organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-{[5-(Adamantan-1-vl)-4-methyl-4H-1,2,4-triazol-3-yl]sulfanyl}-N,Ndimethylethanamine

Ali A. El-Emam,^a Siham Lahsasni,^b Hanadi H. Asiri,^a Ching Kheng Quah^c‡ and Hoong-Kun Fun^{c*}§

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ^bDepartment of Chemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 28 March 2012; accepted 4 April 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.064; wR factor = 0.184; data-to-parameter ratio = 16.1.

In the title compound, C₁₇H₂₈N₄S, the 1,2,4-triazole ring is nearly planar [maximum deviation = 0.005 (2) Å]. There are no significant hydrogen bonds observed in the crystal structure. The crystal studied was a non-merohedral twin, the refined ratio of twin components being 0.281 (3):0.719 (3).

Related literature

For the biological activity of adamantyl derivatives see: Al-Omar et al. (2010); Al-Deeb et al. (2006); El-Emam et al. (2004); Kadi et al. (2007, 2010); Vernier et al. (1969). For the structures of related adamantyl-1,2,4-triazoles, see: Almutairi et al. (2012); Al-Tamimi et al. (2010); Al-Abdullah et al. (2012). For the structures of substituted sulfanyl-1,2,4-triazoles, see: Fun et al. (2011); Wang et al. (2011). For standard bond-length data, see: Allen et al. (1987).

Experimental

Crystal data C17H28N45 $M_r = 320.4$ Monoclini

$C_{17}H_{28}N_4S$	b = 10.3779 (5) Å
$M_r = 320.49$	c = 14.3044 (8) Å
Monoclinic, $P2_1/c$	$\beta = 106.766 \ (3)^{\circ}$
a = 12.5133 (7) Å	V = 1778.63 (16) Å

[‡] Thomson Reuters ResearcherID: A-5525-2009. § Thomson Reuters ResearcherID: A-3561-2009.

Z = 4Cu Ka radiation $\mu = 1.62 \text{ mm}^{-1}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.204, \ T_{\max} = 0.923$

Refinement $R[F^2 > 2\sigma(F^2)] = 0.064$ $wR(F^2) = 0.184$ S = 1.13

3267 reflections

T = 296 K $0.64 \times 0.59 \times 0.05 \text{ mm}$

3267 measured reflections 3267 independent reflections 2846 reflections with $I > 2\sigma(I)$

203 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2734).

References

- Al-Abdullah, E. S., Asiri, H. H., El-Emam, A. & Ng, S. W. (2012). Acta Cryst. E68 0344
- Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch./Drug Res. 56, 40-47.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, 0656.
- Al-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526-2550.
- Al-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.
- Fun, H.-K., Asik, S. I. J., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, 03422-03423.
- Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.
- Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235-242.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Vernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642-665.
- Wang, W., Liu, Q., Xu, C., Wu, W. & Gao, Y. (2011). Acta Cryst. E67, o2236.

supplementary materials

Acta Cryst. (2012). E68, o1356 [doi:10.1107/S160053681201464X]

2-{[5-(Adamantan-1-yl)-4-methyl-4*H*-1,2,4-triazol-3-yl]sulfanyl}-*N*,*N*-dimethyl-ethanamine

Ali A. El-Emam, Siham Lahsasni, Hanadi H. Asiri, Ching Kheng Quah and Hoong-Kun Fun

Comment

Considerable attention has been devoted to adamantane derivatives which have long been known for their diverse biological properties as antiviral against the influenza (Vernier *et al.*, 1969) and HIV viruses (El-Emam, Al-Deeb, Al-Omar & Lehmann, 2004). Moreover, adamantane derivatives were recently reported to exhibit marked antibacterial activity (Kadi *et al.*, 2007, 2010). In continuation of our interest in the chemical and pharmacological properties of adamantane derivatives, we synthesized the title compound as a potential chemotherapeutic agent.

In the title molecule, Fig. 1, the 1,2,4-triazole ring (N1-N3/C11/C12) is nearly planar with a maximum deviation of 0.005 (2) Å at atom N2. Bond lengths (Allen *et al.*, 1987) and angles are within normal ranges and are comparable to those reported for related structures (Almutairi *et al.*, 2012; Al-Tamimi *et al.*, 2010; Al-Abdullah *et al.*, 2012; Fun *et al.*, 2011; Wang *et al.*, 2011). The crystal studied was a non-merohedral twin, the refined ratio of twin components being 0.281 (3):0.719 (3). There are no significant hydrogen bonds observed in this compound.

Experimental

A mixture of 3-(adamantan-1-yl)-4-methyl-4*H*-1,2,4-triazole-5-thiol (2.49 g, 0.01 mol), potassium hydroxide (1.12 g, 0.02 mol) and 2-dimethylaminoethyl chloride hydrochloride (1.44 g, 0.01 mol) in ethanol (15 ml) was heated under reflux with stirring for 3 h and the solvent was distilled off *in vacuo*. The obtained residue was washed with water and purified by column chromatography on silica gel column using CHCl₃:MeOH (9:1 ν/ν) as eluent to yield 2.02 g (63%) of the title compound as colorless powder. M.p. 133-135°C. Single crystals suitable for X-ray diffraction were obtained by crystallization from aqueous ethanol. ¹H NMR (CDCl₃, 500.13 MHz): δ 1.69-1.75 (m, 6H, adamantane-H), 2.04-2.85 (m, 9H, adamantane-H), 2.21 (s, 6H, 2xCH₃), 2.62 (t, 2H, CH₂N, J = 6.5 Hz), 3.28 (t, 2H, SCH₂, J = 6.5 Hz), 3.59 (s, 3H, CH₃). ¹³C NMR (CDCl₃, 125.76 MHz): δ 28.07, 34.98, 36.50, 49.56 (adamantane-C), 31.05 (CH₃), 32.33 (SCH₂), 45.21 (2xCH₃), 58.24 (CH₂N), 152.16, 161.21 (triazole C).

