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Malignant pleural mesothelioma (MPM) is a rare, but severe form of cancer, with an 
incidence that varies significantly within and among different countries around the 
world. It develops in about one to two persons per million of the general population, 
leading to thousands of deaths every year worldwide. To date, the MPM is mostly 
associated with occupational asbestos exposure. Asbestos represents the predomi-
nant etiological factor, with approximately 70% of cases of MPM with well-documented 
occupational exposure to asbestos, with the exposure time, on average greater than 
40 years. Environmental exposure to asbestos is increasingly becoming recognized as 
a cause of mesothelioma, together with gene mutations. The possible roles of other 
cofactors, such as viral infection and radiation exposure, are still debated. MPM is a fatal 
tumor. This cancer arises during its early phase without clinical signs. Consequently, 
its diagnosis occurs at advanced stages. Standard clinical therapeutic approaches 
include surgery, chemo- and radiotherapies. Preclinical and clinical researches are 
making great strides in the field of this deadly disease, identifying new biomarkers and 
innovative therapeutic approaches. Among the newly identified markers and potential 
therapeutic targets, circulating microRNAs and the Notch pathway represent promis-
ing avenues that could result in the early detection of the tumor and novel therapeutic 
approaches.
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iNTRODUCTiON

Malignant pleural mesothelioma (MPM) represents about 80% of mesothelioma cases. MPM is a 
regional and highly aggressive tumor that arises from the mesothelium of the pleural surface. Rarely, 
other serosal membranes of the human body are also coated with mesothelium, such as peritoneum 
(peritoneal mesothelioma), pericardial (pericardial mesothelioma), and tunica vaginalis (tunica 
vaginalis mesothelioma), are affected. Although this malignancy is rare, the incidence of MPM has 
increased significantly with an estimated number of about 40,000 deaths each year worldwide for 
asbestos-related MPM (1, 2) due to the augmented and widespread use of these carcinogenic mineral 
fibers (3, 4). Asbestos refers to a group of naturally occurring mineral silicate fibers with physical 
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properties causing disease (5). The International Agency for 
Research on Cancer confirmed that all fibrous forms of asbestos 
(actinolite, amosite, anthophyllite, tremolite, crocidolite, and 
chrysotile) are carcinogenic to humans, causing mesothelioma. 
To date, asbestos includes about 400 forms of fibers that are 
known in nature, but among these, just the 6 forms mentioned 
earlier are regulated, due to their heavy commercial use. The 
World Health Organization estimates that 125 million people 
annually around the world are exposed to asbestos, both in the 
workplace and at home. Despite scientific evidences providing a 
clear and strong association between asbestos and MPM (6–9), 
many western countries, and newly industrializing economies, 
are still using asbestos (10–12). In addition, asbestos is defined 
differently, related to its context (commercial, mineralogical, 
analytical, and regulatory), and this definition has missed the 
cancer causing property of some minerals (5). Previous studies 
have reported cases of MPM in individuals exposed to erionite, 
regarded the most potent carcinogenic mineral fiber, but not 
regulated, because it is not defined as asbestos (13).

A widely accepted view assumes that the first step toward 
MPM is the interaction of asbestos fibers with human pleural 
mesothelial cells (HMC). Presumably, asbestos fibers enter the 
pleura and depending on the size, length of exposure, and type of 
deposit in different areas, cause inflammation (12), which leads 
to the activation of nuclear factor-kappa B (NF-κB) signaling This 
activation increases survival and proliferation of parietal HMC, 
giving rise to changes in the molecular signaling events, such as 
oncogenes activation, loss of tumor suppressor genes, and DNA 
damage, leading to an increased risk of developing MPM (14, 15). 
To date, the molecular mechanism(s) through which asbestos 
influences the selection of this HMC subpopulation(s) remains 
to be fully understood (16).

Several epidemiological studies demonstrated (17) an 
increased incidence of MPM cases among subjects, including 
women, with low levels or no history of occupational asbestos 
exposure (7). These studies indicate the existence of para-
occupational exposure to asbestos, which includes exposure 
to asbestos workers clothes, asbestos-containing commercial 
products, asbestos-containing buildings, and natural asbestos in 
the soil, indicating that asbestos is becoming an environmental 
contaminant, which may act in combination with other cofactors 
in the MPM onset (18). Both para-occupational exposure and 
direct (occupational) exposure have shown to increase the risk of 
mesothelioma (19, 20).

In addition to asbestos exposure, other environmental interac-
tions may increase the risk of developing MPM. Studies in vitro 
and in vivo, together with the detection of viral gene sequences 
in human specimens, have shown an association between MPM 
and the oncogenic simian virus 40 (SV40) (21–24), suggesting a 
transforming synergistic action between asbestos fibers and SV40 
(25). In addition, recent immunological investigations detected 
a higher prevalence of SV40 antibodies in sera of MPM patients 
in comparison with healthy blood donors. These data strengthen 
the association between MPM and SV40 (26, 27). Genetic pre-
disposition and radiation exposure seem to play a strong role 
as etiological factors that, alone or together with asbestos, may 
contribute to MPM development (17, 28, 29).

One of the peculiarities of MPM is the long-term latency 
period between the asbestos exposure and the tumor onset 
(from about 25 to 70 years), with a poor prognosis and median 
survival of less than 1 year from the time of diagnosis (30, 31). 
The majority of affected patients are 60 years old at manifesta-
tion, with peaks of the age-specific incidence at 80–84 years for 
men and 75–79 for women (32). In the setting of occupational 
asbestos exposure, the prevalence is higher among males 
compared with females (at male–female ratio of approximately 
4:1–8:1) (7, 33).

