAR M + 2 synthesis and de-novo fatty acids production under hypoxia
compared to normoxic conditions (Figure 3j,k). Seemingly, the ALCAR M + 2 production is
a more essential strategy for Ac-CoA storage for Spalax cells while the production of the
fatty acid was more evident in rat cells.

2.10. Hypoxic Spalax Cells Significantly Amplified the Harboring of Glc-Derived Carbons That
Entered to Mitochondria as HPro

Regardless of the metabolic route that was used for metabolism, all heavy Glc-carbons
detected in Spalax cells were observed as HPro M + 0, +1, +2, +3, +4, or heavy metabolites
along to the direction from αKG to its terminal point-HPro (Figures S2(Aa–Ad) and S4).

2.11. Spalax Cells Express Higher Levels of Hypoxia- Inducible Factor-1a (HIF-1α) under
Normoxia and Hypoxia Compared to the Rat Cells

The expression of the HIF-1α in Spalax cells was significantly higher under normoxia
compared to that in the rat cells. Its values were further upregulated under low oxygen
atmosphere in both types of cells, but more intensively in Spalax (Figure 4c,d). Notably,
a similar frame for HIF-1α expression was previously detected in the liver transcriptome
(Figure S5(Ba)).

2.12. Estimation of the Mitochondrial Aerobic Metabolism (MAM) and the Glycolytic Function
(GF) in Spalax and Rat Cells Using the Seahorse Platform

The Seahorse plate-based technology allows to compare the aerobic glycolysis of both
cell types using the extracellular acidification rate (ECAR) of the culture medium (Figure 4b).

The glycolysis in Spalax cells is higher compared to the rat cells. The ATP synthase
inhibition by oligomycin switches Glc flow from mitochondrial OXPHOS, leading to in-
creased Lact production and corresponds to the medium acidification [22], indicating and
confirming a shift from OXPHOS to substrate phosphorylation. As it was clearly observed,
Spalax cells employ stress-induced substrate phosphorylation much more effectively com-
pared to the rat cells. To explore and compare MAM in Spalax and rat cells, the XF Mito
Stress assay was used (Figure 4a). Paradoxically, the MAM in Spalax cells is more oxidative
that in the rat; values of basal respiration, ATP production, maximal respiration, and spare
capacity in Spalax cells are higher as compared to the rat cells. The OCR values in Spalax



Metabolites 2021, 11, 734 8 of 18

cells markedly decreased after the combination of the inhibitors of the complex I and
III of ETC–Rotenone and Antimycin A was applied to the cells (marked as Rotenone in
Figure 4a), indicating that the complex I and/or III are crucial for OXPHOS in Spalax cells.
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3. Discussion

Over the last decade, targeted metabolomics has been a method of choice for the
studies of specific metabolic phenotypes in mammals [23], microbial [24], and cancer
cells [21,25]. In the current study, the metabolic flux analysis of 13C6-Glc was used as a
targeted-metabolomics tool for a comprehensive exploration of glucose metabolism in
primary Spalax and rat skin cells under ~20% (normoxia) and 1% O2 (hypoxia) atmosphere.
The specific labeling pattern that appears after supplying the cells with 13C6-labeled
Glc is a reliable framework to determine the intracellular fluxes of Glc-derived carbons.
Cells cultured with a stable isotope-labeled Glc consume and metabolize it, allowing
heavy glucose-derived carbons to be integrated into metabolic reactions and appear as
heavy metabolites.