Refinement

All hydrogen atoms were positioned geometrically [C-H = 0.96-0.98 Å] and refined using a riding model, with $U_{iso}(H) = 1.2 \text{ or } 1.5 U_{eq}(C)$. A rotating group model was applied to the methyl groups. The crystal studied was a non-merohedral twin, the refined ratio of twin components being 0.281 (3):0.719 (3).

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication:

SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figure 1

The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms.

2-{[5-(Adamantan-1-yl)-4-methyl-4H-1,2,4-triazol-3-yl]sulfanyl}- N,N-dimethylethanamine

Crystal data

C₁₇H₂₈N₄S $M_r = 320.49$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 12.5133 (7) Å b = 10.3779 (5) Å c = 14.3044 (8) Å $\beta = 106.766$ (3)° V = 1778.63 (16) Å³ Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.204, T_{\max} = 0.923$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.064$ $wR(F^2) = 0.184$ S = 1.133267 reflections 203 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 696 $D_x = 1.197 \text{ Mg m}^{-3}$ Cu K\alpha radiation, \lambda = 1.54178 \mathbf{A} Cell parameters from 3932 reflections $\theta = 7.7-69.2^{\circ}$ $\mu = 1.62 \text{ mm}^{-1}$ T = 296 KPlate, colourless $0.64 \times 0.59 \times 0.05 \text{ mm}$

3267 measured reflections 3267 independent reflections 2846 reflections with $I > 2\sigma(I)$ $R_{int} = 0.000$ $\theta_{max} = 69.8^{\circ}, \theta_{min} = 7.7^{\circ}$ $h = -15 \rightarrow 14$ $k = -12 \rightarrow 12$ $l = 0 \rightarrow 16$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.P)^2 + 1.1111P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.32$ e Å⁻³ $\Delta\rho_{min} = -0.37$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ х v Z**S**1 0.59451 (7) 0.30472 (8) 0.05471 (7) 0.0589(3)N1 0.4306(2)0.2967(2)0.14471 (19) 0.0478 (6) N4 0.7649(3)0.2967(3)-0.0644(2)0.0630(7)C9 0.2838(2)0.2248 (3) 0.2293(2)0.0476 (7) C10 0.3344(3)0.2856 (4) 0.3307(3)0.0672 (9) H10A 0.3944 0.2315 0.3689 0.081* H10B 0.3653 0.3694 0.3234 0.081* C6 0.2449(4)0.3001 (5) 0.3838(3)0.0814(12)H6A 0.2779 0.3402 0.4477 0.098* C5 0.1995 (4) 0.1692 (5) 0.3976 (3) 0.0893 (14) H5A 0.107* 0.1441 0.1778 0.4328 H5B 0.2594 0.107* 0.1149 0.4359 C4 0.1465 (4) 0.1071 (4) 0.2985 (3) 0.0765 (11) H4A 0.1169 0.0222 0.3077 0.092* C3 0.0526(3)0.1919 (5) 0.2391(3)0.0817(13)0.098* H3A 0.0183 0.1524 0.1761 -0.00410.2728 0.098* H₃B 0.2011 0.6508 (4) C13 0.1620(4)0.0134(4)0.0803(12)0.096* H13A 0.6560 0.0927 0.0600 0.096* H13B 0.6015 0.1344 -0.0490C2 0.0985(3)0.3229(4)0.2249(3)0.0757(11)H2A 0.3775 0.1869 0.091* 0.0375 C7 0.1513 (4) 0.3853 (5) 0.3230(4)0.0861 (13) H7A 0.0954 0.3977 0.103* 0.3571 H7B 0.1810 0.4691 0.103* 0.3136 C1 0.1858 (3) 0.3084 (4) 0.1699 (3) 0.0653 (9) H1A 0.2132 0.3927 0.1586 0.078* H1B 0.1520 0.2684 0.1069 0.078* C8 0.2350(3)0.0923 (3) 0.2444(3)0.0666 (9) 0.2018 0.0521 0.1814 0.080* H8A H8B 0.2944 0.0367 0.2817 0.080* C11 0.3702(2)0.2040(3)0.1772(2)0.0477(7)N2 0.4021(2)0.0897(2)0.1572 (2) 0.0577(7)N3 0.4859(3)0.1046(3)0.1120(2)0.0599(7)C12 0.5001(3)0.2289(3)0.1054(2)0.0516(7) C14 0.0031 (4) 0.7641 (4) 0.1909 (5) 0.0874 (14) 0.105* H14A 0.8139 0.2124 0.0669