Malignant pleural mesothelioma is heterogeneous in its 
histological features (34). Indeed, it can be distinguished in 
three main histological subtypes (35), depending both on pre-
dominant cellular component and different biological behavior. 
Epithelioid mesothelioma, the most common form (50–70% of 
cases), is characterized by polygonal, oval, or cuboidal cells 
similar to carcinomas; the sarcomatoid type (10–20%), with 
a spindle cell morphology is similar to sarcomas; while the 
mixed or biphasic (30%) is composed of both epithelioid and 
sarcomatoid forms, in different proportion, within the same 
tumor (36). Cytological diagnosis of MPM supported by 
immunohistochemistry demonstrates that the median survival 
varied significantly among the histological subtypes. The epi-
thelioid subtype is less aggressive than sarcomatoid subtype. It 
is high sensitive and responds better to chemotherapy resulting 
in a longer survival than the sarcomatoid or biphasic subtypes 
of MPM (37, 38).

The correct identification of the MPM histological subtype 
facilitates the differential diagnosis, influencing subsequent 
prognosis and therapeutic decisions in this disease. Nevertheless, 
MPM is still fatal, and big efforts are being put into basic and 
clinical research in the attempt to find a cure for this tumor.

The aim of this review is to describe currently available thera-
pies and to discuss novel therapeutic targets and/or early detec-
tion markers that could be developed based on the dissection of 
the underlying molecular mechanism involved in the onset and 
progression of MPM.

MOLeCULAR MeCHANiSMS 
UNDeRLYiNG MPM

A large number of studies carried out in the last 20 years have led 
to the identification of dysregulated biological processes that may 
play a significant role in MPM development. These studies have 
shown that MPM is characterized by increased cell proliferation 
(downregulation of tumor suppressor genes, overexpression of 
oncogenes), inhibition of apoptosis (39, 40), and alteration of 
intracellular Ca2+ homeostasis (41, 42). There is evidence that 
some of these molecular alterations, such as overexpression 
of adenosine A3 receptor (43), purinergic receptor P2X7 (40) 
and dysregulation of cellular (44) and circulating microRNAs 
(miRNAs) (27, 45) could be used to diagnose and interfere with 
MPM growth. The literature related to the most commonly found 
alteration in MPM is discussed below, with special emphasis on 
those pathways that could be exploited in the future for early 
diagnosis and the treatment of MPM.
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Tumor Suppressor Genes in MPM
Tumor suppressor genes play a crucial role in regulating the 
cell cycle. The inactivation and/or loss of their function is one 
of the fundamental events in the tumor development. Loss of 
heterozygosity, which commonly leads to unmasking a somati-
cally mutated tumor suppressor gene through loss of the wild-
type allele, seems to be a consistent feature in MPMs. Recent 
breakthrough studies have discovered a germline mutation/
inactivation in BAP1 (BRCA1-associated protein 1), a tumor 
suppressor gene located on chromosome 3p21.3 in families with 
a genetic predisposition to develop MPM (46, 47). BAP1 is a 
deubiquitinating hydrolase that binds the RING finger domain of 
the BRCA1 protein, thought to be a regulator of many pathways 
germane to cancer (48). Previous studies reported BAP1 involve-
ment in various biological processes including regulation of cell 
cycle, response to DNA damage, and chromatin dynamics (49). 
BAP1 is ubiquitously expressed and interacts with tissue and cell 
type-specific proteins, with a role in mediating metabolic stress 
response (50) and in promoting survival related to its deubiq-
uitinating activity (51). A recently published study has shown 
that the heterozygous germline BAP1 mutations (BAP1+/−) 
induce cell metabolic changes linked to the increase aerobic 
glycolysis, leading to reprogramming of the activities that create 
a favorable environment to carcinogenesis and tumor growth 
(52). The germline BAP1 gene mutations lead to an abnormally 
short BAP1 protein that is likely broken down prematurely. These 
mutations have been associated with various malignancies other 
than malignant mesothelioma such as, uveal melanoma (47, 
53) and melanocytic BAP1-associated intradermal tumors (47). 
Somatic truncated BAP1 mutations and aberrant BAP1 expres-
sion are more common in sporadic MPM, with a frequency 
that varies widely among different histologic tumor types (46, 
54). Specifically, the pathogenesis of epithelioid subtype MPM 
is associated with higher survival, rather than other subtypes 
of malignant mesothelioma, thus providing additional clinical 
significance by facilitating histological classification (55–57). 
Besides single-point mutations in the BAP1 gene, copy number 
loss, rearrangements, and multiple alterations have also been 
found (58, 59). Interestingly, the analysis of chromosome 3p21, 
using a high-density microarray-based comparative genomic 
hybridization (aCGH) combined with targeted next-generation 
DNA sequencing (NGS), detected a much higher percentage 
of genetic alteration in BAP1 than reported in previous studies 
conducted with the NGS sequencing approach or aCGH alone, 
respectively. Each of these strategies resulted insufficient and less 
precise to identify the minute or larger chromosomal deletions, 
underestimating the frequency of genetic alterations in MPM 
(60). To date, none of mesothelioma patients with germline BAP1 
mutation was an ex-exposed asbestos worker (61), demonstrating 
that the development of MPM is not always directly associated 
with the amounts of asbestos exposure, signifying a decisive role 
of genetic factors among risk factors of this neoplasia.

