
Heliyon 10 (2024) e28822

Available online 30 March 2024
2405-8440/© 2024 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Research article 

Preserving multi-dimensional information: A hypersphere method 
for parameter space analysis 

Nicolas A.C. Davey *, J. Geoffrey Chase , Cong Zhou , Liam Murphy 
University of Canterbury, New Zealand   

A R T I C L E  I N F O   

Keywords: 
Cardiovascular 
Hypersphere 
Dimensionality 
Parameter space analysis 
Visualisation 

A B S T R A C T   

Background: Physiological modelling often involves models described by large numbers of vari-
ables and significant volumes of clinical data. Mathematical interpretation of such models 
frequently necessitates analysing data points in high-dimensional spaces. Existing algorithms for 
analysing high-dimensional points either lose important dimensionality or do not describe the full 
position of points. Hence, there is a need for an algorithm which preserves this information. 
Methods: The most-distant uncovered point (MDUP) hypersphere method is a binary classification 
approach which defines a collection of equidistant N-dimensional points as the union of hyper-
spheres. The method iteratively generates hyperspheres at the most distant point in the interest 
region not yet contained within any hypersphere, until the entire region of interest is defined by 
the union of all generated hyperspheres. This method is tested on a 7-dimensional space with up 
to 35.8 million points representing feasible and infeasible spaces of model parameters for a 
clinically validated cardiovascular system model. 
Results: For different numbers of input points, the MDUP hypersphere method tends to generate 
large spheres away from the boundary of feasible and infeasible points, but generates the greatest 
number of relatively much smaller spheres around the boundary of the region of interest to fill 
this space. Runtime scales quadratically, in part because the current MDUP implementation is not 
parallelised. 
Conclusions: The MDUP hypersphere method can define points in a space of any dimension using 
only a collection of centre points and associated radii, making the results easily interpretable. It 
can identify large continuous regions, and in many cases capture the general structure of a region 
in only a relative few hyperspheres. The MDUP method also shows promise for initialising 
optimisation algorithm starting conditions within pre-defined feasible regions of model parameter 
spaces, which could improve model identifiability and the quality of optimisation results.   

1. Introduction 

Physiological modelling often creates models described by relatively large numbers of variables and/or data from various clinical 
measurements. Frequently it is advantageous to represent this data as points in a high-dimensional space, to enable efficient math-
ematical analysis. However, such high-dimensional points are difficult to intuitively understand or visualise when straightforward 
plotting exceeds three dimensions. 
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Dimension reduction methods, such as principal component analysis (PCA) [1] or T-Distributed Stochastic Neighbour Embedding 
(t-SNE) [2], can ameliorate the issue, but can struggle with nonlinear system dynamics and may reduce dimensionality along com-
binations of variables which are not physiologically meaningful. Similarly, when large datasets are considered, clustering algorithms, 
such as k-means clustering [1], can show where many points lie or how they are grouped, but do not eliminate the issue of dimen-
sionality for intuitively understanding the layout of points. Parallel coordinate plots [3,4] can visualise high-dimensional data, but 
distort the view of the parameter space and can quickly become cluttered with multiple data points. Both of these characteristics make 
intuitive interpretation of lager patterns within the parameter space a significant challenge with such plots. Thus, a reliable method for 
extracting useful and intuitive information about the distribution of large numbers of high-dimensional points is needed to interpret 
patterns and correlations in such datasets, and has been identified as a gap in parameter space analysis research [5]. 

Several methods have been developed with this aim in mind. Glyph-based visualisations [6] can extend into higher dimensions, but 
do not scale reliably when numerous additional dimensions require visualisation. Evers and Linsen [7] propose a method of visualising 
high-dimensional parameters with interactive hyper-slicer visualisations. While this presents several advantages over existing 
methods, users can still miss key information if the parameter space does not neatly align with the ‘slices’ being used to visualise it. The 
hyper-slicer method is also noted to struggle with higher-dimensional parameter spaces due to computational load. Region-growing 
approaches [8] provide a means of defining a space in its full dimensionality, but due to their potential geometric complexity 
struggle to add intuition to the layout of a parameter space without further processing. 

The three-chamber model (3CM) is a cardiovascular model representing the cardiovascular system as three elastic chambers 
connected via flow resistances [9–12]. Due to its highly simplified construction compared to the full scope of the cardiovascular system 
and other cardiovascular models [13–17], the 3CM can simulate the major dynamics of cardiovascular pressures and flows using only 7 
input parameters, allowing it to describe cardiovascular states with low computational load. However, 7 variables remains beyond 
easy visualisation, and there is some parameter trade-off [18], even if the 3CM is one of the simplest physiologically relevant car-
diovascular system models [19]. 