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H14B	0.7930	0.1140	-0.0196	0.105*	
C16	0.7117 (7)	0.2636 (6)	-0.1633 (5)	0.126 (2)	
H16A	0.7180	0.3341	-0.2048	0.189*	
H16B	0.6342	0.2457	-0.1713	0.189*	
H16C	0.7468	0.1886	-0.1805	0.189*	
C17	0.4269 (3)	0.4366 (3)	0.1495 (3)	0.0633 (9)	
H17A	0.4899	0.4723	0.1330	0.095*	
H17B	0.4292	0.4626	0.2145	0.095*	
H17C	0.3593	0.4674	0.1043	0.095*	
C15	0.8793 (5)	0.3349 (7)	-0.0500 (6)	0.120 (2)	
H15A	0.8822	0.4023	-0.0951	0.181*	
H15B	0.9217	0.2623	-0.0608	0.181*	
H15C	0.9101	0.3655	0.0156	0.181*	

Atomic displacement parameters $(Å^2)$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U^{23}
S1 $0.0605(5)$ $0.0553(5)$ $0.0668(6)$ $-0.0051(3)$ $0.0278(4)$ N1 $0.0524(14)$ $0.0418(13)$ $0.0497(15)$ $0.0000(10)$ $0.0156(1)$ N4 $0.0598(17)$ $0.0665(18)$ $0.0661(19)$ $0.0050(13)$ $0.0236(1)$ C9 $0.0478(15)$ $0.0505(16)$ $0.0430(16)$ $0.0012(12)$ $0.0105(1)$ C10 $0.060(2)$ $0.084(2)$ $0.051(2)$ $-0.0009(18)$ $0.0042(1)$ C6 $0.076(3)$ $0.113(4)$ $0.054(2)$ $-0.003(2)$ $0.0162(1)$ C5 $0.082(3)$ $0.133(4)$ $0.059(3)$ $0.012(3)$ $0.031(2)$ C4 $0.079(3)$ $0.078(3)$ $0.083(3)$ $-0.011(2)$ $0.0232(1)$ C13 $0.081(3)$ $0.064(2)$ $0.114(4)$ $0.0078(19)$ $0.056(3)$	-0.0023(4)
N1 $0.0524 (14)$ $0.0418 (13)$ $0.0497 (15)$ $0.0000 (10)$ $0.0156 (14)$ N4 $0.0598 (17)$ $0.0665 (18)$ $0.0661 (19)$ $0.0050 (13)$ $0.0236 (14)$ C9 $0.0478 (15)$ $0.0505 (16)$ $0.0430 (16)$ $0.0012 (12)$ $0.0105 (16)$ C10 $0.060 (2)$ $0.084 (2)$ $0.051 (2)$ $-0.0009 (18)$ $0.0042 (16)$ C6 $0.076 (3)$ $0.113 (4)$ $0.054 (2)$ $-0.003 (2)$ $0.0162 (16)$ C5 $0.082 (3)$ $0.133 (4)$ $0.059 (3)$ $0.012 (3)$ $0.031 (2)$ C4 $0.079 (3)$ $0.078 (3)$ $0.083 (3)$ $-0.011 (2)$ $0.0232 (16)$ C13 $0.081 (3)$ $0.064 (2)$ $0.114 (4)$ $0.0078 (19)$ $0.015 (4)$	0.0025(4)
N4 $0.0598(17)$ $0.0665(18)$ $0.0661(19)$ $0.0050(13)$ $0.0236(1)$ C9 $0.0478(15)$ $0.0505(16)$ $0.0430(16)$ $0.0012(12)$ $0.0105(1)$ C10 $0.060(2)$ $0.084(2)$ $0.051(2)$ $-0.0009(18)$ $0.0042(1)$ C6 $0.076(3)$ $0.113(4)$ $0.054(2)$ $-0.003(2)$ $0.0162(1)$ C5 $0.082(3)$ $0.133(4)$ $0.059(3)$ $0.012(3)$ $0.031(2)$ C4 $0.079(3)$ $0.078(3)$ $0.083(3)$ $-0.011(2)$ $0.0232(1)$ C3 $0.056(2)$ $0.123(4)$ $0.070(3)$ $-0.011(2)$ $0.0232(1)$ C13 $0.081(3)$ $0.064(2)$ $0.114(4)$ $0.0078(19)$ $0.056(3)$	1) 0.0003 (10)