The high incidence (around 25–60%) of the somatic BAP1 
mutations reported in MPM (62) is also associated with frequent 
alterations in other major tumor suppressor genes, such as p16/
Cdkn2a, p19/Arf, and p19/Cdkn2b (63). Independently of BAP1 
mutations, p16/Cdkn2A, p19/Arf, and p19/Cdkn2b have been 

found frequently inactivated by point mutations, aberrant expres-
sion and epigenetic silencing, suggesting their role, together with 
asbestos exposure, in the induction of mesothelial transformation 
in vitro and in vivo (64). Moreover, in vivo studies have shown that 
the inactivation of both p16 and p19/Arf expression accelerated 
the initiation of asbestos-induced MPM and decreased percent 
survival, as compared with the inactivation of either gene alone 
(65). Consistent with these data, whole-exome sequencing of 
asbestos-induced MPM showed the homozygous loss of Cdkn2A 
and alterations in other tumor suppressor gene (66).

Neurofibromin 2 (NF2) is another tumor suppressor gene fre-
quently inactivated in MPM. A study has found that 38% of MPM 
samples displayed NF2 gene mutations, and 29.4% displayed 
deletions, while no NF2 mutations were found in non-small cell 
lung cancer patients (67). The NF2 gene product shows a high 
similarity in its sequence with some members of the ERM (Ezrin, 
Radixin, Moesin) protein family. The NF2 protein is a scaffolding 
protein located at the plasma membrane, where it propagates 
extracellular signals through several cell surface receptors. A frac-
tion of NF2 also interacts with other proteins that are involved 
in regulating ion transporters and in cytoskeletal dynamics (68).

Other studies in MPM have shown the lack of frequent muta-
tions in two most notorious tumor suppressor genes: p53 (64, 
69) and pRb (70). Nevertheless, complexes between SV40 large 
tumor antigen protein (Tag) and both p53 and pRb have been 
found in human mesothelioma specimens (71, 72), which results 
in inactivation of these important regulators of the cell prolifera-
tion and survival, thus leading to the transformation of human 
mesothelial cells (HM) (23, 73, 74).

Oncogenes in MPM
Oncogenes promote transformation by driving cell proliferation 
and preventing apoptosis. Some of these genes are involved 
in the regulation of intracellular levels of calcium (Ca2+), an 
important regulator of many physiological processes, including 
the regulation of apoptosis of cancer cells (42, 75). The remod-
eling of intracellular Ca2+ homeostasis, as a consequence of the 
activity of different proteins with altered functions, is a general 
characteristic of cancer cells (75). It is widely accepted that both 
the Bcl-2 and Akt proteins are cofactors of the Ca2+-dependent 
pathways leading to apoptosis (76, 77). An antiapoptotic member 
of the Bcl-2 family of proteins and the oncogene Akt were found 
to be dysregulated in mesothelioma cells (78, 79), and elevated 
levels of Akt activity were found in 65% of human mesothelioma 
specimens (80, 81).

Several studies have shown that increased mesothelioma cell 
proliferation derives from the activity of growth factors and 
their specific transmembrane receptors, aberrantly expressed in 
human MPM (82). Epidermal growth factor receptor (EGFR) is 
an important oncogene closely involved in many cancer types, 
and its gene product is a transmembrane glycoprotein belonging 
to the tyrosine kinase receptor family. The binding between EGFR 
and its ligand induces cellular proliferation and cell motility and 
inhibits apoptosis and expression of extracellular matrix proteins 
(83). Previous studies have shown overexpression of EGFR 
in MPM tissues and cell lines (84, 85). A correlation between 
the carcinogenicity of the asbestos fibers and the induction of 
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phosphorylation of EGFR was observed in rat pleural mesothelial 
cells (86, 87), suggesting its potential role in the pathogenesis of 
this cancer. Vascular endothelial growth factor (VEGF) and its 
receptor (VEGFR) are overexpressed in MPM human samples 
(88) in which they may stimulate tumor growth and promote 
angiogenesis and lymphangiogenesis (89, 90).

Inflammation is known to contribute to tumors by promot-
ing cell proliferation and activating antiapoptotic pathways. 
The hallmarks of asbestos fibers inhalation include early and 
sustained inflammation linked to generation of reactive oxygen 
species that cause oxidative DNA damage, thus contributing to 
asbestos-mediated carcinogenesis (91). In addition, when asbes-
tos fibers penetrate the pleura, HM undergo programmed cell 
necrosis, releasing into the extracellular space the high-mobility 
group box-1 (HMGB1) protein, an abundant damage-associated 
protein with functions linked to its cellular localization. HMGB1 
mediates chronic inflammation through recruitment of mac-
rophages, which actively secrete tumor necrosis factor-α. The pro-
inflammatory and pro-survival NF-κB pathway is subsequently 
activated, leading to resistance to apoptosis, transformation of 
HM and the maintenance of the malignant phenotype (92, 93). A 
recent study has reported data on the high specificity of HMGB1 
protein in a hyper-acetylated isoform in serum of ex-exposed 
mesothelioma patients, selectively discriminating against their 
respective healthy control. This could suggest a role for HMGB1 
as a serological biomarker (94).

The major role of inflammation in MPM has been confirmed 
by another study showing increased concentrations of immune 
mediators in the sera of asbestos-exposed workers compared with 
controls (95). In addition, in asbestos-exposed rats, alveolar mac-
rophages showed increased expression of transforming growth 
factor-β, indicating that in asbestosis these cells contribute to 
fibrosis as well as to an inflammatory response. Furthermore, 
natural killer (NK) cells demonstrated impaired cytotoxicity 
upon exposure to asbestos indicating that exposure to asbestos 
has an immune-suppressive effect, as well as a tumorigenic effect 
(96). Consistently, functional alteration of NK cells and cytotoxic 
T  lymphocytes upon asbestos exposure and in MPM patients 
have been reported (97).