When facing low oxygen supply, mammalian cells respond similarly, via the stabiliza-
tion of HIF-1α, the master regulator of the cellular response to hypoxia, firstly discovered
in 1995 by G. Semenza and G. Wang [26]. HIF induces a specific genetic switch to hypoxic
metabolic phenotype that facilitates the adaptation and survival of cells under hypoxia [27].
HIF-1 is described as a heterodimer consisting of two subunits HIF-1α and HIF-1β [26].
The regulatory activity of HIF proteins is determined by the stability of the HIF-1α subunit.
Under normoxic conditions, HIF-1α is constitutively degraded, whereas under low oxygen,
it stabilizes and translocates into the nucleus where it orchestrates the gene expression [28].
Thus, the lowering of oxygen concentrations is accurately sensed by HIF-1α which orches-
trates cellular homeostasis under hypoxia. Nonetheless, what are the consequences for
the metabolic phenotype when HIF-1α remains stabilized also under normoxia? To date,
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HIF-1α over-expression is reported in various cancer lines, where it facilitates metastasis,
tumor progression, and resistance to anticancer drugs [29,30]; however, to our knowledge,
there is almost no data about the metabolic phenotype of ‘HIF-1α-positive’ mammals.
The present results confirm that normoxic Spalax cells express a higher level of HIF-1α
compared to the rat cells, and are further upregulated under low oxygen, which is in
line with the previously reported in-vivo experiments on Spalax and rat kidney mRNA
expression [31]. Consequently, this suggests that the HIF-1α mastered the metabolic phe-
notype also in normoxic Spalax cells. In particular, this is evidenced by the upregulation
of anaerobic glycolysis [32], glycosylation [33], and uncoupling of the glycolysis and the
TCA cycle [34]. Higher Lact production, active cytosolic Glc homeostasis, and decreased
PDH rate in Spalax compared to the rat were evident in normoxic Spalax cells after 24 h.
Along with the indicated canonical signatures of HIF-1α in resting Spalax cells, it did not
demonstrate upregulated Glc consumption that is typically attributed to its action. Thus,
the state of oxygen-independent HIF-1α stabilization (named ‘pseudohypoxia’; reviewed
by Philip S Macklin [35], and S. Mohlin [36]) was indeed observed in normoxic Spalax
skin cells as well as the HIF-1α overexpression previously observed in the liver transcrip-
tome (Figure 4c–e). Apparently, the ‘pseudohypoxia’ in Spalax cells correlates with the
semi-independent simultaneous functioning of both TCA cycle and glycolysis.

The tracing of labelled Glc indicates HIF-1α-controlled specific metabolic events in
Spalax cells under normoxia, such as upregulated glycolysis, and at the same time, the
prevention of Glc-derived pyruvate entry to the TCA cycle due to the decrease of PDH
activity [34]. This metabolic state can be defined as anaerobic glycolysis. The decreased
PDH rate indicated in normoxic Spalax cells interrupts Please ensure intended meaning
is retained further metabolism of Pyr M + 3 in the TCA cycle. Uncoupling the glycolytic
carbons flux from the TCA cycle reactions can cause an NAD+ shortage that is ultimately
needed for trioses metabolism by glyceraldehyde dehydrogenase. Pyruvate mainly fuels
the TCA cycle or is converted by ALT to Ala, or by LDH to Lact [17]. Resting Spalax
cells produce and secrete more Lact M + 3 than rat cells, therefore maintaining the NAD+

pool and rejecting the excess of carbons from the cells following HIF-1α guidance. The
decreased Ala levels reported in Spalax cells as compared to rat cells can be explained by
an αKG shortage due to the diminished pyruvate flow to the TCA cycle where αKG is
produced and is required for the ALT reaction. Thus, normoxic Spalax cells can maintain
glycolytic machinery in semi-independent mode from the TCA cycle. There are two
possible metabolic scenarios for glucose carbons in this case: to be exported from the
cell, or circulate between PPP and the glycolytic axis, and finally, be distributed between
anabolic endpoints. Both cases are detected in normoxic Spalax cells in the study. The
extracellular Lact M + 3 concentrations (indicating rejection of Glc-derived carbons from
the cell) are significantly higher for Spalax cells compared to those of the rat, as well as
the upregulated PPP and the distribution of heavy Glc-derived carbons between specific
anabolic end-points such as UDP-GlcNAc and GSH that were pronounced in Spalax cells.

The labeled Glc carbons which were detected in the structures of UDP-GlcNAc M + 6
and its precursorD-GlcNAc M + 6 are sourced from the heavy F6P M + 6 directed to HBP.
Levels of specific MIs of D-GlcNAc and UDP-GlcNAc may shed light on the shuttling
of Glc-derived carbons between the main glycolysis, PPP, and the TCA cycle [37]. The
incorporation of the TCA cycle-derived heavy Ac-CoA M + 2; +1; +0 into the D-GlcNAc
(detected as D-GlcNAc M + 8;7;6), PPP-derived labeled UTP M + 5, and non-labeled UTP
M + 0 ribose sugar into UDP-GlcNAc (detected as UDP-GlcNAc M + 13; +12; +11; +8)
was traced. Thus, UDP-GlcNAc harbors Glc carbons diverted from the main glycolysis,
PPP, and the TCA cycle. The domination of UDP-GlcNAc M + 13; +8 MIs detected in
both normoxic and hypoxic Spalax cells (Figure S1d) is the result of a powerful Glc flux to
HBP. In contrast with published data [38] and with our initial assumption that hyaluronic
acid production stands behind the viscous medium, Spalax skin fibroblasts did not direct
glucose to HA (at least under normoxia). The only way for glucose in HBP besides
HA is UDP-GlcNAc production with the subsequent glycosylation of proteins [14]. The
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upregulated UDP-GlcNAc production and the dramatic response on inhibition of GlcNAc
phosphotransferase suggest a particular importance of glycosylation for the homeostasis of
Spalax cells.