C9 $0.0478(15)$ $0.0505(16)$ $0.0430(16)$ $0.0012(12)$ $0.0105(1)$ C10 $0.060(2)$ $0.084(2)$ $0.051(2)$ $-0.0009(18)$ $0.0042(1)$ C6 $0.076(3)$ $0.113(4)$ $0.054(2)$ $-0.003(2)$ $0.0162(1)$ C5 $0.082(3)$ $0.133(4)$ $0.059(3)$ $0.012(3)$ $0.031(2)$ C4 $0.079(3)$ $0.078(3)$ $0.083(3)$ $-0.011(2)$ $0.039(2)$ C3 $0.056(2)$ $0.123(4)$ $0.070(3)$ $-0.011(2)$ $0.0232(1)$ C13 $0.081(3)$ $0.064(2)$ $0.114(4)$ $0.0078(19)$ $0.056(3)$.4) 0.0030 (14)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3) -0.0010 (12)
C6 $0.076(3)$ $0.113(4)$ $0.054(2)$ $-0.003(2)$ $0.0162(1)$ C5 $0.082(3)$ $0.133(4)$ $0.059(3)$ $0.012(3)$ $0.031(2)$ C4 $0.079(3)$ $0.078(3)$ $0.083(3)$ $-0.011(2)$ $0.039(2)$ C3 $0.056(2)$ $0.123(4)$ $0.070(3)$ $-0.011(2)$ $0.0232(1)$ C13 $0.081(3)$ $0.064(2)$ $0.114(4)$ $0.0078(19)$ $0.056(3)$	6) -0.0097 (17)
C5 0.082 (3) 0.133 (4) 0.059 (3) 0.012 (3) 0.031 (2) C4 0.079 (3) 0.078 (3) 0.083 (3) -0.011 (2) 0.039 (2) C3 0.056 (2) 0.123 (4) 0.070 (3) -0.011 (2) 0.0232 (1) C13 0.081 (3) 0.064 (2) 0.114 (4) 0.0078 (19) 0.056 (3) C2 0.057 (2) 0.095 (3) 0.073 (3) 0.0105 (10) 0.0154 (10)	9) -0.021 (2)
C4 0.079 (3) 0.078 (3) 0.083 (3) -0.011 (2) 0.039 (2) C3 0.056 (2) 0.123 (4) 0.070 (3) -0.011 (2) 0.0232 (1) C13 0.081 (3) 0.064 (2) 0.114 (4) 0.0078 (19) 0.056 (3) C2 0.057 (2) 0.005 (3) 0.073 (3) 0.0105 (10) 0.0154 (1)	0.017 (2)
C3 0.056 (2) 0.123 (4) 0.070 (3) -0.011 (2) 0.0232 (1) C13 0.081 (3) 0.064 (2) 0.114 (4) 0.0078 (19) 0.056 (3) C2 0.057 (2) 0.005 (3) 0.073 (3) 0.0105 (10) 0.0154 (1)	0.003 (2)
C13 0.081 (3) 0.064 (2) 0.114 (4) 0.0078 (19) 0.056 (3) C2 0.057 (2) 0.005 (3) 0.073 (3) 0.0105 (10) 0.0154 (10)	.9) -0.009 (2)
(2) 0.057 (2) 0.005 (2) 0.072 (2) 0.0105 (10) 0.0154 (1	0.006 (2)
0.0195(19) $0.0194(19)$	8) 0.007 (2)
C7 0.085 (3) 0.092 (3) 0.091 (3) 0.009 (2) 0.042 (3)	-0.018 (2)
C1 0.059 (2) 0.080 (2) 0.055 (2) 0.0125 (16) 0.0139 (1	.6) 0.0096 (17)
C8 0.070 (2) 0.063 (2) 0.072 (2) -0.0051 (16) 0.0289 (1	.8) 0.0026 (17)
C11 0.0505 (16) 0.0440 (15) 0.0476 (17) 0.0002 (12) 0.0126 (1	3) 0.0023 (12)
N2 0.0657 (16) 0.0454 (14) 0.0686 (18) 0.0029 (12) 0.0299 (1	4) 0.0032 (12)
N3 0.0682 (17) 0.0466 (15) 0.0727 (19) 0.0041 (12) 0.0327 (1	5) 0.0027 (12)
C12 0.0531 (17) 0.0499 (17) 0.0499 (18) 0.0020 (13) 0.0118 (1	4) 0.0008 (13)
C14 0.080 (3) 0.094 (3) 0.096 (3) 0.024 (2) 0.038 (3)	0.024 (3)
C16 0.181 (6) 0.097 (4) 0.082 (4) 0.030 (4) 0.008 (4)	-0.013 (3)
C17 0.069 (2) 0.0442 (17) 0.080 (2) -0.0017 (15) 0.0273 (1	8) -0.0028 (15)
C15 0.082 (3) 0.137 (5) 0.151 (6) 0.003 (3) 0.047 (4)	0.032(4)

