
1Scientific Data |           (2021) 8:238  | https://doi.org/10.1038/s41597-021-01016-4

www.nature.com/scientificdata

Using supervised learning to 
develop BaRAD, a 40-year monthly 
bias-adjusted global gridded 
radiation dataset
T. C. Chakraborty   ✉ & Xuhui Lee

Diffuse solar radiation is an important, but understudied, component of the Earth’s surface radiation 
budget, with most global climate models not archiving this variable and a dearth of ground-based 
observations. Here, we describe the development of a global 40-year (1980–2019) monthly database 
of total shortwave radiation, including its diffuse and direct beam components, called BaRAD (Bias-
adjusted RADiation dataset). The dataset is based on a random forest algorithm trained using Global 
Energy Balance Archive (GEBA) observations and applied to the Modern-Era Retrospective analysis 
for Research and Applications, Version 2 (MERRA-2) dataset at the native MERRA-2 resolution 
(0.5° by 0.625°). The dataset preserves seasonal, latitudinal, and long-term trends in the MERRA-2 
data, but with reduced biases than MERRA-2. The mean bias error is close to 0 (root mean square 
error = 10.1 W m−2) for diffuse radiation and −0.2 W m−2 (root mean square error = 19.2 W m−2) for 
the total incoming shortwave radiation at the surface. Studies on atmosphere-biosphere interactions, 
especially those on the diffuse radiation fertilization effect, can benefit from this dataset.

Background & Summary
The Earth’s climate is driven by solar (shortwave) radiation and its interactions with the different components of 
the Earth system. The shortwave radiation is attenuated by scattering and absorption by atmospheric aerosols, 
clouds, and gases, with the remaining portion reaching the Earth’s surface as direct beam radiation (K↓,b). A 
portion of the scattered radiation also reaches the surface, which deviates from its original path and is known 
as diffuse radiation (K↓,d). The sum of K↓,b and K↓,d, or the total incident shortwave radiation at the surface (K↓), 
influences local weather and climate, the hydrological cycle, and the carbon budget. There is also strong scientific 
interest in K↓,d because a high diffuse fraction can increase agricultural and ecosystem productivity and enhance 
the terrestrial water flux to the atmosphere through increased photosynthesis in normally shaded parts of the 
plant canopy, a phenomenon known as the diffuse radiation fertilization effect1–3.

Current Earth System Models (ESMs) generally overestimate K↓ compared to observations, primarily due 
to errors associated with parameterizations of clouds and aerosols4–7. This overestimation would cause artificial 
surface warming, with undesired consequences on atmosphere-biosphere interactions8,9. Although similar eval-
uations of ESM K↓,d are not available, large differences are reported for K↓,d between reanalysis datasets and obser-
vations10. The bias in K↓,d in these gridded datasets is not consistent in direction, unlike that for K↓. Such biases 
may contribute to uncertainties in modelling surface energy and carbon budgets and impact optimum placement 
of concentrating solar power systems11,12.

Several previous studies have examined the biases in modeled K↓ using the clearness index (kt). This index, 
defined as the ratio between surface incident and extraterrestrial radiation, captures the combined impact of 
aerosols, clouds, and gases on atmospheric transmittance on solar radiation13–15. These atmospheric constituents 
attenuate solar radiation as it moves through the atmospheric column. Although kt, a measure of the total light 
extinction, directly affects K↓,b and therefore exerts a strong control on K↓, it is only tangentially related to K↓,d. It 
is known that K↓,d is primarily controlled by the abundance of scattering agents in the atmosphere, as well as their 
degree of forward scattering16. An atmospheric scattering agent that reduces K↓,b may actually increase K↓,d. Thus, 
a new approach is required to correct biases in K↓,d.
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In recent years, machine learning algorithms have been used to reduce biases in radiation fields derived from 
reanalysis products or derive the fields from satellite observations17–22. By training against observed data, these 
algorithms can capture previously unknown relationships between actual and gridded variables, generally leading 
to improvements over traditional parametric and multi-ensemble averaging techniques22. However, the majority 
of these algorithms have been implemented at the regional scale, particularly over China, Europe, and the US, 
with a focus on the total K↓. For reasons briefly described above, it is also important to develop a generalizable 
bias-correction algorithm for K↓,d. Of note, a recent study developed a global hourly K↓,d dataset using a random 
forest algorithm on satellite retrievals from the Earth Polychromatic Imaging Camera (EPIC)21, although this 
focused on a short period from June 2015 to June 2019. A gridded data product after proper bias correction is 
especially welcome for tropical regions where K↓,d measurements are rare but the diffuse fertilization effect is 
strong due to high vegetation densities3,23.