Identifying models with parameter trade-off and relatively limited data requires regularisation to reliably implement optimisation 
algorithms such as gradient descent or Newton’s method. Newer approaches can use machine learning methods to identify complex 
models [20–22]. However, clinical human data can be relatively scarce compared to the potential number of variable value combi-
nations, meaning training such machine learning algorithms can be difficult or may be incomplete. In addition, accurate labelling of 
human data can be unrealistic in large volumes. 

One method to avoid this issue is to use the model itself to generate large amounts of synthetic data with automated ground-truth 
labelling. The synthetic data can be used to train machine learning methods, such as support vector machines, before refining them 
with scarcer human data. This approach has been successfully employed in nonlinear structural health monitoring applications and 
could be relevant to similarly nonlinear physiological models [20]. Using the model to generate synthetic training data requires 
extensive offline simulation, but does not impact efficiency once training is complete. To ensure accuracy in this approach, a reliable 
method for analysing the distribution and structure of synthetic data is essential to refine and optimise its use. 

In particular, synthetic data based on random selection or chosen from a grid of parameter value combinations may produce model 
results which are not feasible or realistic. Thus, there would arise synthetic data creating feasible and infeasible regions of model 
parameter combinations, which in themselves shed insight into model structure and function. As noted, numerous methods exist for 
analysing the distribution of points in high-dimensional space, but no existing method provides insight into the groupings of points in 
their full high-dimensional state. 

This research explores a novel method for extracting useful information about the groupings of high-dimensional points, in the 

Fig. 1. The three-chamber cardiovascular model. Figure taken from Ref. [10].  
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context of analysing physiologically feasible and infeasible model parameter inputs to the 3CM. The goal is to define the feasible and 
infeasible parameter value spaces to provide optimal starting point selections for standard optimisation-based system identification of 
the model, and to potentially aid machine learning based identification using support vector machines (or similar). 

2. Methods 

Simulating the 3CM with different input combinations always yields an output. However, it is necessary to distinguish between 
inputs resulting in physiologically feasible outputs, and those which do not. This differentiation creates feasible and infeasible 7- 
dimensional (7D) parameter spaces. 

2.1. Model description 

The 3CM (Fig. 1) describes the circulatory system as a series of elastic chambers representing the heart (left ventricle/LV), arteries 
(aorta), and veins (vena cava). Pressure in the arterial and venous chambers are described using a linear relationship between the 
stressed blood volume in the chamber and a constant chamber elastance (E). 

Pa(t)=Ea ∗ SBVa(t) (1)  

Pv(t)=Ev ∗ SBVv(t) (2) 

An additional time-varying elastance term is used to describe the cardiac chamber, to account for the heart’s ability to sponta-
neously contract and relax. 

Ph(t)= e(t) ∗ Eh ∗ SBVh(t) (3) 

Blood flow from one chamber to the next is described using an Ohm’s Law relationship between the pressure in the respective 
chambers to describe the resistance (R) to flow between them. Flow into, and out of, the cardiac chamber is restricted by cardiac valves 
represented in the 3CM as two ideal diodes, shown in Fig. 1 and represented by the Heaviside function H 

Qc(t) =
Pa(t) − Pv(t)

Rc
(4)  

Qi(t)=H(Pv(t) − Ph(t)) ∗
Pv(t) − Ph(t)

Ri
(5)  

Qo(t) =H(Ph(t) − Pa(t)) ∗
Ph(t) − Pa(t)

Ro
(6) 

Finally, the total stressed blood volume (SBV) in the circulation is assumed to remain constant throughout on cardiac cycle, with 
blood either flowing from one chamber to the next or accumulating in a chamber causing an associated increase in pressure [9–12]. 

SBVh(t)+ SBVa(t) + SBVv(t) = SBV (7) 

Thus, given the parameter set p = {Ea, Ev, Eh, Ri, Ro, Rc, SBV} the 3CM can be used to simulate pressure and volume throughout the 
systemic circulation. 

Detailed model equations can be found in references [9,10,12,18,23]. 

2.2. Data generation and pre-processing 

To simulate a full range of cardiovascular states, a set of potential values for each 3CM input parameter was determined between a 
physiologically informed maximum value based on prior experience in identifying values from clinical data [12,23–25], and a min-
imum value of zero. Each parameter was also given a step size, to determine the granularity of analysis. To avoid physiologically 
meaningless input values of zero, the step size was used as the minimum value for each parameter. The stepped 7 input parameter 
values represent points in a 7D grid. 

Table 1 
Maximum values used for each parameter, with example step size and minimum values.  