The Oncogene Notch
The Notch signaling pathway has been found to be dysregulated 
in MPM human biopsies (98). In a large number of solid tumors 
(99–101) and leukemias (102, 103), Notch acts as an oncogene, 
but its role as tumor suppressor gene has been reported in other 
cancers, such as squamous cells carcinoma (104, 105). The Notch 
pathway is as a mediator of short-range cell-to-cell communica-
tion system, which involves the regulation of genes controlling 
developmental processes, such as proliferation, cell death, acquisi-
tion of specific cell fates, and activation of differentiation. Notch 
is active throughout development and during maintenance of 
self-renewing adult tissues, in a context-dependent manner (106). 
The maturation process of the Notch receptor involves a cleavage 
during intracellular trafficking in the Golgi complex, resulting in 
a single-pass transmembrane protein to shuttle to the cell mem-
brane. The transmembrane protein is composed of a large extra-
cellular domain linked through non covalent interactions to the 
transmembrane portion (107). Activation of the Notch signaling 

is mediated by a direct contact between the extracellular domain of 
Notch receptor (four members Notch1–4) and one of five canoni-
cal ligands (Delta-like 1, 3, 4 or Jagged 1, 2) on neighboring cells 
(108). This interaction triggers two proteolytic cleavages, initially 
by metalloproteases of the ADAM family, followed by a cleavage 
by the γ-secretase complex at the cell membrane, releasing the 
intracellular domain of the Notch receptor (NICD), that represents 
the active form of the receptor (109, 110). NICD translocates into 
the nucleus and interacts with the transcription factor CSL (sup-
pressor of hairless in Drosophila, Lag-2 in C. elegans, and CBF1/
RBPJ-Jκ in mammals), and, after replacing a co-repressor complex, 
converts it into a potent transcriptional activator of downstream 
target genes (111). This constitutes the “canonical” Notch pathway 
(106, 112). Recently, a “non-canonical” Notch pathway, which acts 
independently of CBF1/CSL and plays important roles in normal 
and transformed cells, has been identified (113, 114).

There is a functional diversity among the Notch receptors, in 
particular among their intracellular active forms that are capable 
of inducing specific genes (115–117). There is evidence that, in 
breast carcinoma, Notch2 has opposite effects on cell survival, 
compared with Notch1 and Notch4 (118). Furthermore, it has 
been observed that the transcriptional activity of Notch1 and 
Notch3 is reduced by co-expression with the intracellular domain 
of Notch2 (119). A detailed description of the biochemical pro-
cesses regulated by Notch and the implications of dysregulation 
of this pathway in the development of cancer have been widely 
discussed and reviewed elsewhere (106, 120–123).

In cell lines established from human MPM biopsies, elevated 
Notch1 and reduced Notch2 expression have been observed 
(98) with their normal counterparts. Genetic and chemical 
modulation of the Notch pathway indicated that MPM cells are 
dependent on Notch signaling. Specifically, in MPM cells, Notch 
1 inhibits PTEN (phosphatase and tensin homolog) and activates 
the PI3K/Akt/mTOR signaling pathway indicating that this 
receptor is an MPM oncogene and its activation is strictly neces-
sary for growth and survival of MPM cells (98). On the contrary, 
in MPM cells, Notch2 is a positive transcriptional regulation of 
PTEN and therefore an inhibitor of the PI3K/Akt/mTOR signal-
ing pathway and re-expression of Notch-2 was toxic to MPM cells 
(98). Previous studies conducted by the same group have shown 
that SV40 activates Notch1 leading to immortalization and trans-
formation of primary HMC (124–126). These data indicate that 
Notch1 can mediate the process of transformation of mesothelial 
cells, downstream of mutagenic events caused by the exposure 
of carcinogenic factors, such as asbestos and viral infection (125, 
127–129). The effect of SV40 on Notch1 in mesothelial cells is 
similar to what reported in uterine cervical cancer, in which the 
infection of human papilloma virus has been linked to the activa-
tion of Notch1 (101, 130, 131).