In this paper, we describe the development of a new dataset of monthly gridded radiation fields, including 
K↓, K↓,b, and K↓,d, from 1980 to 2019, which can be explored through this web application: https://yceo.users.
earthengine.app/view/barad. We attempt to improve historical global gridded estimates of K↓,d. through three 
major steps:

	 1.	 Examine the control of kt on biases in K↓, K↓,b, and K↓,d separately
	 2.	 Test bias-correction algorithms for K↓ and K↓,d, including a method based on kt, a multiple linear regression 

(MLR) and a random forest (RF) model
	 3.	 Implement the best performing bias-correction algorithm to create a global 40-year Bias-adjusted RADia-

tion dataset, or BaRAD.

Methods
Reanalysis data.  The gridded data reported here is based on the Modern-Era Retrospective analysis for 
Research and Applications, version 2 (MERRA-2) global reanalysis dataset24. MERRA-2 improves upon the orig-
inal MERRA dataset in several ways. It adds an extensive aerosol assimilation by using bias-adjusted aerosol opti-
cal depth (AOD) from satellite observations24. Unlike MERRA, MERRA-2 uses observed precipitation to force the 
land-surface model25. It uses a newer version of the Goddard Earth Observing System (GEOS-5) and assimilates 
newer satellite observations of aerosols, clouds, and precipitation26. MERRA-2 is available from 1980 to present 
day at a grid resolution of 0.5° latitude and 0.625° longitude. The variables we wish to correct are monthly mean 
K↓ and K↓,d using predictors that physically control transmitted radiation. They include estimates of atmospheric 
clouds and aerosols, as well information about the position of the Sun, which controls energy input to the atmos-
pheric column.

Ground-Based observations for training and validation.  We used the Global Energy Balance Archive 
(GEBA) for training and validation of bias correction algorithms. GEBA is a comprehensive observational data 
repository of the components of the Earth’s surface energy budget27. The latest version of the database has roughly 
2500 unique stations28. Here, we used the monthly mean K↓ and K↓,d stored in the database. The data were 
screened with several quality control steps. We only selected the monthly mean values lower than 600 W m−2 for 
K↓ and 250 W m−2 for K↓,d. Cases where the ratio of modeled to observed monthly means exceed 5 were ignored. 
Finally, only sites with all 12 months of available data were selected to avoid biased representation across seasons. 
After these data screening steps, we obtained 935 unique sites with 134541 site-months of data for K↓ and 290 
unique sites with 28880 site-months for K↓,d between 1980 and 2017 (Fig. S1). Monthly mean K↓,b was computed 
as the difference between K↓ and K↓,d.

Bias-Correction algorithms.  We tested three bias correction algorithms, including a technique based on 
clearness index and two data-driven algorithms. Several studies have used clearness index kt as a threshold for 
designating sky condition or for estimating K↓

13,29,30. In Zhao et al.29, the bias in K↓ (bm) is related to kt in a linear 
fashion:

= . +b b k b (1)m 0 t 1

Here b0 is the sensitivity of bm to kt, and b1 is the model bias ratio under completely cloudy conditions. In their 
study, bm is given as

=
−b K K
K (2)m

R O

R

where KR and KO are modeled and observed values, respectively. Clearness index is given by

= ↓k
K

K (3)t
,o
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where KTOA is the extra-terrestrial radiation at the top of the atmosphere and K↓,O is the observed K↓ value. Their 
method subsequently also accounted for site elevation H through a somewhat arbitrarily chosen quadratic fitting 
function. Here, we used a multi-linear regression (MLR) model, which the authors29 note would yield similar 
results, as a function of kt, H, and K↓,R, the K↓ from the reanalysis without correction, to correct K↓
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where β0, β1, β2, and β3 are empirical coefficients. A linear model of the same form was also used to correct K↓,d. 
Since kt involves observed K↓ (Eq. 1), Eq. 4 cannot be used to correct biases in gridded data when observations are 
not available. Thus, we considered two variations of this algorithm, one using observed K↓ (K↓,O) and site elevation 
to calculate clearness index, called the kt,O model, and the other using grid-averaged terrain elevation (HR) and 
the clearness index calculated from modeled K↓ (K↓,R), given by:

= ↓k
K

K (5)t
,R

TOA

which we call the kt,R model.
The second algorithm, another MLR model, expresses the dependent variable as a linear combination of pre-

dictors. In the case of K↓, it takes the following form

β β β β β β θ β β= + + + + + + +↓ ↓K K HSAOD AAOD COD CF (6)z, O 0 ,R 1 2 3 4 5 6 R 7

where β0 to β7 are regression coefficients, K↓,O is the observed (or bias corrected) K↓, K↓,R is the K↓ from the rea-
nalysis without correction, SAOD is scattering aerosol optical depth (AOD), AAOD is absorption AOD, COD 
is cloud optical depth, CF is cloud fraction, and θz is the monthly mean zenith angle – the angle between the sun 
and the vertical direction – estimated from the hourly values. The MLR procedure with the same set of predic-
tors was also applied to K↓,d. These predictors (summarized in Table S1) provide strong physical constraints on 
atmospheric radiative transfer31, with both COD and AOD being direct measures of light extinction along the 
atmospheric column. Correlation matrices for the features selected show that other than for θz and the radiation 
field (KR) and AAOD and SAOD, the correlations coefficients between the features are generally smaller than 
0.75. Although AAOD and SAOD are strongly correlated, the separation of AOD into SAOD and AAOD is more 
important for K↓,d than for K↓ since while absorption of solar radiation by aerosols would reduce both K↓,d and 
K↓,b, forward scattering would reduce K↓,b and increase K↓,d. With the intent of developing a generalized algorithm, 
one regression is used for the entire dataset. Since θz strongly controls the optical thickness of the atmosphere 
even for clear-sky conditions32 and is one of the predictors, seasonal and latitudinal effects are accounted for to 
some extent. The algorithm was implemented using the stats package on the R programming language.

The third algorithm is a random forest (RF) regression technique33. Unlike the MLR models, the RF regression 
does not assume a standard linear structure of the relationship; instead it derives the relationship from the train-
ing data using an ensemble of decision trees. This relationship (for the total incoming radiation) can be expressed 
in a generic form as:

θ=↓ ↓K f K H( SAOD, AAOD, COD, CF, , ) (7)z,O ,R, R

This random forest regression was implemented using the R Random Forest package. The default minimum size 
of terminal nodes (5) was used, but the maximum number of trees to generate was set to 2000. In most folds, the 
models converged before reaching this limit. As per the default parameters of the package, each tree is trained on 
63.2% of the training data with 2 predictor variables chosen at random to split the nodes. Trees were allowed to 
grow fully rather than be pruned.

We used a 10-fold cross-validation technique to evaluation the performance of these algorithms. The entire 
GEBA dataset was randomly partitioned into 10 equal subsets. One of the ten subsets was used for validation and 
the other nine for training. The process was repeated 10 times. The accuracy was quantified using the coefficient 
of determination (r2), the root mean square error (RMSE), and the mean bias error (MBE). Cross-validation is 
desired for the RF algorithm because it is prone to overfitting and using multiple folds allows us to examine the 
consistency of the results across different training/validation splits. The two linear models (Eqs. 4 and 6) are not 
prone to overfitting. However, because they are sensitive to outliers, cross-validation was also done to estimate the 
influence of the training data selection on their performance.

The final data product (BaRAD) consists of monthly K↓, K↓,b, and K↓,d corrected with the best performing 
algorithm, defined as the one with minimum RMSE and highest r2 in the consolidated validated data at the native 
MERRA-2 resolution. Here the algorithm was trained on the whole quality screened GEBA dataset.

Clearness index as a predictor of bias.  Zhao et al.29 found systematic overestimation of K↓ in two rea-
nalysis datasets. To correct these model biases, they utilized the empirical relationship between the sensitivity of 
bm to the observed kt. Here the sensitivity is the slope of the linear regression between bm and kt,O. To illustrate 
how this sensitivity varies between K↓, K↓,d, and K↓,b, we separately examined the associations between bm and kt,O.