Parameter Maximum Step Size Minimum 

Eh (mmHg ml− 1) 3 0.5 0.5 
Ea (mmHg ml− 1) 3 0.5 0.5 
Ev (mmHg ml− 1) 0.5 0.1 0.1 
Ri (mmHg s ml− 1) 1 0.1 0.1 
Ro (mmHg s ml− 1) 0.1 0.1 0.1 
Rc (mmHg s ml− 1) 2 0.1 0.1 
SBV (ml) 200 50 50  
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With all potential parameter values established, each combination is input into the 3CM and run for 25 cardiac cycles to allow the 
model to reach steady state. The model is run using a cardiac driver function, describing the time-varying elastance of the cardiac 
chamber, derived from pressure and volume data obtained from porcine experimental data [10]. After simulation, each combination of 
parameter values yields a set of arterial and venous pressure waveforms, which are assessed as either clinically feasible or infeasible. 
An example set of parameters used in this analysis are shown in Table 1, and a complete list of step sizes alongside the total number of 
generated points is included in Table 2. The feasibility criteria are shown in Table 3 and were created in consultation with ICU Senior 
Specialists at Christchurch Hospital, Christchurch, New Zealand. 

In Table 3, arterial pressure (Pa) refers to the pressure in the Aorta chamber, and likewise venous pressure (Pv) refers to the pressure 
in the Vena Cava chamber. Pulse pressure (PP) is thus defined: 

PP=max(Pa) − min(Pa) (8)  

And contractility (C) is defined: 

C=max(∇Pa) (9) 

Finally, the full set of 3CM equations for simulation are found in Refs. [9,10]. 
Once each input point was labelled as feasible or infeasible using the criteria in Table 3, the grid of input points was scaled by the 

step size along each axis, so the distance between points in all seven axes was 1. This scaling ensured equal weight for all parameters in 
distance calculations used in the algorithm presented in the next section, and enabled the input parameter values to be stored as 
unsigned integers to make efficient use of memory. 

2.3. Most-distant uncovered point (MDUP) hypersphere method 

The hypersphere method defines a set of high-dimensional points as the union of the volume contained by a collection of 
hyperspheres. Because a hypersphere can be defined purely as a centre and a radius, its properties can be easily understood in a space 
of any dimension. Therefore, defining the feasible and infeasible spaces as a collection of hyperspheres can grant insights into the 
structure of the space other methods do not provide. 

The Most-Distant Uncovered Point (MDUP) hypersphere method simultaneously fills the region of interest with hyperspheres and 
monitors which points are ‘covered’ and ‘uncovered’ by the union of the volumes of all created hyperspheres. Following discussion will 
focus on filling the infeasible space for demonstration purposes, but the method is identical when filling the feasible space (also note 
that in this example the feasible and infeasible space sets are complementary, so defining one also defines the other). The method is 
defined by the following steps.  

1. Select a corner point in the infeasible set. This point will be the centre of the first hypersphere.  
2. Calculate the Euclidean distance to the nearest point in the feasible set. This defines the radius of the hypersphere centred on the 

selected point. The equation to calculate the Euclidean distance between two points is defined: 

Table 2 
Step sizes and resulting total number of generated points. Note that the number of feasible points and the number of infeasible points sum to the total 
number of generated points.  

Step Size Generated Points 

Eh Ea Ev Ri Ro Rc SBV Total Points (P) Total Feasible Points 

3
5 

3
5 

0.5
5 

1
6 

0.1
6 

2
6 

200
6 

162,000 6133 

3
6 

3
6 

0.5
6 

1
6 

0.1
6 

2
6 

200
6 

279,936 9620 

3
7 

3
7 

0.5
7 

1
7 

0.1
7 

2
7 

200
7 

823,543 28,811 

3
7 

3
7 

0.5
7 

1
8 

0.1
8 

2
8 

200
8 

1,404,928 51,514 

3
8 

3
8 

0.5
8 

1
8 

0.1
8 

2
8 

200
8 

2,097,152 73,936 

3
8 

3
8 

0.5
8 

1
9 

0.1
9 

2
9 

200
9 

3,359,232 122,098 

3
9 

3
9 

0.5
9 

1
9 

0.1
9 

2
9 

200
9 

4,782,969 168,259 

3
9 

3
9 

0.5
9 

1
10 

0.1
10 

2
10 

200
10 

7,290,000 262,507 

3
9 

3
9 

0.5
10 

1
10 

0.1
10 

2
10 

200
10 

8,100,000 289,853 

3
10 

3
10 

0.5
10 

1
10 

0.1
10 

2
10 

200
10 

10,000,000 351,773 

3
11 

3
11 

0.5
11 

1
11 

0.1
11 

2
11 

200
11 

19,487,171 687,688 

3
12  

3
12  

0.5
12  

1
12  

0.1
12  

2
12  

200
12  

35,831,808 1,265,034  
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d =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1
(pi − qi)

2

√
√
√
√ (10)  

where N is the number of dimensions with N = 7 in this case, and p and q are the N-dimensional vectors representing the two points. In 
this example the point p represents the current centre point, and q is a point in the feasible set. 

