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Abstract: Photoluminescent divinylbipyrroles were synthesized from 3,3′,4,4′-tetraetyl-2,2′-
bipyrrole-5,5′-dicarboxaldehyde and activated methylene compounds via aldol condensation.
For mechanistic clarity, molecular structures of Meldrum’s acid- and 1,3-dimethylbarbituric
acid-derived divinylbipyrroles were determined by single-crystal X-ray diffraction. Photoluminescent
properties of the synthesized divinylbipyrroles in dichloromethane were found to be dependent on
the presence of electron withdrawing groups at the vinylic terminal. The divinylbipyrroles derived
from malononitrile, Meldrum’s acid, and 1,3-dimethylbarbituric acid showed fluorescent peaks at
553, 576, and 602 nm respectively. Computational studies indicated that the alkyl substituents on the
bipyrrole 3 and 3′ positions increased energy level of the highest occupied molecular orbital (HOMO)
compared to the unsubstituted derivatives and provided rationale for the bathochromic shift of the
ultraviolet-visible (UV-Vis) spectra compared to the previously reported analogs.

Keywords: photoluminescent bipyrroles; aldol condensation; organic light emitting diodes;
red fluorescence; density functional theory calculation

1. Introduction

Organic photoluminescent materials have attracted much attention in recent years due to
their importance in organic light emitting diodes (OLEDs) [1–5] and chemosensors [6,7]. Recently,
2,2′-bipyrrole (Figure 1A), which is also known as a building block of natural red pigments, has been
extensively studied because of its luminescent properties and applications in the development of
artificial tetrapyrrole and oligopyrrole systems [8–19]. Che et al. have demonstrated that a bipyrrole
can be a good candidate for the development of luminescent materials of OLEDs [20]. A planar
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2,2′-bipyrrole is known to show blue fluorescence upon UV excitation in both solid and solution
state. We recently reported the methodology of tuning the fluorescence wavelength of bipyrrole-based
fluorophores by utilizing their crystal structure and incorporating suitably placed π-extension [21,22].
In our previous study, a highly efficient photoluminescence was achieved (λFL = 578 nm, ΦFL = 88%)
by extending π-conjugation, containing a rigid and flat molecular structure, but unfortunately
this resulted in poor solubility and crystallinity of the compounds. For practical applications,
such as in vivo imaging of a hydrophobic domain of living cells, both longer wavelength fluorescent
properties and good solubility are necessary [23,24]. It has been reported that the introduction
of vinyl groups into bipyrrole or other chromophores can bathochromically shift the absorption
or fluorescence wavelength [25–32]. Furthermore, in synthetic tetrapyrrole chemistry, it has been
established that introduction of ethyl or propyl substituents may effectively improve the solubility in
organic solvents [12,13].

Herein we report synthesis of novel π-extended bipyrrole derivatives 2–4 (Figure 1B) using
activated methylene compounds by means of aldol condensation reaction (Scheme 1), study their
photophysical properties and utilize time-dependent density functional theory (TD-DFT) calculations
to rationalize the desirable bathochromic shifts observed experimentally. It was found that the
introduction of four ethyl groups on the bipyrrole 3 and 3′-positions (Figure 1A) resulted in good
solubility compared with the previously reported 3,3′-free derivatives [22]. The improvement of the
solubility enabled us to obtain single crystals of 3 and 4, suitable for X-ray diffraction analysis. Owing
to the ethyl substituents at the bipyrrole 3,3′-position, the absorption and fluorescence peaks shifted to
the longer wavelength by ca. 20 nm. TD-DFT calculations indicated that the alkyl substituents on the
bipyrrole 3,3′-positions destabilize energy level of the highest occupied molecular orbital (HOMO)
and resulted in decrease in the HOMO-LUMO gap.
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dimethylbarbituric acid, by means of an aldol condensation catalyzed by ammonium acetate  
(Scheme 1) [22]. Crude products were precipitated out from the reaction mixture by the addition of 
water and collected by filtration. The products were purified by column chromatography using a 
neutral alumina and eluted with dichloromethane/acetone (95:5, v/v). Recrystallization of the fraction 
from dichloromethane and methanol afforded analytically pure crystalline solids of 2–4 in 52–80% 
yield. Each of the synthesized compound exhibited good solubility both in dichloromethane and 
chloroform. 