The time-resolved enrichment of the metabolic landscape under normoxic conditions
with heavy nutrients indicates GSH as one of the metabolites harboring both Glc-derived.
The appearance of appropriate heavy GSH M + 1; +2; +3; +4, as well as the sum of all
detected MI of GSH (Figure S2B) are dominant in Spalax cells. These pronounced fluxes
suggest a specific metabolic importance of GSH for the maintenance of the Spalax metabolic
pattern, since the elimination of reactive oxygen species (ROS) is vital for cells under
hypoxic conditions. Hypoxia, and especially periodic sharp changes from hypoxia to
oxygenation which are likely to occur in the Spalax underground environment, are well
described as inducers of ROS production [39,40]. GSH is well known as an abundant
intracellular antioxidant [41] as well as a cofactor of GSH-peroxidase; it participates in a
non-specific reduction of hydroperoxides resulting in the formation of its oxidized form
GSSG. Thus, GSSG levels indirectly indicate the intensity of the intracellular free radical
processes. The balance between reduced and oxidized forms of intracellular glutathione
reflects the ability of cells to eliminate hydroperoxides. The GSH pool in Spalax cells is
significantly more reduced than in rat cells and has the appropriate potential to cope with
oxidative stress. Thus, Spalax cells maintain a massive intracellular GSH pool to prevent
oxidative damage.

The PDH is a primary source of Ac-CoA in the cell. Newly produced Ac-CoA M + 2 can
be utilized in several ways: condensation with OAA M + 0 into Citr M + 2 to ‘feed’ the TCA
cycle; withdrawal to the cytosol and processing into the de-novo synthesized fatty acids,
or participate in the UDP-GlncNAc biosynthesis; otherwise, it can be used for acetylation
processes (recorded in our study as acetyl carnitine (ALCAR) and acetyl-derivate of some
amino acids (e.g., Gln and Asp). The obtained results suggest the prevalence of two
scenarios in normoxic Spalax cells as compared to the rat, namely shuttling of produced
heavy Ac-CoA M + 2 to HBP (detected as UDP-GlncNAc M + 8) that was discussed above,
and its buffering specifically as an ALCAR M + 2. Hypothetically, maintaining higher
levels of ALCAR in Spalax cells suggest an alternative storage of highly energetic, easily
available acetyl groups. However, this hypothesis requires further extensive study.

As mentioned above, the PDH rate for Spalax cells is significantly lower than that in
rat cells due to HIF-1α regulations. Apparently, the pyruvate anaplerosis via pyruvate
carboxylase is not mastered by HIF-1α, and can serve as an alternative strategy to maintain
the TCA cycle machinery by filling it up with carbons under decreased PDC function. PC-
metabolized Pyr M + 3 in Spalax cells as OAA M + 3 flux followed the TCA cycle reactions
and unequally divided at the αKG step between further cycle’s metabolism (lesser part,
while in rat cells the TCA cycle metabolism is major for PC-derived M + 3 metabolites)
and the path to collagen biosynthesis. The enhanced cataplerosis of Glc-derived carbons
from the TCA cycle to collagen production in Spalax cells is evidenced by the appearance of
higher levels of HPro M + 5 as compared to levels in the rat cells. Apparently, the HPro M
+ 5 is a Citr M + 5 that had been metabolized to αKG M + 5 and further to Pro M + 5, which
was finally incorporated in collagen and undergone hydroxylation by prolyl oxidase [42].
Thus, normoxic Spalax cells more actively use pyruvate anaplerosis than the rat cells, but
at the αKG step, divert the carbons’ flux from the downstream TCA cycle reactions to
collagen biosynthesis. Moreover, a substantial part of Glc-originated carbons entered the
mitochondria and most of the newly consumed Gln in normoxic Spalax cells were diverted
to the metabolism along with the axis Glu→Pro→HPro instead of processing in the TCA
cycle reactions.