The nearest point is the point q in the feasible set which produces the smallest value of d for the current centre point p. The distance 
d to the nearest point defines the radius r of the hypersphere: 

rr(p)=minqinFd(p, q) (11)    

3. Mark all infeasible (feasible) points in the volume of this hypersphere as ‘covered’ and remove them from the set of infeasible points 
remaining. A point u is considered ‘covered’ if it satisfies: 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1
(pi − ui)

2

√
√
√
√ ≤ r (12)  

given the values of p and r from Step 2.  

4. Select from the remaining ‘uncovered’ infeasible points, the infeasible point with the greatest Euclidean distance from the current 
centre point (Eq. (3)). This point will be set as the centre point p of the next hypersphere.  

5. Repeat steps 2–4 until all infeasible points are marked as covered, and the full infeasible region is defined by the union of the set of 
created hyperspheres. 

An example of this method for an easily visualised 2D case is shown in Fig. 2. This example uses two discrete parameters ranging 
from 1 to 12, with a step size of 1. The feasible and infeasible regions are arbitrarily defined for this example. 

2.4. Computational experiment setup 

Using data generated from the 3CM, the MDUP method was run on a local machine running Microsoft Windows 10 Enterprise with 
a i7-10700 CPU (2.90 GHz) and 64 GB of RAM. Code was written and executed in MATLAB 2022a. 

2.5. Analyses 

The total number of input points P is given by 

P=
∏N

i=1

(
ai − bi

si

)

(13)  

where a is the vector of maximum parameter values (Table 1), b is the vector of minimum parameter values, s is the vector of parameter 
step sizes, and N is the number of input parameters/dimensions (N = 7 in this case). 

Using data generated from the 3CM generates matrices with N columns and P rows. The value of P depends entirely on the res-
olution of the step size used when working with fixed maximum and minimum parameter values, as shown in Table 2. The results for 
the infeasible and feasible regions are examined for 12 different combination of step sizes given in Table 2. Results are presented in 
increasing order of size, followed by a computational time sensitivity analysis. To demonstrate the algorithm, both the feasible and 
infeasible spaces were examined. This analysis thus shows the sensitivity analysis across the number of points with changing step sizes 
and the resulting size of the data set. 

As the MDUP method creates hyperspheres defined by radius, Table 4 shows the number of points contained inside the volumes of 
7D hyperspheres with different radii for reference. 

Table 3 
Requirements for output to be deemed physiologically feasible.  

Parameter Requirements for Feasibility 

Maximum Arterial Pressure <200 mmHg 
Minimum Arterial Pressure <20 mmHg 
Maximum Venous Pressure <20 mmHg 
Maximum Pulse Pressure <200 mmHg 
Minimum Pulse Pressure >20 mmHg 
Contractility >50 mmHg ml− 1  
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Fig. 2. An example of the MDUP Method in a 2D grid.  
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3. Results 

The very low percentage of feasible values in Table 2 is uniquely interesting in its own right from a system identification and 
physiological modelling perspective, as all input parameters were within feasible ranges based on identified values found in prior 
research using this model [9,10,12,18,23]. It thus indicates the need for defining a feasible region well to pick a better or best starting 
point for any optimisation and identification problem. Further, it shows only a relatively limited number of model generated points 
(<3.5% in this case) might be required for any form of machine learning system to be trained to identify model parameters from 
measured, real data, which is important to know in terms of size and ensuring the synthetic data spans the feasible region well. 

The number of hyperspheres generated and their radii are shown in Tables 5 and 6. The minimum possible radius is 1, comprising 
15 combinations of parameter values per Table 4. The step sizes used to generate these values are provided in Table 2 based on the 
cases defined. The times taken for the algorithm to complete with different numbers of total input points are shown in Fig. 3, alongside 
least squares regression approximations. 

The cumulative sum of the number of covered points added by each hypersphere as they were generated are shown in Figs. 4 and 5, 
for the infeasible and feasible space, respectively. When hyperspheres are sorted in the order they were generated, it is equivalent to 
the total number of points contained in the union of all generated hyperspheres (left). The cumulative sum of the number of covered 
points added by each hypersphere in descending order of radius is also shown right. Figs. 6 and 7 outline the number of covered points 
added by the 50 largest-radius spheres when defining the infeasible and feasible space, respectively. The centre points of the largest 10 
spheres are presented in Tables 7–9. 