2.2. Nuclear Magnetic Resonance (NMR) Spectroscopy 

NMR spectroscopy supported that synthesized divinylbipyrroles derivative (2–4) have good 
solubility in chloroform. Although 13C NMR spectrum of the previously reported 1,3-dimethylbarbituric 
acid adduct, 4Me could not be obtained because of the poor solubility [22], its analog, 4, afforded 
clear 13C NMR spectrum at similar experimental condition. The 1H NMR spectral studies revealed 
that compounds 3 and 4 have hydrogen bonding between NH and CO. The NH signals of 2–4 were 
observed from 9.5 to 13.7 ppm depending on the functional groups at the vinyl terminal. The large 
difference in the chemical shift of the NH proton can be explained by strength of the intramolecular 
hydrogen bonding. Carbonyl groups in compounds 3 and 4 can participate in the intramolecular 
hydrogen bonding with the NH group and can thus stabilize a seven-membered ring, while cyano 
group in 2, which has a linear geometry, is ineffective for such hydrogen bonding interaction. 
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2. Results and Discussion

2.1. Synthesis

Compound 1 was prepared according to literature method [12]. Novel divinylbipyrroles 2–4
bearing four ethyl groups were synthesized from compound 1 and corresponding activated
methylene compounds, malononitrile, 2,2-dimethyl-1,3-dioxane-4,6-dione (Meldrum’s acid),
and 1,3-dimethylbarbituric acid, by means of an aldol condensation catalyzed by ammonium acetate
(Scheme 1) [22]. Crude products were precipitated out from the reaction mixture by the addition
of water and collected by filtration. The products were purified by column chromatography using
a neutral alumina and eluted with dichloromethane/acetone (95:5, v/v). Recrystallization of the
fraction from dichloromethane and methanol afforded analytically pure crystalline solids of 2–4 in
52–80% yield. Each of the synthesized compound exhibited good solubility both in dichloromethane
and chloroform.

2.2. Nuclear Magnetic Resonance (NMR) Spectroscopy

NMR spectroscopy supported that synthesized divinylbipyrroles derivative (2–4) have good solubility
in chloroform. Although 13C NMR spectrum of the previously reported 1,3-dimethylbarbituric acid
adduct, 4Me could not be obtained because of the poor solubility [22], its analog, 4, afforded clear
13C NMR spectrum at similar experimental condition. The 1H NMR spectral studies revealed that
compounds 3 and 4 have hydrogen bonding between NH and CO. The NH signals of 2–4 were
observed from 9.5 to 13.7 ppm depending on the functional groups at the vinyl terminal. The large
difference in the chemical shift of the NH proton can be explained by strength of the intramolecular
hydrogen bonding. Carbonyl groups in compounds 3 and 4 can participate in the intramolecular
hydrogen bonding with the NH group and can thus stabilize a seven-membered ring, while cyano
group in 2, which has a linear geometry, is ineffective for such hydrogen bonding interaction.
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2.3. Crystal Structure

Compounds 3 and 4 were recrystallized from dichloromethane/methanol and dichloromethane/
acetone, respectively. The Oak Ridge Thermal-Ellipsoid Plot Program (ORTEP) diagrams of compounds
3 and 4, are shown in Figures 2 and 3. Both compounds crystallized in the triclinic space group P-1
and showed highly planar structure in the crystals, which is similar to bipyrrole or bithiophene
analogs [33–35]. Despite this, an extended π-π interaction between bipyrrole rings was interrupted by
the relatively hindered ethyl groups.
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Compound 3 has planar structure and all ethyl groups were located at the same side of the
bipyrrole plane (Figure 2A). The other side interacted with another molecule to form an antiparallel
π-stacked pair. The distance between two mean planes defined by N1, C1, C2, C3, C4, N2, C16, C17,
C18, and C19 was 3.349 Å. The second shortest distance between the mean planes were 4.936 Å, which
means that the ethyl groups served to block the extended π–π interaction (Figure 2B). The closest
interatomic distance between the paired bipyrrole molecules was 3.392 Å (C1 and C3, Figure 2C).
Dihedral angle of C23-O6 . . . H2-N2 was determined to be 1.84, while C8-O2 . . . H1-N1 was 21.44.
This suggests that the latter hydrogen bonding is weaker than the former. Geometry around the
vinyl group tells us that π-conjugation system effectively spreads from one vinyl group to the other.
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The carbon–carbon distances, C5–C6 and C20–C21 were found to be 1.389 and 1.382 Å, respectively.
A. Mendoza and F.-F. Jian independently reported crystal structures of related Meldrum’s acid
adducts [36–38]. In the literature, when a vinyl and a phenyl group twist each other, the carbon–carbon
double bond at the vinyl group becomes shorter (1.33–1.34 Å). In our case however, π-conjugation
system extension was successfully achieved by introducing the vinyl group due to the intramolecular
hydrogen bonding interaction.