The majority of carbons entered the TCA cycle via PDH as Ac-CoA M + 2 and con-
verted to CitrM + 2; however, they were not processed via the downstream cycle’s reactions
in normoxic Spalax cells, which was evidenced by lower levels of the Citr M + 2; αKG
M + 2; Succ M + 2; Mal M + 2 (Figure 3a–d) when compared to the rat cells. These carbons
were rejected from the central metabolism in favor of collagen production (measured as



Metabolites 2021, 11, 734 11 of 18

HPro M + 2) (Figure 3f). Indeed, most of all detected heavy Glc-carbons metabolized in the
mitochondria of Spalax cells (appeared as M + 1, +2; +3; +4; +5) were finally observed as
MI of HPro, a product of collagen degradation (Figure S4).

Under normoxia, the levels of HIF-1α decreases via proteasome degradation. The
process of degradation of HIF-1α is initiated by αKG-dependent prolyl hydroxylase (PHD)
via the hydroxylation of its Pro residues [43]. αKG is a substrate for PHD [44] and 2HG,
being the enantiomer of aKG, competes with it for binding to PHD, and may inhibit its
function, and subsequently prevents HIF-1α degradation [45,46]. Although the role of 2HG
in the inhibition/activation of PHD is controversial [47,48], our data suggest a possible
involvement of 2HG in PHD inhibition. Theoretically, the higher HIF-1α levels observed
in normoxic Spalax cells maintains at the account of upregulated PC driven flow of Glc to
2HG production (detected as 2HG M + 3). The hypoxic metabolic landscape of Spalax cells
is characterized by both decreased levels of total αKG (sum of areas of all αKG MI’s Figure
S5(Bb)) and upregulation of 2HG production as a result of tunneling of Glc (2HG M + 2;
+3; +4) (Figures 3i and S2(Ai–Ak)). Both decreased levels of the essential participant of the
PHD reaction αKG and upregulated production of 2HG apparently lead to the stabilization
of HIF-1α and its steeper increase in hypoxic Spalax cells compared to rat cells. These
suggestions agree with the previously reported higher levels of HIF-1α and its target (Epo)
in the Spalax kidney in vivo compared to the rat kidney under hypoxia [31]. This suggests
a reciprocal regulation of HIF-1α levels and metabolism in Spalax cells. Thus, rewiring of
Glc in hypoxic Spalax cells is involved in the development of the hypoxic HIF-1α mastered
phenotype as an additional factor of HIF-1α stabilization in a reciprocal regulation mode.

The ‘true’ hypoxia caused HIF-1α induction in cells of both species, while maintaining
the gap observed under normoxia (levels HIF-1α in the Spalax were higher compared to
the rat (Figure 4). Hypoxic Glc homeostasis in the cytosol of both cell types seems to be
‘canonically’ mastered by HIF-1α. The upregulation of Glc consumption, the glycolytic flow,
and lactate secretion are classical metabolic signatures of the anaerobic cell bioenergetics
mode. While in rat cells, a clear reprograming to hypoxic mode was observed, Spalax
cells exploit a metabolic pattern generally similar to normoxia. Most of the consumed
Glc carbons in Spalax cells are harbored as glycerol (data not presented here), GSH, UDP-
GlcNAc, or secreted outside as Lact and Ala. Similar to normoxia, the TCA cycle of
Spalax cells functions in a ‘semi-independent’ manner due to a low PDH rate that does
not change in Spalax cells under hypoxia as compared to the normoxia condition, while
in the rat, the PDH rate increased in comparison to both normoxic rat and hypoxic Spalax
cells. In hypoxic Spalax cells, the TCA-cycled Glc-derived carbons were finally distributed
between 2HG, HPro, and Asn, levels of which were increased compared to those under
normoxia, probably on the account of the decreased Glu secretion. Notably, the upregulated
de-novo production of 2HG, Pro, HPro, and Asn acts as a specific signature of hypoxic
Spalax cells compared to the rat cells. Apparently, Spalax cells use this metabolic frame
regardless of the availability of oxygen; however, a hypoxic response was clearly detected
as the upregulation of these metabolites. Although the hypoxic rat cells showed a similar
induction of 2HG, Pro, HPro, and Asn biosynthesis, it was much weaker when compared
to Spalax cells.

The pronounced upregulation of de novo Asn production observed in both resting
and exclusively in hypoxic Spalax cells is probably involved in the protein modification
that occurs via N-glycosylation of the side-chain amide nitrogen of Asn residues by N-
GlcNAc [49] that was uniquely upregulated in Spalax cells. N-glycosylation is involved
in the control of proteins folding that occurs in the endoplasmic reticulum (ER) and
is highly sensitive to oxygen availability [50]. The increased levels of HIF-1α and all
measured participants of glycosylation (UDP-GlcNAc and Asn) in normoxic Spalax cells,
and their synchronic upregulation under hypoxia are easily traced and can be described
as specific reciprocal interactions of HIF-1α [33] and glycosylation that influence HIF-1α
stabilization [51]. This suggests that the improved glycosylation in Spalax cells serves as a
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specific adaptation to maintain an appropriate signaling and protein folding in ER under
hypoxia. This issue is, however, a subject for further investigations.