Unsurprisingly, bm for K↓ and kt,O are negatively correlated, both overall and for the common sites (Fig. S2b and d).  
Here the common sites are those with simultaneous measurements of K↓ and K↓,d. The sensitivity of bm to kt,O is 
−0.76 for all sites and −0.8 for common sites, which are very close to the value of −0.82 found by Zhao et al.29  
for MERRA in North America. Similarly, bm for K↓,b is also negatively correlated with kt,O, with the sensitivity 
being higher in magnitude (−1.23; Fig. S2c) than that for K↓, suggesting that total atmospheric transmittance 
has a stronger effect on the biases in K↓,b than on the biases in K↓. For K↓,d, the sensitivity of bm to kt,O is strong 
(−0.89; Fig. S2a), but the variability in the bias is not explained well by it (r2 = 0.15). Overall, the coefficient of 
determination (r2) is highest for K↓,b and smallest for K↓,d, indicating that clearness index is a poor predictor of 
model bias in K↓,d.
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It is also important to note the intercept of the equations shown in Fig. S2. This intercept represents the bm for 
a completely non-transmissive atmosphere (i.e. when kt,O  = 0). For both K↓ and K↓,b, this value is positive (0.96 
for K↓,b; 0.5 to 0.53 for K↓). This implies that the reanalysis overestimates K↓ under non-overcast skies, and its 
estimates improve for clearer conditions. On the other hand, the intercept for the regression line between the bm 
for K↓,d and kt,O is close to zero and the slope is negative, suggesting that MERRA-2 K↓,d is underestimated even 
under completely clear conditions.

Comparing bias-correction algorithms.  Figure 1 shows the comparison of the original MERRA-2 and 
bias-adjusted values with the GEBA observations. MERRA-2 underestimates K↓,d (MBE = −19.8 W m−2; Fig. 2a) 
and overestimates K↓ (MBE = 27.6 19.8 W m−2; Fig. 2b). Consistent with the K↓ overestimation, the modeled 
clearness index kt,R (0.54 ± 0.11) is higher than the observed index kt,O (0.45 ± 0.12). This increased transmissivity 
may be caused by underestimation of both clouds and aerosols, although clouds probably play a greater role since 
MERRA-2 has assimilated observations of AOD. Although an underestimation in clouds would also explain the 
underestimation in K↓,d, the intercept of the equation in Fig. S2a (see previous subsection) suggests that clouds 
are not the only factor.

All the three algorithms reduce the MBE and RMSE of K↓, K↓,b, and K↓,d in comparison to the original 
MERRA-2 values. The RF model performs the best overall, minimizing the RMSE and maximizing r2 for both K↓ 
(RMSE = 19.2 W m−2; r2 = 0.93) and K↓,d (RMSE = 10.1 W m−2; r2 = 0.90). The Taylor diagrams for the composite 
validation dataset, along with the results for both the kt,O and kt,R models, are in the supplementary information 
(Fig. S3). The RF model consistently outperforms the others for every fold (with one exception; see below). For 
K↓,d, the MLR model is not as good as the RF model but is better than the kt,R and kt,O models (Fig. S3a). For K↓, 
the kt,O model performs slightly better than the RF model (Fig. S3b), which makes sense since kt,O includes the 
observed K↓, and thus this model, not useable to correct global datasets, is not shown in Fig. 1. That the kt,O model 
outperforms the other models for K↓ but not for K↓,d confirms our hypothesis that the kt model is not appropriate 
to address biases in K↓,d. Similar to the kt,R MLR model (Eq. 4), we also train a RF model with kt derived from 
MERRA-2 as one of the features. Consistent with the results of the kt,O MLR and kt,R MLR models, the kt,R RF 
model cannot beat the performance of the RF model using MERRA-2 features (Eq. 7).

Physically, the monthly average radiation components cannot be negative. However, both the kt,R and MLR 
models predict a small fraction of negative values for K↓ (0.15% for kt,R and 0.10% for MLR) and K↓,d (0.24% 
for kt,R and 0.01% for MLR). One can account for this by setting these negative values to zero after correction. 
However, this imposed physical constraint is not required for the RF corrected values. We also test whether the 
distribution of predicted values by the RF model is statistically different from those predicted by the other models 
using paired Wilcoxon Sign Rank Tests34. In all cases, except compared to the kt,O model for K↓ (p-value = 0.58; 
supporting the null hypothesis of no difference), there are statistically significant differences between the tested 
algorithms. This is further evidence of the usefulness of kt based models for K↓ but not K↓,d.