Geometric parameters (Å, °)

S1—C12	1.742 (3)	C13—C14	1.498 (6)	
S1—C13	1.811 (4)	C13—H13A	0.9700	
N1-C12	1.361 (4)	C13—H13B	0.9700	
N1-C11	1.384 (4)	C2—C7	1.513 (7)	
N1—C17	1.455 (4)	C2—C1	1.527 (5)	
N4—C16	1.421 (7)	C2—H2A	0.9800	
N4—C15	1.441 (6)	С7—Н7А	0.9700	
N4-C14	1.464 (5)	С7—Н7В	0.9700	

C9—C11	1.495 (4)	C1—H1A	0.9700
C9—C10	1.539 (5)	C1—H1B	0.9700
C9—C1	1.542 (4)	C8—H8A	0.9700
С9—С8	1.546 (5)	C8—H8B	0.9700
C10—C6	1.531 (6)	C11—N2	1.310 (4)
C10—H10A	0.9700	N2—N3	1.390 (4)
C10—H10B	0.9700	N3—C12	1.309 (4)
C6—C5	1.508 (7)	C14—H14A	0.9700
C6—C7	1.524 (7)	C14—H14B	0.9700
С6—Н6А	0.9800	C16—H16A	0.9600
C5—C4	1.524 (7)	C16—H16B	0.9600
C5—H5A	0.9700	C16—H16C	0.9600
С5—Н5В	0.9700	C17—H17A	0.9600
C4—C3	1.517 (7)	C17—H17B	0.9600
C4—C8	1.531 (5)	C17—H17C	0.9600
C4—H4A	0.9800	C15—H15A	0.9600
C3—C2	1.513 (7)	C15—H15B	0.9600
С3—НЗА	0.9700	C15—H15C	0.9600
С3—Н3В	0.9700		
C12—S1—C13	98.05 (17)	С7—С2—Н2А	109.2
C12—N1—C11	104.8 (2)	C1—C2—H2A	109.2
C12—N1—C17	124.6 (3)	C2—C7—C6	109.8 (4)
C11—N1—C17	130.5 (3)	С2—С7—Н7А	109.7
C16—N4—C15	111.7 (5)	С6—С7—Н7А	109.7
C16—N4—C14	112.6 (4)	С2—С7—Н7В	109.7
C15—N4—C14	107.9 (4)	С6—С7—Н7В	109.7
C11—C9—C10	111.7 (3)	H7A—C7—H7B	108.2
C11—C9—C1	112.4 (3)	C2—C1—C9	110.2 (3)
C10—C9—C1	109.5 (3)	C2—C1—H1A	109.6
C11—C9—C8	108.2 (3)	C9—C1—H1A	109.6
C10—C9—C8	107.7 (3)	C2—C1—H1B	109.6
C1—C9—C8	107.1 (3)	C9—C1—H1B	109.6
C6—C10—C9	110.3 (3)	H1A—C1—H1B	108.1
C6—C10—H10A	109.6	C4—C8—C9	110.7 (3)
C9—C10—H10A	109.6	C4—C8—H8A	109.5
C6—C10—H10B	109.6	С9—С8—Н8А	109.5
C9—C10—H10B	109.6	C4—C8—H8B	109.5
H10A—C10—H10B	108.1	С9—С8—Н8В	109.5
C5—C6—C7	109.9 (4)	H8A—C8—H8B	108.1
C5—C6—C10	109.5 (4)	N2—C11—N1	109.0 (3)
C7—C6—C10	109.0 (4)	N2—C11—C9	123.3 (3)
С5—С6—Н6А	109.5	N1—C11—C9	127.6 (3)
С7—С6—Н6А	109.5	C11—N2—N3	108.6 (3)
С10—С6—Н6А	109.5	C12—N3—N2	106.3 (3)
C6—C5—C4	109.8 (3)	N3—C12—N1	111.2 (3)
C6—C5—H5A	109.7	N3—C12—S1	126.8 (3)
C4—C5—H5A	109.7	N1—C12—S1	122.0 (2)
С6—С5—Н5В	109.7	N4-C14-C13	113.7 (4)