Hypoxic Spalax cells are characterized by significantly upregulated levels of HIF-1α
as compared to both its normoxic values and to hypoxic rat cells. High HIF-1α, with a
simultaneous increased production of 2HG, suggests a specific role of 2HG as the factor
that prevents HIF-1α degradation even under regular O2 atmosphere. The upregulation
of 2HG production observed in hypoxic Spalax cells compared to normoxia supports the
suggestion that levels of HIF-1α can be controlled not only by oxygen concentrations, but
also by levels of 2HG (branching of the carbon flux from TCA cycle to 2HG in this case).
It was markedly indicated that much more glucose carbons are detected in 2HG under
hypoxia. Nearly all metabolic pathways for Glc (M + 2; +3; +4) were diverted to 2HG
biosynthesis under hypoxia.

2HG can be easily returned back to the TCA cycle metabolism as αKG through the ac-
tion of the mitochondrial D-2-hydroxyglutarate dehydrogenase (D-2HGDH) [52]. The 2HG
oxidation uses a specific machinery containing FAD and an electron acceptor that was iden-
tified by Struys et al. as membrane-associated electron-transfer flavoprotein ubiquinone
oxidoreductase (ETFQO) [53] to pass electrons to ETC [54,55]. A supportive evidence comes
from an earlier-published transcriptome [56] showing that the liver expression of both
2HGDH and ETFQO is much higher in Spalax as compared to the rat (Figure S5(Bm,Bn)),
all in agreement with the idea suggested here about the circulation of Glc carbons be-
tween αKG and 2HG. Another implication of the raised 2HG production that requires
further investigation is the specific epigenetic landscape in Spalax cells. The inhibition of
αKG-dependent oxidases causes alterations in hydroxylation, demethylation, halogenation,
desaturation, epoxidation, ring formations, and other reactions [57]. This ultimately leads
to specific changes in the epigenetic landscape and intracellular homeostasis.

Hypoxia promotes Pro and HPro production in tumor cell lines, which is a part of the
hypoxia response through the regulation of HIF-1α [58]. A remarkable observation is the
similar hypoxia-induced upregulation of HPro levels indicated in Spalax cells. Free HPro is
not proteinogenic amino acid [59], and its degradation utilizes the same enzyme machinery
as for Pro [6], as it was described above. Therefore, hypoxia-induced upregulation of
both free Pro and HPro levels suggests an activation of the Pro shuttle machinery. This is
partially evidenced by liver transcriptome data on Spalax and rat (Figure S5(Bd,Be)). Thus,
Pro and HPro can be considered as an alternative bioenergetics substrate in Spalax cells for
survival under hypoxic stress.

Hypoxia, and especially sharply changing hypoxia and re-oxygenation states, cause
an imbalance between the production and elimination ROS in the cell. Although higher
levels of GSH production were observed in Spalax cells under normoxia, low oxygen
conditions caused further significant amplification of carbon fluxes to GSH biosynthesis in
Spalax cells (Figure S2B). Glutathione peroxidase reaction which utilizes GSH to eliminate
hydroperoxides requires NADPH, which is in a good agreement with higher levels of
NADPH observed in Spalax cells under both normoxia and hypoxia. An indirect evidence
of upregulated ROS-induced processes under hypoxia is the increased levels of GSSG that
were observed in both species, while GSSG levels in rat cells were higher as compared to
Spalax cells. The two evidences introduce the Spalax metabolic pattern as a system that
produces fewer disturbances in ROS production in the situations of changing normoxic
and hypoxic states, and/or massive GSH biosynthesis that prevents intracellular injuries
caused by ROS. The last suggestion is supported by data on the antioxidant system in the
Harderian gland of Spalax published by B. Caballero et al. [6] . According to the published
data, Spalax exhibits remarkably low bimolecular damage in the oxidative stress situation
as compared to the Syrian hamster, because of a stronger enzymatic antioxidant system
such as superoxide dismutase, catalase, and glutathione reductase that reduces GSSG
to GSH.
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4. Methods
4.1. General Experimental Design

The work was carried out on a cell culture model and on cells/tissues taken from wild
mole rats and laboratory rats. For metabolic studies, cells were treated by hypoxia (1% O2)
and compared to normoxic cells. Extracts from cultured cells were subjected to SDS-PAGE
electrophoresis for protein analyses by western blot using specific antibodies.