MLR and RF use the same gridded variables as predictors. Fig. S5 presents the feature importance of each var-
iable. For the RF model, a feature importance is the increase in mean square error (MSE) of the predicted values 

Fig. 1  Comparison of original and bias-adjusted MERRA-2 data with GEBA observations. (a) monthly mean 
diffuse radiation (K↓,d) and (b) total shortwave radiation (K↓,) from MERRA-2 as well as the bias-adjusted 
estimates from the kt,R, MLR, and RF models. For the bias-adjusted estimates, the consolidated validation data 
from all 10 folds are shown. The red dashed lines represent the 1:1 relationship. Color indicates data density and 
the statistical summaries of the evaluations are noted.
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if the same variable is removed from the model. A higher increase in MSE indicates that the variable is more 
important to the performance of the RF model. Although there are several established methods for interpretating 
the relative importance of variables for MLR models, for ease of comparison, we use a model-agnostic permu-
tation method similar to the one used for the RF model using the iml package for the R programming language. 
For the RF model, the two best predictors are different for K↓,d and for K↓. For K↓,d, COD and CF have the highest 
importance scores (224.4 ± 3.3% for COD; 138.2 ± 3.1% for CF; Fig. S5c), and for K↓, AAOD and SAOD have the 
highest importance scores (223.6 ± 16.5% for AAOD; 206.5 ± 7.5% for SAOD; Fig. S5d). In contrast, the radiation 
field is the most important variable in the MLR models for both K↓ (451.2 ± 1.7%) and K↓,d (276.5 ± 1.1%; Figs. 
S5a and S5b). These differences are expected since the model architectures are also different, with the MLR model 
assuming linear relationships between the output and the input features and the RF model also accounting for 
non-linear interactions.

The BaRAD dataset.  Based on our cross-validation results, we choose the RF model to adjust the biases 
in the MERRA-2 K↓ and K↓,d. We re-trained the model twice, one for K↓ and the other for K↓,d, using the same 
predictors and all available quality screened GEBA observations (instead of random training subsets of it as 
done during the cross-validation phase). The trained model was used to bias-adjust the corresponding gridded 
monthly MERRA-2 fields from 1980 to 2019. The bias-adjusted dataset is referred to as BaRAD. The final BaRAD 
data deposited in the public archive has gone through two additional post-correction adjustments. First, because 
of lack of training data in polar regions, there exist a few positive values at some polar grids during polar nights; 
these positive values constitute 6.5% of the entire dataset for K↓. Here we have forced the bias-adjusted K↓ and K↓,d 
to zero when the corresponding MERRA-2 values are zero in those grids. Second, since K↓,d and K↓ were trained 
separately, there is a small fraction of gridded data (less than 0.5%) where K↓,d exceeds K↓, which is physically 
impossible. For these cases, we have set the K↓,d value equal to K↓.

Data Records
The BaRAD dataset is available in netCDF format and includes the monthly values of K↓ (variable name: K_
down), K↓,d (variable name: K_diff), and K↓,b (variable name: K_dir) starting from January, 198035. Separate 
netCDF files are generated for each year from 1980 to 2019. All variables have the unit of W m−2 and are available 
at the MERRA-2 native resolution of 0.5° by 0.625°. The BaRAD dataset generated in this study is available in this 
GitHub repository: https://github.com/TC25/BaRAD/tree/main/BaRAD_Dataset and also through PANGAEA 
(https://doi.org/10.1594/PANGAEA.932924)35. The training data are also available in the main GitHub repository.

Technical Validation
Comparison of BaRAD dataset with other gridded data products.  In Figs. 2, S6, and 3, we compare 
the spatial, zonal, and seasonal patterns in the BaRAD dataset with the original MERRA-2 dataset. We also com-
pare these patterns with the latest version of the Clouds and the Earth’s Radiant Energy System (CERES) surface 
radiation product36. The CERES dataset provides satellite-based estimates of the Earth’s radiative budget (from 
the surface to the top of the atmosphere) and clouds. The data are available globally at 1° by 1° resolution from 
2000 onwards. The latest version (CERES_SYN1deg_Ed4.1) of the dataset includes monthly estimates of both 
K↓,d and K↓.