CURReNT THeRAPeUTiC APPROACHeS 
TO MPM

Surgical Treatment
Surgery, also used in combination with chemo- and/or radiothe-
rapy, attempts to eradicate the malignant tissue and is an essential 
option to help the patient relieve symptoms by reducing pain 
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and by controlling pleural effusions (132). Nevertheless, surgi-
cal resection of the tumor is controversial and limited to MPM 
patients with early stage disease and good cardiopulmonary 
functions (133, 134). The intent and the role of surgical proce-
dure influence the survival rate of MPM patients. In the analysis 
of the International Association for the study of Lung Cancer 
Mesothelioma Database (3, 101), MPM patients undergoing 
curative-intent surgery had a median survival of 18 months (stage 
I, 21 months; stage II, 19 months; stage III, 16 months; and stage IV, 
12 months) vs 12 months with the palliative intent (135). A large 
study (14,288 patients) has shown that surgery alone, compared 
with no treatment, is associated with a significant improvement 
in survival [adjusted hazard ratio (adj HR) 0.64 (0.61–0.67)], 
but not radiation [adj HR 1.15 (1.08–1.23)]. The similar survival 
obtained with surgery alone has been observed after surgery and 
radiation combined [adj HR 0.69 (0.64–0.76)] (136). There are 
two surgical procedures commonly used in MPM: (1) pleurec-
tomy/decortication (P/D) that involves the radical removal of all 
visible disease of the pleura, both the inner and outer lung lining. 
If the mesothelioma only affects one lung, a pneumonectomy 
may be performed to remove the entire organ; (2) extra-pleural 
pneumonectomy (EPP), a type of more radical surgical option 
which aims to eradicate all macroscopic tumors via the removal 
of the areas surrounding it, including other mesothelial tissue 
(137). The optimal procedure for resection (EPP or P/D) of MPM 
is controversial and depends on clinical factors and on individual 
surgical preference and expertise. Flores et  al. have shown that 
operative mortality following EPP is higher compared with P/D (7 
vs 4%, respectively); however, P/D has better survival, compared 
with EPP (16 vs 12 months, respectively). All things considered, 
the authors of the study highlight similarities between the two 
approaches and conclude that there is no evidence to support 
the use of EPP vs P/D (138). A multicenter randomized clinical 
trial [Mesothelioma and Radical Surgery (MARS)] compared 
the clinical outcomes between MPM patients assigned to EPP 
within trimodal therapy (chemotherapy, EPP, and postoperative 
hemithorax irradiation) and patients with chemotherapy, but no 
EPP. The median survival for the EPP group was 14.4 months, 
while for the no EPP group was 19.5 months (139). The higher 
mortality related to EPP (3–15%) compared with extended P/D 
(1–5%) and, the observation that both techniques can achieve pro-
longed median survival has been reported by other groups (140). 
When balancing these considerations has been emphasized that 
surgery should be aimed to obtain macroscopic compete resec-
tion while limiting surgery-associated mortality and given the 
high rates of local failure/recurrence after surgery, incorporation 
of intracavitary therapeutics into the multimodality treatments 
(MMT) protocol would be desirable (140).

Radiotherapy
Radiation therapy is relatively common for MPM. Several studies 
have shown that radiotherapy is unable to cure MPM (141), but 
administrated either pre- or postoperatively, in combination with 
other treatments or alone, is useful to control pain, limit tumor 
spreading and, only in combination with other approaches, 
improved the 2-year rate of overall survival from 20 to 34% (142). 
It has proven to be extremely difficult to identify the effective 

radiation dose and the site of the radiation, due to the unique 
way that MPM spreads along the pleura, surrounding the lungs, 
adjacent to the heart, the spinal, and other vital organs. Once the 
cancerous cells spread, they can form small tumor called nodules. 
This process, known as seeding, may occur in 20–50% of MPM 
patients. Prophylactic radiation has been used to prevent spread-
ing and procedure-tract metastases, but this approach remains 
controversial and without a standardized clinical practice, due to 
mixed results obtained (143). Differences in surgical procedures, 
closely related to the ability to administer radiation, could explain 
the mixed results (144). In the neoadjuvant setting, the develop-
ment of new intensity-modulated radiation therapy (IMRT), 
followed by early EPP, allowed the optimization of the adminis-
tration of high-dose radiotherapy to the hemithorax, providing 
in selected MPM patients an improved median overall survival 
up to 39.4  months (145, 146). In contrast with these results, 
multicenter clinical trials observed the not promising outcomes 
of IMRT after adjuvant chemotherapy and EPP, not supporting 
the routine use of hemithoracic therapy for MPM in trimodality 
approach, due to the high toxic effects (147). The concerns related 
to the radiation treatment in the trimodality approach were the 
high rate of patients excluded, due to disease progression, surgical 
mortality, hemithoracic radiation morbidity, and not satisfactory 
risk/benefit ratio (148). With the lack of randomized trials, 
Wald and Sugarbaker recommends the application of radiation 
following EPP surgical procedure to selected patients with good 
postoperative recovery, excluding those patients who had local 
chest wall invasion (140).

Chemotherapy
Despite the toxic effects of chemical drugs, systemic chemo-
therapy for MPM remains the only and primary treatment 
modality and reasonable option that has been shown to increase 
median survival from 9 to 12 months in most advanced stage 
MPM patients, who are not candidates for aggressive surgery 
(149). Almost every chemotherapy regimen has been tested 
in mesothelioma (150, 151). Although these treatments are 
no curative, they can alleviate symptoms, improve quality of 
life and prolong survival, depending upon the tumor stage, 
histological differentiation, and the patient’s overall health 
when treatment begins (132). Platinum containing regimens 
have a greater activity than non-platinum containing combi-
nations (152). Vogelzang et  al. were the first to demonstrate 
that pemetrexed/cisplatin combination chemotherapy is more 
effective in MPM than cisplatin monotherapy (153, 154). A few 
other combinations were evaluated in randomized trials, but 
they did not demonstrate an important improvement of overall 
survival (155). Of note early clinical trials of MPM patients 
included heterogeneous groups of patients with divergent risk 
factors and were therefore often not powerful enough to assess 
therapeutic efficacy of a particular treatment (156). New gen-
eration of antifolates (pemetrexed and raltitrexed) and novel 
platinum derivatives (157) have shown low efficacy and limited 
outcomes, with a 3 months survival benefit in their combina-
tion over cisplatin alone: the median survival ranged from 9 to 
12 months, as shown by the EMPHACIS trial in patients with 
advanced disease (153).
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There are still many unanswered questions regarding chemo-
therapy and MPM. However, chemotherapy remains a central 
pillar of systemic therapy for MPM and the goal today is still to 
develop novel targeted chemotherapy agents, to be used either 
alone or in combination to increase efficacy and to minimize and/
or avoid side effects (157). A number of novel therapeutic agents 
are under investigation with the aim to provide further treatment 
options for MPM in the future (158).