4.2. Animals

For the experiments three newborn blind-mole rats (Spalax erenberghi) and three
newborn rats (Rattus norvegicus) were used. Spalax individuals were captured during
several field expeditions (in 2018, 2019 around Carmel mt. area) from the underground
nests during the procreation period and subjected to the procedure immediately upon
arrival to the lab (no more than 2 h after capturing). Thus, they represent a metabolic
pattern of wild animals and feature with specific characteristics such as hypoxia [31] and
cancer [7] tolerance. Pregnant rats were obtained from Envigo (Jerusalem, Israel) and caged
under ambient conditions in the Animal Facility of the Institute of Evolution, University of
Haifa, until the birth of the pup rats (in 2013, 2019). Therefore, the experimental animals
represent two different metabolic patterns: hypoxia-tolerant (Spalax) and hypoxia-sensitive
(rat). The newborn Spalax and rats were anaesthetized with Isoflurane overdose and
subjected to the primary cells isolation protocol described below. All manipulations with
animals were approved by the Institutional Ethics Committee (Reference #316/14, 420/16
and 671/19).

4.3. Cell Culture

Primary skin cells were isolated from the animals’ underarm skin region according to
the method proposed by S. Glaysher and I. A. Cree [60]. The primary cells were cultured in
DMEM-F12 medium (Biological Industries, Beit Haemeq, Israel) supplemented with 5% fe-
tal bovine serum (FBS) under ambient humidified atmosphere (5% of CO2 and 95% of air) at
37 ◦C, and after the second passage cells were split into six-well plates (5 × 105 cells/well)
for the targeted metabolomics experiment (for six technical replicates) ; into the Seahorse
XF96 (Agilent Technologies, Santa Clara, CA, USA) cell culture plate (2 × 104 cells/well)
for the live-cells metabolic assays, and into 100 mm Corning® (Tewksbury, MA, USA)
culture dishes (1 × 106 cells/dish) for the Western blot and hyaluronic acid assays.

4.4. Experiment Schedule, Extraction, and LC-MS Analysis

The cells were divided into groups (six replicates each) and incubated for 12 h in
5% of CO2 and 95% of air at 37 ◦C in DMEM-F12 medium with FBS. Further, the culture
medium was removed and replaced for the next 12 h with more ‘physiological’ custom
freshly-prepared serum-free medium (SFM). SFM consists of Dubellco’s Modified Ea-
gle Medium-F12 glucose and Gln free (Gibco, Thermo Fisher Scientific, Waltham, MA,
USA) supplemented with bovine serum albumin/insulin/transferrin (Insulin-Trans-Sel-X,
Gibco); 2.5 mg/L of ascorbic acid phosphate; 1 mg/L of glutathione; 0.0003 mg/L of
ammonium metavanadate; 0.25 nM of manganous chloride; 0.1 mM of acetate; 5 mMg of
glucose; 0.6 mM of Gln.

4.5. 13C6 Glucose Tracing Experiment Design

Two hours prior to the beginning of the experiment, a fresh medium with labeled
13C6 glucose was prepared based on SFM described above with the non-labelled glucose
replaced by 5 mM of 13C6 glucose (U-13C6, 99%, Cambridge Isotope Laboratories, Tewks-
bury, MA, USA, CLM13961), as well as PBS as control. Containers with opened lids were
placed into the chamber with 1% of O2 atmosphere for deoxygenation. The cells were
transferred to the hypoxic chamber, medium removed, and after PBS washing, replaced
with deoxygenated medium containing 13C6 glucose. The same manipulations were done
for the normoxic conditions, but the medium and PBS together with the cells were placed
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into the regular CO2 incubator (21% O2). The rest of the fresh labeled medium (three
aliquots of 2 mL each) was kept together with normoxic and hypoxic cells during the study.

The cells supplied with labelled 13C6 glucose were incubated for 24 h under normoxia
(~20% of O2) in a regular CO2 incubator, or hypoxia (~1% of O2) in the hypoxic chamber
(HypOxystation® H35, HypOxygen, Frederick, MD, USA). After the incubation, the culture
medium was harvested, cells were washed twice with ice-cold PBS, and intracellular
metabolites were extracted using methanol/acetonitrile/water solution (5:3:2) (Mobile
phase) on a rocker shaker (10 min at 4 ◦C). The extracts and medium samples were
centrifuged (16,000× g 10 min, 4 ◦C), the supernatants (medium samples after 1:50 dilution
with mobile phase) were transferred to −80 ◦C and stored until subjected to LC-MS
analysis.