Fig. 2  Spatial and latitudinal variability in diffuse radiation. Global pattern of diffuse radiation (K↓,d) in (a) 
the BaRAD product, (b) the MERRA-2 dataset, and (c) the CERES dataset. The grid-wise difference between 
BaRAD and (e) MERRA-2 and (f) CERES are also shown. Sub-figure (b) shows the mean latitudinal variability 
of K↓,d in all three products. The shaded areas represent the standard deviation. The area-weighted mean 
difference in K↓,d (ΔK↓,d) between the BaRAD data and the MERRA-2 and CERES products, respectively, are 
shown at the top of sub-figures (d) and (e), respectively.
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Although the three datasets show broadly similar latitudinal (Figs. 2c and S6c) and spatial patterns (Figs. 2d,e, 
S6d, and S6e), K↓,d in the BaRAD dataset is higher than in MERRA-2 over the Sahara and India and higher than 
the CERES data over Australia. For K↓, BaRAD shows a lower value than both MERRA-2 and CERES over the 
tropical region. Figures 2 and S6 also show the mean area-weighted difference (ΔK↓ and ΔK↓,d) between the 
BaRAD data and the MERRA-2 and CERES products, respectively. The global mean K↓ and K↓,d are 167.9 and 
75.8 W m−2, respectively, according to BaRAD. In comparison, the global mean K↓ is higher at 185.4 W m−2 and 
185.9 W m−2 according to MERRA-2 and CERES respectively, and the global mean K↓,d is lower at 52.6 W m−2 
according to MERRA-2 and higher at 102.4 W m−2 according to CERES.

We calculate the seasonal trends of K↓,d and K↓ in the northern and southern hemisphere grids (Fig. 3). 
Although there are large differences in the magnitude of the three datasets, the seasonal variation is captured by 
the BaRAD dataset  (when compared to the other two). For instance, the highest northern hemisphere averages 
are during the boreal summer and the lowest values are during the winter; vice versa for the southern hemisphere. 
These patterns are evident in all the datasets.

We also compare the BaRAD dataset with the newly developed K↓ and K↓,d datasets from the EPIC meas-
urements between 2016 and 201921. The EPIC instrument housed on the Deep Space Climate Observatory 
(DSCOVR) satellite, takes narrow band spectral images of the sunlit face of Earth for 10 channels every 60 to 
100 min. The dataset generated by Hao et al.21 is available at 0.1° by 0.1° resolution and is based on a random forest 
algorithm trained using in situ observations and the EPIC-derived variables37. Here, we compare the available 
observations with the BaRAD data for the same period. Although the EPIC-based dataset has several advan-
tages over many existing global estimates of K↓,d, namely the much higher spatial and temporal (up to hourly) 
resolution, it is not ideal for studying climatological trends. The EPIC instrument is affected by cloud cover and 
downtime. Thus, the EPIC data are interrupted by data gaps, with 5.1% of days missing between 2016 and 2019. 
Moreover, the product is only available over land. We regridded the EPIC-derived data to the native MERRA-2 
resolution using a nearest neighbor interpolation and compared the spatial and latitudinal trends in the K↓,d and 
K↓ with the BaRAD values (Fig. 4). Overall, the global mean K↓,d in BaRAD is very close to the EPIC-derived val-
ues, with a mean difference of only −0.72 W m−2. Greater differences are seen for K↓ with BaRAD underestimat-
ing it by 22.55 W m−2. Many of the differences between the two products occur over Africa, as also seen from the 
latitudinal trends (Fig. 4b,d). It is important to note that the in situ observations used in Hao et al.21 to evaluate the 
product lacks spatial representation over central Africa, while the GEBA observations are much more frequent 
here, at least for K↓ (Fig. S1). For K↓,d, both GEBA and the datasets used in Hao et al.21 are sparse, which could 
explain the low ΔK↓,d for this variable.

Validation against baseline surface radiation sites in the tropics.  Given the lack of observations 
in tropical regions and in the southern hemisphere, we examined how the lack of data in those regions affect the 
BaRAD results. To do so, we processed minute-level observations from the Baseline Surface Radiation Network 
(BSRN)38 and found two sites with sufficient (more than 8650 h in a year) observations in these data-scarce 
regions to evaluate the gridded products (namely MERRA-2, BaRAD, and CERES). The observations are from 
the GOB (Gobabeb, Namib Desert, Namibia at 23.56° S, 15.04° E) and PTR (Petrolina, Brazil at 9.07° S, 40.32° 
W) stations, shown as black stars in Fig. S1b. For the GOB site, 2013, 2014, and 2015 are the years with sufficient 
observations, while for the PT site, the years 2010, 2011, and 2014 are chosen. Note that although the GEBA data-
set includes several BSRN sites, these two sites (and some others) are not included since they do not have enough 
observations to reliably compute monthly means.