Multimodality Therapy
According to the 2007 UK Department of Health’s Mesothelioma 
Service Framework and the British Thoracic Society’s Statement 
on Mesothelioma (159), progress has been made in the manage-
ment of MPM patients by involving experienced multidisciplinary 
team recommended by other guidelines for mesothelioma patients 
(160, 161). For more effective results, treatment options include 
the combination of two or more different methods of treatment, 
such as surgery, radiation therapy, and chemotherapy. However, 
timing, type of agent, and modality still debated. Selected patients 
with operable disease and a good performance status should 
be considered candidates for the multimodality therapy. For 
instance, surgery is recommended for patients with clinical stage I 
disease where the tumor is localized and non-metastatic to lymph 
nodes or other organs or tissues and has potential for surgical 
tolerance. Patients who are not operable because impaired cardio-
pulmonary function can be treated with chemotherapy. Patients 
with stage II where the tumor is larger and has invaded nearby 
organs, such as the lung or diaphragm, lymph nodes, may also be 
involved and stage III where mesothelioma has invaded a region 
or area, such as the chest wall, esophagus, or lymph nodes should 
be offered trimodal therapy with surgery, chemotherapy, and 
radiotherapy. Chemotherapy alone is recommended for patients 
who are not medically fit for surgery have stage IV disease and/or 
show sarcomatoid histology (162). A recent study has confirmed 
that the combination of surgical treatment, such as EPP and 
chemotherapy with radiotherapy led to a median survival that 
ranged from 18 to 24 months (163). In the MARS study, radical 
EPP within trimodal therapy showed no benefits on the quality 
life overall survival, compared with chemotherapy (139). Wald 
and Sugarbaker discussed that without clinical studies compar-
ing both chemotherapy or chemoradiotherapy to surgery-based 
MMT protocols and different surgery-based MMT approaches, 
there remains considerable uncertainty about the right thera-
peutic protocol and the right type of surgery for the individual 
patient (140). In agreement with their observation, data from the 
Cochrane Lung Cancer group’s Specialized Register, Cochrane 
Central Register of Controlled Trials, Medline, Embase, and the 
strength of the evidence collected by Abdel-Rahman et al. revealed 
that there is still a lack of available evidence to support the use of 
radical multimodality therapy in routine clinical practice (164).

immunotherapy and Targeted Therapy
As for other cancer types, immunotherapy is opening new options 
for the treatment of MPM. Clinical trials with dendritic cells and 
live-attenuated Listeria vaccination have produced encouraging 
results and are being considered for multicenter phase II trials 
(165). Intrapleural injection of oncolytic viruses (herpesvirus, 

poxvirus, adenovirus, and several attenuated RNA viruses) has 
also been considered as a possible treatment for unresectable 
MPM, due to the sensibility of MPM cells to their action, by direct 
killing or by immune-mediated mechanisms (166). In the light 
of the high levels of treatment-related adverse events or limited 
benefits of immunotherapeutic approaches in many clinical tri-
als, the application of oncolytic virotherapy in MPM treatment is 
still being investigated (167).

Clinical trials are also being conducted to test effectiveness of 
immune checkpoint inhibitors in MPM patients. In a large clini-
cal study, treatment with tremelimumab, a monoclonal antibody 
against cytotoxic-T-lymphocyte-associated antigen 4, expressed 
on the surface of activated T  lymphocytes and interfering with 
their ability to kill cancer cells did not significantly prolong overall 
survival, compared with placebo (median survival of 7.3 months) 
in patients with previously treated MPM (median survival of 
7.7 months) (168). Safety of pembrolizumab, an antibody against 
PD-L1 (programmed cell death ligand 1), and an inhibitor of 
immune response expressed on cancer cells have also been tested 
in MPM patients. It appears to be well tolerated, and it might 
confer antitumor activity in patients with PD-L1-positive MPM. 
Response, durability, and efficacy in this patient population war-
rant further investigation (169). Nevertheless, one of the biggest 
trials for immune checkpoint blockade has reported death of 81% 
of MPM patients died, without significant difference in overall 
survival between therapeutic treatments against placebo (168).

A promising type of immunotherapy based on adoptive cell 
transfer employs chimeric antigen receptor (CAR) T  cells, in 
which T cells are generated to recognize specific antigen recep-
tors (TSA or TAAs) on cancer cells. Numerous trials are currently 
being explored for MPM. Specifically, phase I clinical trials for 
genetically modified T  cells to recognize specific antigens on 
MPM cells, such as mesothelin and fibroblast activation protein 
(FPA), are being conducted in MPM patients (170).

In preclinical setting, the dysregulation in MPM of ErbB, 
a protein structurally similar and a ligand to EGFR, is being 
exploited for immunotherapy (171). To this aim, patient T-cells 
were engineered by retroviral transduction to express a panErbB-
targeted CAR and co-expressed with a chimeric cytokine recep-
tor, to induce interleukin-4 mediated CAR T-cell proliferation. 
These cells were activated upon contact with a panel of four 
mesothelioma cell lines, leading to cytotoxicity and cytokine 
release in all cases (171). Preclinical studies are also providing 
proof of concept that combination treatment of chemotherapy/
radiotherapy and immunotherapy with immune checkpoint 
inhibitors could lead to better outcomes for MPM. Specifically, 
it has been demonstrated in vivo that short course of high-dose 
non-ablative radiation could promote an antitumor immune 
response (165).