4.6. LC-MS Metabolomics Analysis

LC-MS metabolomics analysis was performed as described previously [61]. Briefly,
Thermo Ultimate 3000 high-performance liquid chromatography (HPLC) system coupled
to Q- Exactive Orbitrap Mass Spectrometer (Thermo Fisher Scientific) was used with a
resolution of 35,000 at 200 mass/charge ratio (m/z), electrospray ionization, and polarity
switching mode to enable both positive and negative ions across a mass range of 67 to
1000 m/z. HPLC setup consisted ZIC-pHILIC column (SeQuant; 150 mm × 2.1 mm, 5 µm;
Merck, MA, USA), with a ZIC-pHILIC guard column (SeQuant; 20 mm × 2.1 mm). 5 µL
of biological extracts were injected and the compounds were separated with a mobile
phase gradient of 15 min, starting at 20% aqueous (20 mM ammonium carbonate adjusted
to pH 2 with 0.1% of 25% ammonium hydroxide) and 80% organic (acetonitrile) and
terminated with 20% acetonitrile. Flow rate and column temperature were maintained
at 0.2 mL/min and 45 ◦C respectively, for a total run time of 27 min. All metabolites
were detected using mass accuracy below 5 ppm. Thermo Xcalibur was used for data
acquisition, TraceFinder 4.1 was used for data analysis. Peak areas of metabolites were
determined by using the exact mass of the singly charged ions. The retention time of
identified metabolites was predetermined on the pHILIC column by analyzing an in-house
mass spectrometry metabolite library that was built by running commercially available
standards. Each metabolite peak area value analyzed in the sample, was normalized to
protein amount. Protein concentration was measured by Pierce™ Modified Lowry Protein
Assay Kit (Thermo Fisher Scientific).

4.7. Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate
(ECAR) Measurements

The bioenergetics machinery of the primary Spalax and rat cells (two lines of each
species) was explored by challenging them with the Mito and Glyco stress test assays using
the Seahorse XF96 analyzer (Agilent Technologies).

Cells were seeded on XFe96 well plates and incubated at 37 ◦C, 5% CO2 for 24 h. The
medium was then replaced with 180 µL of unbuffered assay media [Sigma D5030, (Merck)]
supplemented with 10 mM glucose, 1 mM pyruvate and 2 mM Glutamine (pH 7.4) for
Mitochondrial Stress Test or 2 mM Glutamine only for Glycolysis stress test. Cells were then
placed at 37 ◦C in a CO2-free incubator for 1 h. During the experiment, 1µM oligomycin
A (Sigma), 1.0 µM FCCP (Sigma) and 50 µM rotenone and antimycin A mixture (Sigma)
were injected sequentially. For Glycolysis Stress test, the assay medium was supplemented
with 2 mM glutamine. The cells were deprived of glucose for 1 h. During the experiment,
10 mM glucose (Sigma), 1 µM oligomycin A (sigma) and 50 mM of 2-Deoxyglucose (Sigma)
were injected sequentially. OCR and ECAR were normalized to the protein content in each
well calculated at the end of the experiments by using the Pierce™ Modified Lowry Protein
Assay Kit (Thermo Fisher Scientific). Data were analyzed using Wave software version 2.6.

4.8. Hyaluronic Acid Assay

The Purple–Jelley HA assay (Biocolor, Carrickfergus, UK) was used for quantification
hyaluronic acid (HA) content in the primary skin cells and tissues. Skin tissues were
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sampled from skin tissues stored at −80 ◦C. Tissues were previously harvested from
normoxic rats and Spalax (three adult animals of each specie) [62], and HA was extracted
and analyzed according to the protocol provided in the commercial kit for HA extraction
and quantification. Since the protocol provided with the kit does not describe the procedure
of HA extraction from cells, an appropriate method was proposed. Briefly, three dishes
(semi-confluent) of each cell type (see the ‘Cell culture’ section) were used for analysis.
The cells were lysed (three freeze-thaw cycles with liquid N2) immediately after culture
medium removal and two PBS washes. Cells were harvested with rubber scrapper into
vials (lysates from three dishes pooled in the one vial), dried until semi-dry condition
(Eppendorf Concentrator 5301, Hamburg, Germany), and about 100 mg of the semi-dry cell
lysates were processed together with the tissues extracts as described in the kit’s protocol.
The HA concentration were calculated based on calibration curve with standard provided
in the kit and presented as µg/g.