Figure 5 shows the seasonal trends of K↓,d and K↓ from the available BSRN observations, as well as the cor-
responding monthly composites from MERRA-2, BaRAD, and CERES. For both the stations, the BaRAD data 
shows less bias (MBE = 10.49 W m−2 for GOB; 2.31 W m−2 for PTR) than both MERRA-2 (MBE = −12.54 W m−2 

Fig. 3  Seasonal variability in all products. Monthly variability in diffuse radiation (K↓,d) in MERRA-2, BaRAD, 
and CERES for (a) the northern hemisphere and (c) the southern hemisphere. Sub-figures (b) and (d) are the 
same, but for total shortwave radiation (K↓). The error bars show the standard errors for each month.
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for GOB; −37.63 W m−2 for PTR) and CERES (MBE = 61.76 W m−2 for GOB; 36.33 W m−2 for PTR) for K↓,d. 
CERES overestimates K↓,d and MERRA-2 underestimates it compared to observations, which is consistent with 
the hemispherical results in Fig. 3 and previous estimates. For K↓, the results are mixed, with BaRAD performing 
better than CERES but worse than MERRA-2 (MBE = 6.95, −25.17, and −62.97 W m−2 for MERRA-2, BaRAD, 
and CERES, respectively) at the GOB site and better than MERRS-2 and comparable to CERES (MBE = 48.16, 
13.21, and −13.17 W m−2) at PTR. Note that for the GOB site, there is frequently more missing data at night or 
early morning than during daytime, which would lead to artificially higher annual K↓ values than true annual 
composites, making the comparison with BaRAD seem worse (and vice versa for MERRA-2).

Long-term trends.  Figure S7a–d show the 40-year trend in K↓ and K↓,d in the MERRA-2 and the BaRAD 
dataset for the two hemispheres. The two datasets show similar trends for K↓ and K↓,d, but they are offset by 
about 20 W m−2 for both K↓ and K↓,d. More importantly, the BaRAD dataset captures the impacts of the two 
large volcanic eruptions, El Chichón in 1982 and Mount Pinatubo in 1991, on K↓,d, particularly in the northern 
hemisphere (Fig. S7). This is probably because the aerosol, cloud, and radiation fields from the MERRA-2 reanal-
ysis, which is known to capture large volcanic activity39, are used to create the BaRAD dataset. For the northern 
hemisphere, the anomaly in K↓ from the mean of the previous and subsequent years (1981 and 1983) due to the 
El Chichón eruption was −1.95 W m−2 in MERRA-2 versus −2.81 W m−2 in the BaRAD dataset. For the Mount 
Pinatubo eruption, the K↓ anomaly was −1.28 W m−2 in MERRA-2 versus −1.39 W m−2 in the BaRAD dataset. 
For northern hemisphere K↓,d, there was an increase by 2.67 W m−2 in 1982 compared to the average of the values 
in 1981 and 1983 in MERRA-2 and 2.13 W m−2 for BaRAD. Similarly, in 1991, the northern hemisphere K↓,d was 
higher by 1.75 W m−2 compared to 1990 and 1992 in MERRA-2 versus 1.14 W m−2 in BaRAD.

Figure 6a, b are two examples of site-level comparison with observations made at Sapporo, Japan (43.05° N, 
141.33° E for K↓) and Würzburg, Germany (49.77° N, 9.97° E for K↓,d). These two sites are chosen because they 
have the longest data availability. The BaRAD dataset replicates both the magnitude and long-term variability of 
the site observations (r2 = 0.99 and MBE = −3.65 W m−2 for K↓,d; r2 = 0.97 and MBE = −8.64 W m−2 for K↓). On 
the other hand, MERRA-2 captures the variability (r2 = 0.98 for K↓,d; 0.97 for K↓), but has larger biases for both 
K↓,d (MBE = −22.95 W m−2) and K↓ (MBE = 16.85 W m−2).