In the context of targeted therapy, phase I and phase II trials, 
which tested inhibitors of receptors with tyrosine kinase activity 
(RTK) in MPM patients with dysregulated of EGFR and VEGFR 
pathways have given poor results (172). The best results to date are 
with combination of bevacizumab and chemotherapy leading to 
2.6 months increase of survival when compared with patients who 
did not receive bevacizumab (173). Inactivation of plasminogen 
activators inhibitor PAI-1, implicated in tumor progression by 
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increasing angiogenesis, could constitute a strategy for inhibiting 
angiogenesis and growth of MPM. In a preclinical setting, tumor 
mass and the degree of angiogenesis in intrapleural tumors were 
reduced when PAI-1 inhibitor was administered to mice in which 
MPM cells expressing high levels of VEGF (VEGF-A) which were 
intrapleurally transplanted (174).

A detailed list of the ongoing clinical trials based on immuno-
therapy has been recently published (167). Based on the recent 
results of the studies conducted so far Bakker and colleagues 
conclude that this therapeutic approach for MPM has been 
disappointing probably due to the chronic inflammatory state 
and hypoxia that define this tumor. To further complicate the 
immune-therapeutic approach to MPM, it has been recently 
shown that MPM is a pool of independent clones that would need 
to be simultaneously targeted for an effective immunotherapy 
(175).

New THeRAPeUTiC APPROACHeS AND 
NOveL MOLeCULAR TARGeTS

Despite progresses, survival time and response rate to cytotoxic 
agents used for MPM treatment are still not satisfactory (176), 
plus a high degree of variability in treatment outcome in cancer 
patients undergoing chemotherapy has been observed (177). 
Furthermore, the cancer is still diagnosed at an advanced stage. 
Therefore, there is a strong need for early and accurate diagnosis 
markers and new therapeutic approaches in MPM.

Circulating Biomarkers of MPM
Analysis of liquid samples, such as serum and pleural effusion, 
due to their ease of collection represents a promising approach 
for the characterization of markers related to cancer progression 
(178). Recently, proteins (179–183), metabolites (184), and miR-
NAs (45) have been identified which are differentially expressed 
in the serum of MPM patients and could be used as biomarkers 
of the onset and progression of MPM. However, these studies still 
require a definitive validation in larger populations.

Soluble mesothelin is a cell surface glycoprotein highly 
expressed in several human cancers, including mesothelioma 
(185). Several studies have shown a sensitivity of 84% for advanced 
status of MPM, a specificity of 95%, and a correlation with 
histological subtype of the tumor (186–188). The MPM patients 
with epithelioid subtype had higher levels of mesothelin than 
those with sarcomatoid subtype (189). Another highly promising 
biomarker is the circulating glycoprotein fibulin-3 (190). A study 
population conducted by Pass et  al. showed elevated fibulin-3 
levels both in plasma (specificity of 94% and sensitivity of 100%) 
and pleural effusion (specificity of 93% and sensitivity of 84%) of 
MPM patients, distinguishing healthy persons with exposure to 
asbestos from patients with MPM (180). The prognostic potential 
of fibulin-3 is superior compared with mesothelin, which instead 
results more useful as diagnostic biomarker of MPM (181). Pass 
and colleagues have also shown that the osteopontin levels, an 
extracellular cell adhesion protein, were significantly higher in 
serum of MPM patients than healthy asbestos-exposed individu-
als (179). However, it has been observed that osteopontin is unable 
to distinguish between MPM, pleural metastatic carcinoma or 

benign pleural lesion, associated with asbestos exposure, due to 
very high number of false-positive (191).

A clinical study has shown that total or hyper-acetylated 
isoform of HMGB1 is a sensitive and specific biomarker that 
allows to differentiate early the serum samples of MPM patient 
asbestos-exposed from healthy unexposed ones and other pleural 
diseases patients (94). In subjects from a hyperendemic area for 
MPM, the C–C chemokine Regulated on Activation, Normal 
T-cell-Expressed and Secreted (RANTES) was found associ-
ated with the exposure to asbestos fibers. RANTES showed an 
increased gradient of concentration from healthy subjects to 
asbestos-exposed workers and MPM patients. Independently 
of SV40 infection, increased concentrations of other immune 
mediators were observed in the sera of the asbestos-exposed 
workers compared with controls (95). Analyses carried out on 
serum samples from MPM patients have detected the presence of 
antibodies against SV40 viral capsid protein (27, 192–194). Since 
SV40 could synergize with asbestos in causing MPM (21, 125), 
these antibodies in the serum could help to predict the risk of 
developing MPM in a population of asbestos-exposed worker.

The discovery of miRNAs, which are small sequences of 
RNA involved in regulation of gene expression, has changed the 
approach to diagnosis and therapy of many diseases, including 
cancer (44). miRNAs regulate a plethora of cellular activities, 
such as proliferation, apoptosis, metabolism, and angiogenesis. 
They are characterized by high stability, under different condi-
tions and typology of sample treatment, processing, and isolation 
(195–197). Furthermore, these circulating miRNAs, moving 
though the circulatory system naked or inside microparticles, 
such as exosomes, microvescicles, and apoptotic bodies, repre-
sent an innovative form of distant intracellular communication 
(45, 198, 199). The miRNAs expression profile has been found to 
be abnormal in several human cancers, thus pointing at their role 
in cancer progression, as oncomiRNAs and tumor suppressor 
miRNAs (200–202). Based on their characteristics of measurable 
indicators of physiological and pathological conditions, miRNAs 
could be used for prognosis, diagnosis, and treatment outcome 
assessments of cancers, including the MPM (8, 45).