C4—C5—H5B	109.7	N4—C14—H14A	108.8
H5A—C5—H5B	108.2	C13—C14—H14A	108.8
C3—C4—C5	109.5 (4)	N4—C14—H14B	108.8
C3—C4—C8	109.4 (4)	C13—C14—H14B	108.8
C5—C4—C8	109.2 (4)	H14A—C14—H14B	107.7
C3—C4—H4A	109.6	N4—C16—H16A	109.5
C5—C4—H4A	109.6	N4—C16—H16B	109.5
C8—C4—H4A	109.6	H16A—C16—H16B	109.5
C2—C3—C4	109.5 (3)	N4—C16—H16C	109.5
С2—С3—НЗА	109.8	H16A—C16—H16C	109.5
С4—С3—НЗА	109.8	H16B—C16—H16C	109.5
С2—С3—Н3В	109.8	N1—C17—H17A	109.5
C4—C3—H3B	109.8	N1—C17—H17B	109.5
НЗА—СЗ—НЗВ	108.2	H17A—C17—H17B	109.5
C14—C13—S1	109.7 (3)	N1—C17—H17C	109.5
C14—C13—H13A	109.7	H17A—C17—H17C	109.5
S1—C13—H13A	109.7	H17B—C17—H17C	109.5
C14—C13—H13B	109.7	N4—C15—H15A	109.5
S1—C13—H13B	109.7	N4—C15—H15B	109.5
H13A—C13—H13B	108.2	H15A—C15—H15B	109.5
C3—C2—C7	110.0 (4)	N4—C15—H15C	109.5
C3—C2—C1	109.7 (4)	H15A—C15—H15C	109.5
C7—C2—C1	109.6 (3)	H15B—C15—H15C	109.5
C3—C2—H2A	109.2		
C11—C9—C10—C6	-177.5 (3)	C10—C9—C8—C4	58.6 (4)
C11—C9—C10—C6 C1—C9—C10—C6	-177.5 (3) 57.3 (4)	C10—C9—C8—C4 C1—C9—C8—C4	58.6 (4) -59.2 (4)
C11—C9—C10—C6 C1—C9—C10—C6 C8—C9—C10—C6	-177.5 (3) 57.3 (4) -58.8 (4)	C10—C9—C8—C4 C1—C9—C8—C4 C12—N1—C11—N2	58.6 (4) -59.2 (4) -0.5 (4)
C11—C9—C10—C6 C1—C9—C10—C6 C8—C9—C10—C6 C9—C10—C6—C5	-177.5 (3) 57.3 (4) -58.8 (4) 60.9 (4)	C10—C9—C8—C4 C1—C9—C8—C4 C12—N1—C11—N2 C17—N1—C11—N2	58.6 (4) -59.2 (4) -0.5 (4) -179.8 (3)
C11—C9—C10—C6 C1—C9—C10—C6 C8—C9—C10—C6 C9—C10—C6—C5 C9—C10—C6—C7	-177.5 (3) 57.3 (4) -58.8 (4) 60.9 (4) -59.3 (5)	C10—C9—C8—C4 C1—C9—C8—C4 C12—N1—C11—N2 C17—N1—C11—N2 C12—N1—C11—C9	58.6 (4) -59.2 (4) -0.5 (4) -179.8 (3) 178.0 (3)
C11—C9—C10—C6 C1—C9—C10—C6 C8—C9—C10—C6 C9—C10—C6—C5 C9—C10—C6—C7 C7—C6—C5—C4	-177.5 (3) 57.3 (4) -58.8 (4) 60.9 (4) -59.3 (5) 58.9 (5)	C10—C9—C8—C4 C1—C9—C8—C4 C12—N1—C11—N2 C17—N1—C11—N2 C12—N1—C11—C9 C17—N1—C11—C9	58.6 (4) -59.2 (4) -0.5 (4) -179.8 (3) 178.0 (3) -1.3 (5)
C11—C9—C10—C6 C1—C9—C10—C6 C8—C9—C10—C6 C9—C10—C6—C5 C9—C10—C6—C7 C7—C6—C5—C4 C10—C6—C5—C4	-177.5 (3) 57.3 (4) -58.8 (4) 60.9 (4) -59.3 (5) 58.9 (5) -60.8 (5)	C10—C9—C8—C4 C1—C9—C8—C4 C12—N1—C11—N2 C17—N1—C11—N2 C12—N1—C11—C9 C17—N1—C11—C9 C10—C9—C11—N2	58.6 (4) -59.2 (4) -0.5 (4) -179.8 (3) 178.0 (3) -1.3 (5) 113.2 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-177.5 (3) 57.3 (4) -58.8 (4) 60.9 (4) -59.3 (5) 58.9 (5) -60.8 (5) -59.6 (5)	C10—C9—C8—C4 C1—C9—C8—C4 C12—N1—C11—N2 C17—N1—C11—N2 C12—N1—C11—C9 C17—N1—C11—C9 C10—C9—C11—N2 C1—C9—C11—N2	58.6 (4) -59.2 (4) -0.5 (4) -179.8 (3) 178.0 (3) -1.3 (5) 113.2 (4) -123.3 (4)
C11—C9—C10—C6 C1—C9—C10—C6 C8—C9—C10—C6 C9—C10—C6—C5 C9—C10—C6—C7 C7—C6—C5—C4 C10—C6—C5—C4 C6—C5—C4—C3 C6—C5—C4—C8	-177.5 (3) 57.3 (4) -58.8 (4) 60.9 (4) -59.3 (5) 58.9 (5) -60.8 (5) -59.6 (5) 60.2 (5)	C10—C9—C8—C4 C1—C9—C8—C4 C12—N1—C11—N2 C17—N1—C11—N2 C12—N1—C11—C9 C17—N1—C11—C9 C10—C9—C11—N2 C1—C9—C11—N2 C8—C9—C11—N2	58.6 (4) -59.2 (4) -0.5 (4) -179.8 (3) 178.0 (3) -1.3 (5) 113.2 (4) -123.3 (4) -5.3 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -177.5 (3) \\ 57.3 (4) \\ -58.8 (4) \\ 60.9 (4) \\ -59.3 (5) \\ 58.9 (5) \\ -60.8 (5) \\ -59.6 (5) \\ 60.2 (5) \\ 59.8 (5) \end{array}$	C10—C9—C8—C4 C1—C9—C8—C4 C12—N1—C11—N2 C17—N1—C11—N2 C12—N1—C11—C9 C17—N1—C11—C9 C10—C9—C11—N2 C1—C9—C11—N2 C8—C9—C11—N2 C10—C9—C11—N1	58.6 (4) -59.2 (4) -0.5 (4) -179.8 (3) 178.0 (3) -1.3 (5) 113.2 (4) -123.3 (4) -5.3 (4) -65.1 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -177.5 (3) \\ 57.3 (4) \\ -58.8 (4) \\ 60.9 (4) \\ -59.3 (5) \\ 58.9 (5) \\ -60.8 (5) \\ -59.6 (5) \\ 60.2 (5) \\ 59.8 (5) \\ -59.8 (5) \end{array}$	C10—C9—C8—C4 C1—C9—C8—C4 C12—N1—C11—N2 C17—N1—C11—N2 C12—N1—C11—C9 C17—N1—C11—C9 C10—C9—C11—N2 C1—C9—C11—N2 C8—C9—C11—N2 C10—C9—C11—N1 C1—C9—C11—N1	58.6 (4) -59.2 (4) -0.5 (4) -179.8 (3) 178.0 (3) -1.3 (5) 113.2 (4) -123.3 (4) -5.3 (4) -65.1 (4) 58.4 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -177.5 (3) \\ 57.3 (4) \\ -58.8 (4) \\ 60.9 (4) \\ -59.3 (5) \\ 58.9 (5) \\ -60.8 (5) \\ -59.6 (5) \\ 60.2 (5) \\ 59.8 (5) \\ -59.8 (5) \\ -157.1 (3) \end{array}$	C10—C9—C8—C4 C1—C9—C8—C4 C12—N1—C11—N2 C17—N1—C11—N2 C12—N1—C11—C9 C17—N1—C11—C9 C10—C9—C11—N2 C1—C9—C11—N2 C8—C9—C11—N2 C10—C9—C11—N1 C1—C9—C11—N1 C8—C9—C11—N1	$58.6 (4) \\ -59.2 (4) \\ -0.5 (4) \\ -179.8 (3) \\ 178.0 (3) \\ -1.3 (5) \\ 113.2 (4) \\ -123.3 (4) \\ -5.3 (4) \\ -65.1 (4) \\ 58.4 (4) \\ 176.4 (3)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -177.5 (3) \\ 57.3 (4) \\ -58.8 (4) \\ 60.9 (4) \\ -59.3 (5) \\ 58.9 (5) \\ -60.8 (5) \\ -59.6 (5) \\ 60.2 (5) \\ 59.8 (5) \\ -157.1 (3) \\ -59.9 (5) \end{array}$	C10—C9—C8—C4 C1—C9—C8—C4 C12—N1—C11—N2 C17—N1—C11—N2 C12—N1—C11—C9 C17—N1—C11—C9 C10—C9—C11—N2 C1—C9—C11—N2 C1—C9—C11—N2 C10—C9—C11—N1 C1—C9—C11—N1 C1—C9—C11—N1 N1—C11—N2—N3	$58.6 (4) \\ -59.2 (4) \\ -0.5 (4) \\ -179.8 (3) \\ 178.0 (3) \\ -1.3 (5) \\ 113.2 (4) \\ -123.3 (4) \\ -5.3 (4) \\ -65.1 (4) \\ 58.4 (4) \\ 176.4 (3) \\ 0.8 (4)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -177.5 (3) \\ 57.3 (4) \\ -58.8 (4) \\ 60.9 (4) \\ -59.3 (5) \\ 58.9 (5) \\ -60.8 (5) \\ -59.6 (5) \\ 60.2 (5) \\ 59.8 (5) \\ -157.1 (3) \\ -59.9 (5) \\ 60.7 (4) \end{array}$	C10—C9—C8—C4 C1—C9—C8—C4 C12—N1—C11—N2 C17—N1—C11—N2 C12—N1—C11—C9 C17—N1—C11—C9 C10—C9—C11—N2 C1—C9—C11—N2 C1—C9—C11—N2 C10—C9—C11—N1 C1—C9—C11—N1 C1—C9—C11—N1 N1—C11—N2—N3 C9—C11—N2—N3	58.6 (4) -59.2 (4) -0.5 (4) -179.8 (3) 178.0 (3) -1.3 (5) 113.2 (4) -123.3 (4) -5.3 (4) -65.1 (4) 58.4 (4) 176.4 (3) 0.8 (4) -177.8 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -177.5 (3) \\ 57.3 (4) \\ -58.8 (4) \\ 60.9 (4) \\ -59.3 (5) \\ 58.9 (5) \\ -60.8 (5) \\ -59.6 (5) \\ 60.2 (5) \\ 59.8 (5) \\ -157.1 (3) \\ -59.9 (5) \\ 60.7 (4) \\ 59.1 (5) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58.6 (4) -59.2 (4) -0.5 (4) -179.8 (3) 178.0 (3) -1.3 (5) 113.2 (4) -123.3 (4) -5.3 (4) -65.1 (4) 58.4 (4) 176.4 (3) 0.8 (4) -177.8 (3) -0.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -177.5 (3) \\ 57.3 (4) \\ -58.8 (4) \\ 60.9 (4) \\ -59.3 (5) \\ 58.9 (5) \\ -60.8 (5) \\ -59.6 (5) \\ 60.2 (5) \\ 59.8 (5) \\ -157.1 (3) \\ -59.9 (5) \\ 60.7 (4) \\ 59.1 (5) \\ -61.6 (5) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58.6 (4) -59.2 (4) -0.5 (4) -179.8 (3) 178.0 (3) -1.3 (5) 113.2 (4) -123.3 (4) -5.3 (4) -65.1 (4) 58.4 (4) 176.4 (3) 0.8 (4) -177.8 (3) -0.8 (4) 0.5 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -177.5 (3) \\ 57.3 (4) \\ -58.8 (4) \\ 60.9 (4) \\ -59.3 (5) \\ 58.9 (5) \\ -60.8 (5) \\ -59.6 (5) \\ 60.2 (5) \\ 59.8 (5) \\ -157.1 (3) \\ -59.9 (5) \\ 60.7 (4) \\ 59.1 (5) \\ -61.6 (5) \\ -58.6 (5) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58.6 (4) -59.2 (4) -0.5 (4) -179.8 (3) 178.0 (3) -1.3 (5) 113.2 (4) -123.3 (4) -5.3 (4) -65.1 (4) 58.4 (4) 176.4 (3) 0.8 (4) -177.8 (3) -0.8 (4) 0.5 (4) -179.9 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -177.5 (3) \\ 57.3 (4) \\ -58.8 (4) \\ 60.9 (4) \\ -59.3 (5) \\ 58.9 (5) \\ -60.8 (5) \\ -59.6 (5) \\ 60.2 (5) \\ 59.8 (5) \\ -157.1 (3) \\ -59.9 (5) \\ 60.7 (4) \\ 59.1 (5) \\ -61.6 (5) \\ -58.6 (5) \\ 61.3 (5) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58.6 (4) -59.2 (4) -0.5 (4) -179.8 (3) 178.0 (3) -1.3 (5) 113.2 (4) -123.3 (4) -5.3 (4) -65.1 (4) 58.4 (4) 176.4 (3) 0.8 (4) -177.8 (3) -0.8 (4) 0.5 (4) -179.9 (3) -0.1 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -177.5 (3) \\ 57.3 (4) \\ -58.8 (4) \\ 60.9 (4) \\ -59.3 (5) \\ 58.9 (5) \\ -60.8 (5) \\ -59.6 (5) \\ 60.2 (5) \\ 59.8 (5) \\ -157.1 (3) \\ -59.9 (5) \\ 60.7 (4) \\ 59.1 (5) \\ -61.6 (5) \\ -58.6 (5) \\ 61.3 (5) \\ -61.4 (4) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58.6 (4) -59.2 (4) -0.5 (4) -179.8 (3) 178.0 (3) -1.3 (5) 113.2 (4) -123.3 (4) -5.3 (4) -65.1 (4) 58.4 (4) 176.4 (3) 0.8 (4) -177.8 (3) -0.8 (4) 0.5 (4) -179.9 (3) -0.1 (4) 179.3 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -177.5 (3) \\ 57.3 (4) \\ -58.8 (4) \\ 60.9 (4) \\ -59.3 (5) \\ 58.9 (5) \\ -60.8 (5) \\ -59.6 (5) \\ 60.2 (5) \\ 59.8 (5) \\ -157.1 (3) \\ -59.9 (5) \\ 60.7 (4) \\ 59.1 (5) \\ -61.6 (5) \\ -58.6 (5) \\ 61.3 (5) \\ -61.4 (4) \\ 59.4 (5) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58.6 (4) -59.2 (4) -0.5 (4) -179.8 (3) 178.0 (3) -1.3 (5) 113.2 (4) -123.3 (4) -5.3 (4) -65.1 (4) 58.4 (4) 176.4 (3) 0.8 (4) -177.8 (3) -0.8 (4) 0.5 (4) -179.9 (3) -0.1 (4) 179.3 (3) -179.7 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-177.5 (3) 57.3 (4) -58.8 (4) 60.9 (4) -59.3 (5) 58.9 (5) -60.8 (5) -59.6 (5) 60.2 (5) 59.8 (5) -157.1 (3) -59.9 (5) 60.7 (4) 59.1 (5) -61.6 (5) -58.6 (5) 61.3 (5) -61.4 (4) 59.4 (5) 178.2 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58.6 (4) -59.2 (4) -0.5 (4) -179.8 (3) 178.0 (3) -1.3 (5) 113.2 (4) -123.3 (4) -5.3 (4) -65.1 (4) 58.4 (4) 176.4 (3) 0.8 (4) -177.8 (3) -0.8 (4) 0.5 (4) -179.9 (3) -0.1 (4) 179.3 (3) -179.7 (2) -0.3 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -177.5 (3) \\ 57.3 (4) \\ -58.8 (4) \\ 60.9 (4) \\ -59.3 (5) \\ 58.9 (5) \\ -60.8 (5) \\ -59.6 (5) \\ 60.2 (5) \\ 59.8 (5) \\ -157.1 (3) \\ -59.9 (5) \\ 60.7 (4) \\ 59.1 (5) \\ -61.6 (5) \\ -58.6 (5) \\ 61.3 (5) \\ -61.4 (4) \\ 59.4 (5) \\ 178.2 (3) \\ -57.1 (4) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58.6 (4) -59.2 (4) -0.5 (4) -179.8 (3) 178.0 (3) -1.3 (5) 113.2 (4) -123.3 (4) -5.3 (4) -65.1 (4) 58.4 (4) 176.4 (3) 0.8 (4) -177.8 (3) -0.8 (4) 0.5 (4) -179.9 (3) -0.1 (4) 179.3 (3) -179.7 (2) -0.3 (5) 3.1 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -177.5 (3) \\ 57.3 (4) \\ -58.8 (4) \\ 60.9 (4) \\ -59.3 (5) \\ 58.9 (5) \\ -60.8 (5) \\ -59.6 (5) \\ 60.2 (5) \\ 59.8 (5) \\ -157.1 (3) \\ -59.9 (5) \\ 60.7 (4) \\ 59.1 (5) \\ -61.6 (5) \\ -58.6 (5) \\ 61.3 (5) \\ -61.4 (4) \\ 59.4 (5) \\ 178.2 (3) \\ -57.1 (4) \\ 59.5 (4) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58.6 (4) -59.2 (4) -0.5 (4) -179.8 (3) 178.0 (3) -1.3 (5) 113.2 (4) -123.3 (4) -5.3 (4) -65.1 (4) 58.4 (4) 176.4 (3) 0.8 (4) -177.8 (3) -0.8 (4) 0.5 (4) -179.9 (3) -0.1 (4) 179.3 (3) -179.7 (2) -0.3 (5) 3.1 (4) -177.3 (3)

supplementary materials

C5—C4—C8—C9	-59.7 (5)	C15—N4—C14—C13	166.4 (5)
C11—C9—C8—C4	179.4 (3)	S1—C13—C14—N4	-58.1 (5)