4. Discussion 

4.1. Hypersphere size distribution 

A median and mode of the hypersphere radii of 1 suggests a majority of the infeasible region was covered by a small number of 
large-radius hyperspheres. Tables 5 and 6 show the median and mode hypersphere radii are consistently the minimum possible value, 
indicating most generated hyperspheres were likely clustered around the border of the feasible region, adding only a few points at a 
time. Fig. 4 shows the largest 14% of spheres cover more than 90% of all points, while Fig. 6 further reinforces the dominance of the 
few largest spheres, showing a rapid decrease in the number points added after only the largest 50 spheres. 

However, is worth noting a point was not considered added if it was already covered by a previously generated hypersphere. In 
many cases, this approach reduces the apparent contribution of a hypersphere if it directly borders (and therefore overlaps) an existing 
hypersphere, and thus adds fewer points. For this reason, the algorithm starts each hypersphere at the farthest distance from prior 
created hyperspheres to try and find the biggest hyperspheres first, thus reducing the number of 7D points or parameter sets to be 
examined more rapidly. 

Fig. 4 highlights there is no guarantee of generating hyperspheres in order of importance or size with this approach. Even after 
several hundred spheres had been generated, there are still instances of some spheres being generated with a relatively larger radius 
and adding numerous points. However, the first spheres cover a measurable majority of points, and modifying the algorithm to seek out 
the largest spheres first would add significant complexity for only modest gain in speed of coverage. Considering how to parallelise the 
algorithm would be a far more contributory area of endeavour. 

The presence of some very large hyperspheres also suggests the feasible region in this example is relatively concentrated, rather 
than evenly spread throughout the 7D space. This outcome is expected, as the three-chamber model has been shown to be practically 
identifiable when all outputs are known [9]. Equally, the number of feasible points is consistently <3.5% of the total number of points, 
which, as noted, is an interesting physiological model result, but also shows the concentration of feasible points is relatively low 
compared to infeasible points. This latter aspect is evident in the low slopes and rise of feasible points covered in Fig. 5. 

When defining the feasible set, it is noteworthy the hyperspheres will tend to initially define the boundary of the set. Beginning on 
one edge of the feasible set, the first generated hypersphere will always have a radius of 1. Likewise, the second hypersphere will also 

Table 4 
Number of uniform points in a 7D discrete grid 
contained within a hypersphere of a given radius.  

Radius Contained Points 

0 1 
1 15 
2 953 
3 12,435 
4 88,273 
5 394,691 
6 1,405,311 
7 3,859,231 
8 8,284,339 
9 13,585,523 
10 17,474,275  

N.A.C. Davey et al.                                                                                                                                                                                                    



Heliyon 10 (2024) e28822

8

always have a radius of 1, as it is centred on what must be another boundary point to be most distant. Consequently, the hyperspheres 
defining the feasible region, at least for this example, will often be predominantly very small-radius spheres, even more so than the 
infeasible region. Again, this outcome reflects the relatively far smaller number of feasible points. 

More specifically, this tendency towards small-radius spheres can be seen in Fig. 5. When unsorted, the number of points added by 
each sphere is linear, for all numbers of input parameters. When sorted by radius, the generated curve is piecewise linear, indicating a 
small discrete number of possible point additions by each sphere. The noticeably smaller mean and maximum radii shown in Table 6 
compared to the infeasible spheres shown in Table 5 reinforces that a higher proportion of spheres are smaller. 

One benefit of defining the feasible set is the mean of the hypersphere centres can define a starting point for optimisation methods 
to improve their efficiency and reliability. Gradient descent methods are just one common example of optimisation algorithms which 
can improve in both runtime and reliability when given starting points more closely resembling the actual global minimums. 

Table 5 
Number of hyperspheres generated to define the infeasible space, and their radii for different numbers of input points, where 1 h is 3600s for 
reference.   

Input Points Generated Hyperspheres 

Total Points 
(P) in Table 2 

Total Feasible 
Points in  
Table 2 

MDUP 
Runtime 

Number 
Generated 

Maximum 
Radius 

Minimum 
Radius 

Mean 
Radius 

Median 
Radius 

Mode 
Radius 

Hyperspheres 
Defining 
Infeasible Space 

162,000 6133 (3.79%) 8.2 s 2211 5.83 1 1.27 1 1 
279,936 9620 (3.44%) 25.6 s 3379 6.56 1 1.26 1 1 
823,543 28,811 (3.50%) 179.9 s 8592 7.84 1 1.23 1 1 
1,404,928 51,514 (3.67%) 491.9 s 13,917 8.19 1 1.21 1 1 
2,097,152 73,936 (3.53%) 559.4 s 19,053 9.22 1 1.21 1 1 
3,359,232 122,098 

(3.63%) 
2403.8 s 29,740 9.17 1 1.19 1 1 

4,782,969 168,259 
(3.52%) 

4365.7 s 38,478 9.85 1 1.18 1 1 

7,290,000 262,507 
(3.60%) 

3.4 h 56,866 12 1 1.17 1 1 

8,100,000 289,853 
(3.58%) 

4.0 h 60,983 10.91 1 1.17 1 1 

10,000,000 351,773 
(3.52%) 

4.6 h 71,271 11.36 1 1.17 1 1 

19,487,171 687,688 
(3.53%) 

19.4 h 126,608 12.92 1 1.16 1 1 

35,831,808 1,265,034 
(3.53%) 

51.9 h 210,433 13.75 1 1.15 1 1  

Table 6 
Number of hyperspheres generated to define the feasible space, and their radii for different numbers of input points, where 1 h is 3600s for reference.   