4.9. Western Blot

The primary Spalax and rat cells (three lines of each species) were exposed to 24 h of
normoxia or hypoxia simultaneously with the cells for targeted metabolomics. The cells
were lysed by RIPA-buffer on ice-bath immediately after the experiment. The lysates (40 µg
protein) were subjected to 10% SDS-PAGE and transferred to a nitrocellulose membrane.
For the detection of HIF-1α protein, the anti HIF-1α (28b):sc-13515 (Santa Cruz Biotec-
nology, Dallas, TX, USA) was used as primary, and anti-mouse IgG, HRP-linked#7076
(Cell Signaling, Danvers, MA, USA), as secondary antibody. The signal intensity was
normalized by tubulin and actin probed with anti-Tubulin (10D8; sc-53646) and anti-Actin
(I-19; sc-1616) antibodies.

4.10. Statistical Analysis

Raw data were normalized and p values were calculated with the GraphPad Prizm
v. 8 software using unpaired Student’s t-test (p < 0.05 was considered to be statistically
significant as specified in the figure legends).

5. Conclusions

We suggest the following glucose distribution for Spalax cells. Glucose homeostasis in
the primary Spalax skin cells is mastered by upregulated HIF-1α under both normoxia and
hypoxia. Higher levels of HIF-1α are maintained due to the prevention of its degradation,
because of the higher production of 2HG and upregulated glycosylation. Glucose tracing
in Spalax cells characterizes a ‘semi-independent’ functioning of the glycolysis and the TCA
cycle regardless of oxygen availability. The Spalax cytosolic glucose machinery does not
depend upon TCA-derived NAD+. The shortage of NAD+ is covered by activated LDH
reaction. In general, both normoxic and hypoxic Spalax cells employ anaerobic glycolysis.
Glc carbons intensively circulate between PPP and the main glycolytic axis maintaining
an appropriate pool of NADPH and finally harbor as GSH, glycerol, and UDP-GlcNAc.
NADPH also acts as a bridge that links the cytosolic and the mitochondrial domains of Glc
homeostasis. It is essential for both mitochondrial redox shuttles such as the Pro/HPro
shuttle and production of D-2HG by IDH2. The mitochondrial metabolism of Glc-derived
carbons is maintained mainly due to PC anaplerosis, while PDC flux stays low regardless
of oxygen availability. Spalax cells utilize a specific cataplerotic pattern: glucose-originated
carbons sidetrack from the TCA cycle reactions along the axis αKG→Glu→Pro→HPro
and store as Pro/HPro in collagen structures outside the cell, or sink as Asn and further
participate in the protein glycosylation. Collagen, in this case, can be considered a stress
substrate that can be easily degraded by MPPs providing HPro/Pro for the Pro/HPro
shuttle fueling. The redox shuttling of αKG-branched carbons is a specific metabolic
signature of Spalax cells where it is employed for energy production and/or signaling via
ROS. Hypoxic Spalax cells use a metabolic strategy similar to that under normoxia, but
charged with a greater amount of Glc. The principal advantage of the Pro/HPro shuttle
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machinery is its independence of HIF-1α mastering. It does not shut down under hypoxia,
neither causes lactic acidosis and apoptosis as it occurs in most eukaryotic cells. Thus,
glucoses-derived metabolites in Spalax cells such as Pro, HPro, and 2HG can participate in
bioenergetics processes and increase the effectiveness of the metabolic system. Massive
collagen production requires more oxygen. Possibly, a higher oxygen consumption rate
which was reported during the Seahorse experiment, can be described by non-respiration
processes including the collagen production. Glucose metabolism maintains the antioxidant
capacity of Spalax cells via a massive flux of carbons to GSH biosynthesis. Thus Spalax
cells possess higher antioxidant potential compared to rat cells. The metabolic model for
glucose homeostasis in Spalax cells presented here can serve as a solid platform for further
studies on the strategies contributing to hypoxia tolerance, longevity, healthy aging, and
cancer resistance of this mammal.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11110734/s1, Figure S1: Mass isotopologues distribution for selected metabolites
in Spalax and rat cells, Figure S2: Selected characteristics of 13C6 glucose tracing under normoxia
and hypoxia, Figure S3: Mitochondrial and TCA fluxes of Glc-originated carbons, Figure S4: The
distribution of the metabolites along αKG-HPro axis, Figure S5: Glu-originated Asn, total αKG, and
mRNA expression data.
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