A specific circulating miRNAs signature discriminating MPM 
patients from ex-exposed asbestos and healthy subjects have been 
identified (27, 45, 203). It has been proposed that the detection of 
circulating miRNAs, i.e., miR-197-3p, miR-1281, and miR-32-3p, 
in sera of MPM affected patients and workers ex-exposed to 
asbestos fibers could be used as a novel, non-invasive, predictive 
biomarkers for this cancer (45). This signature could also help 
to design targeted therapies for MPM (8, 204), exploiting the 
use of antagomir (oligonucleotide sequences) or anti-miRNAs 
(mimetic miRNA) (44), to silence the overexpressed oncomiRs 
or substitute the lost miRNA in cancer, respectively (205, 206).

Targeting the Notch Pathway in MPM
A large body of evidence shows that inhibition of Notch signaling 
causes a reduction of tumor cell proliferation in vitro and arrests 
tumor growth in vivo (99, 207), thus the targeting of Notch offers 
an attractive potential therapeutic strategy in oncology. Notch 
inhibition is able to shrink the tumor not only by increasing the 
apoptotic rate in the bulk of tumor but also by inhibiting the 
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growth of cancer stem cells, one main culprit for tumor recur-
rence (208), and by interfering with angiogenesis (209). Small 
molecules inhibiting γ-secretase, the enzyme required for Notch 
activation are being investigated in clinical trials (for a list of trials 
the reader is referred to http://clinicaltrials.gov). The molecules 
seem to work best in combination treatment (210). Other agents 
able to reduce angiogenesis by inhibiting Notch in are also being 
developed, i.e., antibodies against Dll4 (211, 212).

As previously discussed, Notch1 is overexpressed in MPM and 
it is therefore possible to envision the targeting of this receptor, 
in combination with other agents already used to prevent MPM 
progression by interfering with angiogenesis (172) and cancer 
stem cells survival (213). The efficacy of Notch inhibitors could 
be evaluated also in experimental model of MPM in which less 
known pathways crucial for mesothelioma stem cells, such as 
Wnt (91, 214) and Hyppos, downstream of NF2 (215), are being 
investigated. The rationale for this co-treatment is based on 
evidence of the cross talks between the Notch, Hyppos, and Wnt 
pathways (210).

Targeting Notch in tumors has been challenging due to the 
fact that γ-secretase have many side effects (101). In this context, 

MPM may be a good model to test the efficacy of novel therapies 
that target Notch1 because of its location in a closed space (the 
pleural cavity) that could limit the toxicity due to γ-secretase 
inhibition. It should be noted that targeting Notch in tumor has 
been challenging also due to the complexity of Notch signal-
ing. First, not all Notch receptors are sensitive to inhibition of 
γ-secretase (115) and second, whereas canonical Notch signaling 
is very well documented in cancer, the non-canonical activation 
of Notch signaling, which plays a role in cancer, in still not well 
understood (216, 217). Consequently, it is not always possible to 
assess Notch inhibition by a certain agent. The clear dissection 
of the canonical and non-canonical Notch signaling is necessary 
to fully understand this complex pathway to develop a targeted 
therapy that includes Notch.

Precision Oncology and Future Directions 
in the Treatments of MPM Patients
Studies conducted in the last decades have identified several path-
ways that could be targeted to give new hopes to MPM patients 
(Figure 1). Due to the rapidly evolving field of precision medicine, 
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identification of novel biomarkers is promising as it may provide 
the best therapeutic options for each patient, considered the 
genetic background and the specific characteristics of the tumor. 
This hope is supported by a recent study on polymorphisms in 
gemcitabine, pemetrexed, and cisplatin metabolism, transport 
and other drug target genes and DNA repair pathways, which 
has led to a clinical-pharmacogenetic model that could predict 
the best chemotherapeutic treatment for a specific MPM patient 
(177). Furthermore, oncogene-targeted depth sequencing on a 
tumor sample and paired peripheral blood DNA from a patient 
with malignant mesothelioma of the peritoneum revealed a 
mutation leading to 13-amino acids neo-peptide of the truncated 
BAP1 protein, which is predicted to be present on this examined 
patient’s HLA-B protein. This tumor-specific neoantigen is an 
example of potential molecular biomarker for personalized 
diagnosis of mesothelioma (177, 218). Comprehensive genomic 
analysis, followed by integrated analyses of 216 MPM biopsies, 
has identified recurrent mutations, gene fusions and splicing 
alterations leading to inactivation of NF2, BAP1, and SETD2 and 
alterations in Hippo, mTOR, histone methylation, RNA helicase, 
and p53 signaling pathways (219). Furthermore, in a proof-of-
concept study including five MPM patients, it was shown that 
the composition of pleural effusion is dynamic, influenced by 
treatment and that the immune cell composition of the pleural 
effusion does not automatically reflect the properties of tumor 
tissue. These findings could have major consequences when 
applying precision immunotherapy based on pleural effusion 
findings in patients (199). In conclusion, with the aim to achieve 

early detection of MPM and increased survival of these patients, 
with minimal side effects: (1) the comprehensive genomic pro-
filing of MPM; (2) the targeting of pathways already known to 
be dysregulated in MPMs, such as the Notch pathway; (3) the 
characterization of dysregulated circulating miRNAs, and (4) 
the assessment of risks, such as exposure to asbestos and the 
presence of germline BAP1 mutations, should all be taken under 
consideration.
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