Input Points Generated Hyperspheres 

Total Points 
(P) in Table 2 

Total Feasible 
Points in  
Table 2 

MDUP 
Runtime 

Number 
Generated 

Maximum 
Radius 

Minimum 
Radius 

Mean 
Radius 

Median 
Radius 

Mode 
Radius 

Hyperspheres 
Defining 
Feasible Space 

162,000 6133 (3.79%) 8.9 s 1926 1.41 1 1.01 1 1 
279,936 9620 (3.44%) 22.7 s 3023 1.73 1 1.01 1 1 
823,543 28,811 (3.50%) 174.0 s 8037 2 1 1.02 1 1 
1,404,928 51,514 (3.67%) 491.4 s 13,645 2.24 1 1.02 1 1 
2,097,152 73,936 (3.53%) 1004.9 s 18,981 2.24 1 1.02 1 1 
3,359,232 122,098 

(3.63%) 
2586.7 s 30,538 2.24 1 1.02 1 1 

4,782,969 168,259 
(3.52%) 

4906.8 s 40792 2.45 1 1.02 1 1 

7,290,000 262,507 
(3.60%) 

3.0 h 61,084 2.65 1 1.03 1 1 

8,100,000 289,853 
(3.58%) 

3.7 h 66,639 2.45 1 1.03 1 1 

10,000,000 351,773 
(3.52%) 

5.4 h 78,779 2.45 1 1.03 1 1 

19,487,171 687,688 
(3.53%) 

18.3 h 143,526 3 1 1.03 1 1 

35,831,808 1,265,034 
(3.53%) 

59.1 246,027 3.16 1 1.03 1 1  
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4.2. Computational effort and sensitivity analysis 

Fig. 3 (left) shows a strong quadratic behaviour over the range of data parameter sets or points examined for the infeasible region. 
The loglog graph in Fig. 3 (right) shows a strong linear relationship between the log of the total number of input points and the time 
taken for the algorithm to complete. This power law related behaviour matches expectations, and allows the computational time to be 
estimated, noting the use of compiled programming languages or parallelisation would add significant speed over the experimental 
computational set up used. Equally, the use of MATLAB on a standard desktop and Fig. 3 show relatively large numbers of 7D 
parameter sets can be examined in one day or less. Adding more RAM might also speed up the computational time as processing power 
was not 100% utilised during these case runs. 

Fig. 3. Measured times to fill the infeasible space. Left: measured time taken for MDUP method to complete for different numbers of total points, 
with the corresponding polynomial to the linear approximation shown on loglog plot. Right: loglog of time taken for the MDUP method to complete 
with different numbers of input points, with a linear approximation. Top: defining the infeasible space. Bottom; defining the feasible space. 
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4.3. Method variants 

Some alternative hypersphere methods were considered, but each had weaknesses not held by the MDUP method. These variants 
are delineated to show the potential limitations or advantages of the method as presented in the Methods. Following discussion will 
focus on filling the infeasible space, but the method is identical when filling the feasible space. 

A Complete Implementation variant iterates through all infeasible points and calculates the minimum Euclidean distance from 
each of those points to the feasible set. This approach fills the entire infeasible space with hyperspheres. The hyperspheres are then 
sorted in descending order of radius, and then checked in order to see whether they cover additional points. These steps are outlined.  

1. For every infeasible point, calculate the Euclidean distance to the nearest point in the feasible set, creating a hypersphere for every 
infeasible point. At this stage the points covered by the hypersphere are not considered.  

2. Mark each point in the infeasible space as ‘uncovered’.  
3. Sort the hyperspheres in descending order of radius.  
4. For each sorted hypersphere, check if it contains any ‘uncovered’ points. If so, mark those points as ‘covered’ and remove them from 

the list of remaining uncovered infeasible points. If the hypersphere does not contain any uncovered points, remove it from the list 
of hyperspheres. 

Just as with the presented MDUP method, the result of this process is a collection of hyperspheres which cover the entire infeasible 
space. However, this approach begins by generating a hypersphere for all points in the infeasible space. The comprehensiveness this 
provides may provide additional insight in some applications, and allows a user to search for all possible largest hyperspheres with 
certainty of finding them. 