Fig. 4  Comparison of spatial and latitudinal variability in total shortwave radiation and diffuse radiation 
between the BaRAD product and EPIC-derived estimates. Spatial patterns of the grid-wise difference in (a) 
diffuse radiation (K↓,d) and (b) total shortwave radiation (K↓) over land. Sub-figure (b) and (d) show the mean 
latitudinal variability of K↓,d and K↓ over land for the two products. The shaded areas represent the standard 
deviation. The area-weighted difference in K↓,d (ΔK↓,d) and K↓ (ΔK↓) between the BaRAD product and the 
EPIC-derived dataset are shown at the top of sub-figures (a) and (c), respectively.

https://doi.org/10.1038/s41597-021-01016-4


8Scientific Data |           (2021) 8:238  | https://doi.org/10.1038/s41597-021-01016-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

Limitations and Future work.  In the present study, our objective was to compare a conceptual kt model, a 
linear model, and an RF model that explicitly considers non-linear interactions to bias-adjust the MERRA-2 K↓ 
and K↓,d fields. Based on the cross-validation, the RF model was used to develop the BaRAD dataset. It should be 
noted that there are many machine learning architectures that can capture non-linear interactions. A compre-
hensive cross-validation of all such models is beyond the scope of the present study but should be undertaken in 
future work. Compared to many of these other architectures, RF models are easier to train, less sensitive to hyper-
parameters, simple to interpret, and have been used in similar supervised learning problems with similar sample 
sizes40. Although we expect the improvements in bias-adjusted radiation fields to be minor when moving to more 
complicated machine learning models for the current training data, architectures like deep neural networks are 
expected to perform better as the training sample size increases. For larger sample sizes, feature selection would 
also be much more important to optimize training time and further improve accuracy.

Here we focus on monthly means since we have the most comprehensive geographic distribution of radiation 
observations at this temporal scale through GEBA. As more data are incorporated in this archive, we plan to 
update the BaRAD dataset. It is possible to generate datasets similar to BaRAD at sub-monthly and even sub-daily 

Fig. 5  Validation of BaRAD against BSRN observations. Monthly variability in gridded values in MERRA-2, 
BaRAD, and CERES, and values observed at the GOB (Gobabeb, Namib Desert, Namibia at 23.56° S, 15.04° E) 
BSRN station for (a) diffuse radiation (K↓,d) and (b) total shortwave radiation (K↓). Sub-figures (c) and (d) are 
the same, but for the PTR (Petrolina, Brazil at 9.07° S, 40.32° W) BSRN site. The error bars show the standard 
errors for each month.

Fig. 6  Long-term trends at site scale. Long-term trends in (a) diffuse radiation (K↓,d) and (b) total shortwave 
radiation (K↓) for GEBA sites with longest archival history, along with corresponding gridded values from 
MERRA-2 and BaRAD. For K↓,d, the site with the longest archival history is located in Würzburg, Germany 
(49.77° N, 9.97° E) and the site with the longest archival history of K↓ is in Sapporo, Japan (43.05° N, 141.33° E). 
The monthly values are plotted on the left y-axes as lines and the annual averages (plotted as circles) are on the 
right y-axes.
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scales, though this requires more comprehensive training data than currently available. Observation networks 
like BSRN can help in this regard, but it is critical to set up new observation sites to continuously observe K↓,d to 
reduce sampling biases, especially in tropical regions where K↓,d would have a stronger influence on the terrestrial 
carbon, energy, and water cycles23.

Usage Notes
The BaRAD dataset35 developed here performs well when compared to the GEBA dataset and captures the sea-
sonal, latitudinal, and long-term trends in K↓ and K↓,d. However, the dataset can be affected by biased sampling 
in the GEBA dataset. The GEBA dataset is overrepresented in the northern hemisphere, especially in Europe and 
China10,28. A second source of bias is associated with the lack of training data over ocean surfaces. Finally, polar 
regions are under-sampled by GEBA as noted above. We urge caution when using this dataset over polar regions 
and ocean surfaces. For land grids in the southern hemisphere, although there are many observations for K↓, there 
are fewer stations with K↓,d measurements. Even though Fig. 5 suggests that the BaRAD K↓,d has less bias than the 
MERRA-2 dataset for sites not ‘seen’ by the bias-correction algorithm, when possible, we suggest independent 
validation of the BaRAD K↓,d data before its applications for southern hemisphere land grids. For basic visualiza-
tion, we have also developed a Google Earth Engine41 web application (https://yceo.users.earthengine.app/view/
barad), that will allow one to download the time series of monthly diffuse and direct beam radiation for any grid. 
A summary of the datasets compared in the present study are given in Table S2. For a comprehensive comparison 
of reanalysis datasets that archive K↓,d, see Chakraborty & Lee10.

Code availability
The scripts used to generate the BaRAD dataset are available in this GitHub repository: https://github.com/TC25/
BaRAD/tree/main/Scripts.
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