This method is extremely consistent and allows for each hypersphere to easily be considered individually. In addition, because the 
creation of each hypersphere is independent in this method, the complete method is the only method able to be easily implemented 

Fig. 4. Infeasible space: Cumulative sum of the number of covered points added by each hypersphere, when defining the infeasible space, in order of 
generation (solid blue), and cumulative sum of the number of covered points added by each hypersphere, in descending order of radius (dotted red). 
Each plot represents a test of the algorithm with different numbers of inputs. 
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Fig. 5. Feasible space. Cumulative sum of the number of covered points added by each hypersphere, when defining the feasible space, in order of 
generation (solid blue), and cumulative sum of the number of covered points added by each hypersphere, in descending order of radius (dotted red). 
Each plot represents a test of the algorithm with different numbers of inputs. 

Fig. 6. Infeasible space. Number of covered points, when defining the infeasible space, added by the 50 largest-radius hyperspheres, in descending 
order of radius. From left to right: the algorithm with 0.16, 8.10, and 35.83 million total input points. 
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with parallel computing processes. Unfortunately, due to the large number of generated hyperspheres this method is extremely 
computationally time-consuming (taking over 560 s to complete for 162,000 input points – more than 68 times slower than the MDUP 
method) even when utilising parallelisation, making it incredibly expensive for large high-dimensional data sets. 

To reduce computational load lower than the MDUP method, the Next Uncovered Point (NUP) variant functions similarly to the 
MDUP method, but circumvents the distance calculations required to find the most distant uncovered point. Instead, this method 
iterates through all points in the same manner as the Complete Implementation variant, but skips points which are covered by an 
existing hypersphere. It is defined.  

1. Start with a corner point in the infeasible set.  
2. Calculate the Euclidean distance to the nearest point in the feasible set to find the radius of the hypersphere centred on that point.  
3. Mark all points contained within this hypersphere as ‘covered’ and remove them from the remaining list of uncovered infeasible 

points.  
4. In sequence move through infeasible points from the current centre point until one is reached that is uncovered. This will be the 

centre point of the next hypersphere.  
5. Repeat steps 2–4 until all infeasible points are marked as covered. 

This variant struggles to create spheres once it moves ‘above’ the feasible set. Its inability to select distant points creates a layering 
effect of hyperspheres, which significantly hinders its performance. Continually updating which points are covered and uncovered also 
means this variant is not easily parallelised. 

Fig. 7. Feasible space. Number of covered points, when defining the feasible space, added by the 50 largest-radius hyperspheres, in descending 
order of radius. From left to right: the algorithm with 0.16, 8.10, and 35.83 million total input points. 

Table 7 
Centre points of largest 10 spheres for 0.16 million input points (Infeasible). Parameter values are shown as their true (prior to scaling) value.  

Input Parameter Sphere Number Sphere Centre Means 

1 2 3 4 5 6 7 8 9 10 Largest 10 Spheres All Spheres 

Eh (mmHg ml− 1) 3.00 1.80 0.60 1.20 3.00 3.00 0.60 0.60 3.00 3.00 1.98 1.68 
Ea (mmHg ml− 1) 0.60 0.60 0.60 0.60 0.60 0.60 0.60 1.20 3.00 3.00 1.14 1.62 
Ev (mmHg ml− 1) 0.50 0.10 0.10 0.10 0.50 0.10 0.50 0.10 0.10 0.10 0.22 0.33 
Ri (mmHg s ml− 1) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.00 0.50 
Ro (mmHg s ml− 1) 0.05 0.10 0.10 0.02 0.10 0.02 0.03 0.10 0.02 0.10 0.06 0.05 
Rc (mmHg s ml− 1) 0.3 2.0 0.3 0.3 0.3 2.0 2.0 2.0 0.3 0.3 1.00 1.17 
SBV (ml) 200 33 133 33 33 33 33 200 33 33 76.67 116.67 
Radius 5.83 5.74 5.66 5.48 5.48 5.10 5.10 4.80 4.69 4.69   
No. points added 16,686 9900 8905 8115 6674 6556 6065 5423 5166 4822    
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Table 8 
Centre points of largest 10 spheres for 8.10 million input points (Infeasible). Parameter values are shown as their true (prior to scaling) value.  

Input Parameter Sphere Number Sphere Centre Means 

1 2 3 4 5 6 7 8 9 10 Largest 10 Spheres All Spheres 

Eh (mmHg ml− 1) 0.33 0.33 3.00 0.33 3.00 0.33 3.00 3.00 0.33 0.33 1.40 1.67 
Ea (mmHg ml− 1) 0.33 0.33 0.33 0.33 0.33 3.00 0.33 0.33 0.33 2.00 0.77 1.63 
Ev (mmHg ml− 1) 0.40 0.10 0.05 0.50 0.05 0.05 0.50 0.50 0.05 0.50 0.27 0.24 
Ri (mmHg s ml− 1) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.4 1.0 0.94 0.55 
Ro (mmHg s ml− 1) 0.10 0.01 0.10 0.10 0.01 0.10 0.10 0.10 0.10 0.10 0.08 0.06 
Rc (mmHg s ml− 1) 2.0 2.0 2.0 0.2 0.2 0.2 0.2 2.0 0.2 0.2 0.92 1.10 
SBV (ml) 20 20 20 200 20 20 20 200 20 20 56.00 110.00 
Radius 10.91 10.77 10.34 10.20 10.10 9.95 9.38 9.33 9.11 9.06   
No. points added 730,271 435,230 434,422 377,523 323,675 323,275 297,336 296,309 286,810 210,173    

N
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Table 9 
Centre points of largest 10 spheres for 35.85 million input points (Infeasible). Parameter values are shown as their true (prior to scaling) value.  

Input Parameter Sphere Number Sphere Centre Means 

1 2 3 4 5 6 7 8 9 10 Largest 10 Spheres All Spheres 

Eh (mmHg ml− 1) 0.25 0.25 3.00 0.25 0.25 3.00 0.25 2.25 3.00 3.00 1.55 1.43 
Ea (mmHg ml− 1) 0.25 0.75 0.25 0.25 0.25 0.25 3.00 0.25 0.25 0.25 0.57 4.40 
Ev (mmHg ml− 1) 0.04 0.50 0.04 0.04 0.50 0.50 0.04 0.50 0.50 0.25 0.29 0.27 
Ri (mmHg s ml− 1) 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 0.54 
Ro (mmHg s ml− 1) 0.01 0.10 0.10 0.10 0.10 0.01 0.08 0.10 0.10 0.01 0.07 0.05 
Rc (mmHg s ml− 1) 2.0 0.2 1.3 0.2 1.3 0.2 0.2 2.0 2.0 0.2 0.95 0.98 
SBV (ml) 17 17 17 200 200 200 17 17 200 17 90.00 106.67 
Radius 13.75 13.11 13 12.57 12.17 12.12 12.04 11.83 11.27 11.27   
No. points added 4,705,625 4,412,300 1,361,791 1,190,464 878,193 791,349 750,731 739,557 729,528 721,374    

N
.A
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4.4. Limitations 

Each iteration of the MDUP method relies on the updated list of covered and uncovered points from the previous iteration. The 
method is thus not easily parallelised. This issue significantly slows its runtime, and negates much of the advantage of modern 
computing devices. As noted, the use of C or a computer with more RAM could add significant computation speed, where compiled C 
code is often 20-100x faster than MATLAB. 

The MDUP method can generate different results based on the selected starting point. Although the distribution of radii and number 
of spheres tends to be minimally affected as a whole, different starting points will generate completely different sets of hyperspheres to 
cover the infeasible space. Thus, there may, for some problem sets be specific advantage in any first assessment of a larger feasible or 
infeasible region starting point. This outcome highlights the point that while the method is general, the outcomes are problem specific. 

Both the MDUP method and its Complete Implementation variant are currently not optimised. Different programming languages, 
increased computing power, and superior programmers could certainly improve performance. 

Finally, in this work the method was successively run to observe the influence of additional input points on computational load and 
runtime. In practice, this method would serve as a one-time computation with an application-dependent granularity, and researchers 
may decide to prioritise the comprehensiveness of the complete implementation in exchange for a longer runtime. 

4.5. Comparative analysis to accepted methods 

The MDUP hypersphere method is able to provide information about the structure of data in its full dimensional state, making it 
superior to PCA and t-SNE analyses in this regard. It also does not rely on a user-defined number of centroids, making it less user- 
dependent than k-means clustering. The MDUP method also scales readily into any number of dimensions, does not require the 
parameter space to align in specific ways, and is geometrically simple, creating advantages over glyph-based visualisations, hyper- 
slicers, and region-growing algorithms respectively. 

5. Conclusions 

A novel method for analysing the structure and shape of high-dimensional points using hyperspheres was introduced, in the context 
of analysing physiologically feasible inputs to the three-chamber cardiovascular model. The method is able to provide information 
about the distribution and structure of points in a high-dimensional space, without requiring user input or sacrificing information 
through dimensionality reduction. The full significance of the specific groupings and structure of the hypersphere is not yet entirely 
understood, but could contain further insights into the structure of high-dimensional point sets. An understanding of the implications 
of sphere location and size could assist in initial optimisation method parameters. Finally, while the algorithm is general to any size 
space, the results here are specific to this problem case, where this research also presents both method variants, as well as suggesting 
the need to parallelise the algorithm. 
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