In compound 4, the four ethyl groups were located on both sides of the bipyrrole plane (Figure 3A).
The interlayer distance between the mean planes defined by N1, C1, C2, C3, and C4 was determined
to be 3.211 Å, but direct interaction between the pyrrole rings was not observed (Figure 3B). Instead,
there is another intermolecular interaction between a carbonyl group of barbituric unit (O1) and an
electron deficient vinyl group (C9) of the neighboring molecule (Figure 3C) [21,39–41]. Compound 4
also showed strong intramolecular hydrogen bonding between the carbonyl oxygen atom and the
NH groups. In addition, the dihedral angle of C11-O1 . . . H1-N1 were 2.36, which means that 4 was
more planar than 3 in the solid state. This is probably because of the hybridization of the terminal six
membered ring. The vinyl terminal in 3 includes a sp3 carbon while 4 has all sp2 hybridization. Thus,
the hydrogen bonding geometry in 4 becomes nearly flat.
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2.4. UV-Vis Absorption and Photoluminescence

Bipyrrole 2–4 showed large bathochromic shift of absorption and fluorescence compared to
the starting compound 1 and depended on the structure of the terminal substituents. In particular,
compound 4 having the barbituric unit displayed the fluorescence maxima at 602 nm. Absorption
and fluorescence spectra and photophysical parameters are shown in Figures 4 and 5, and Table 1,
respectively. These results suggest that expansion of the π-conjugation system by introduction of the
vinyl groups effectively influenced the absorption and luminescent properties. Interestingly, absorption
and fluorescence maxima of 4 shifted to the longer wavelength compared to the previously reported
analog, 4Me, by ca. 20 nm.

Absolute quantum yield measurements revealed that the cyclic and rigid terminal structure led to
highly efficient photoluminescence (Table 1). Compound 2 showed the lowest quantum yield (5%)
probably because of molecular flexibility. Even though the present compounds have four alkyl groups
on the bipyrrole periphery, they did not influence on the quantum yields negatively. The quantum
yields of compounds 3 and 4 were determined to be 81 and 93%, respectively. These results support
the notion that both a rigid cyclic structure and intramolecular hydrogen bonding play an important
role in achieving the high quantum yield for bipyrrole systems. Although alkyl groups are known to
promote the internal conversion, our present tetraethylbipyrrole system have comparable quantum
yield with the previously reported dialkyl analog such as 4Me.

Table 1. Photophysical parameters for 1–4 and 4Me.

Compounds λAbs (nm) λFL (nm) ΦFL (−)

1 355 414 NA a

2 499, 531 553 0.05
3 555 576 0.81
4 582 602 0.93

4Me [22] 569 578 0.88
a Could not be obtained due to the wavelength limit.
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Figure 5. Fluorescence spectra of 1–4 in dichloromethane. The excitation wavelength was fixed at
365 nm in all scans.

2.5. TD-DFT Calculations

To rationalize the differences observed in the absorption wavelength, TD-DFT calculations
were performed using the Gaussian 09 suite of programs [42]. The initial atomic coordinates for the
compounds are shown in the Supplementary Materials. The structures were optimized and evaluated
using the CAM-B3LYP/6-31G(d) [43] level. The solvent effect was considered in dichloromethane
by the polarizable continuum model using the integral equation formalism variant (IEFPCM) [44].
The calculated absorption maxima are summarized in Table 2. The TD-DFT calculation supported the
absorption spectral difference between 4 and 4Me. On the other hand, calculated optical properties of 2
did not agree the experimental results. Relatively flexible compound 2 can take many conformation in
the solution thus the experimental absorption spectra likely reflects the average sum of the various
possible conformations. The calculation also provided the insight into the differences between the
“tetra-alkylated” and “di-alkylated” bipyrroles. Figure 6 shows the HOMO and the LUMO orbitals of 4
and 4Me. It is clear from this that an ethyl group on the pyrrole 3,3′-positions contributes to the HOMO
orbital. The HOMO level of 4 was 0.12 eV higher than that of 4Me due to the electron donation from
the methyl group. On the other hand, there was no obvious difference between the LUMO orbitals in 4
and 4Me. This result explains the bathochromic shift of absorption and fluorescence wavelength in 4
compared to 4Me.

Table 2. UV-Vis spectroscopic data and calculated lowest excited states of 1–4 and 4Me compounds.

Compounds λAbs (Obs.)
(nm)

λAbs (Calcd.)
(nm) Transitions Oscillator

Strength

1 355 403.31 81(HOMO)-82(LUMO) 1.0825

2 499, 531 556.11 104(HOMO−1)-107(LUMO+1)
105(HOMO)-106(LUMO) 1.5891

3 555 553.40 146(HOMO−1)-149(LUMO+1)
147(HOMO)-148(LUMO) 1.7047

4 582 574.31 152(HOMO−1)-155 (LUMO+1)
153(HOMO)-154(LUMO) 1.8560

4Me 569 560.00 128(HOMO−1)-131(LUMO+1)
129(HOMO)-130(LUMO) 1.9396
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Figure 6. LUMO (top) and HOMO (bottom) orbitals (isovalue of 0.02) of compounds 4 and 4Me.
The red and green surfaces show positive and negative wave functions, respectively. The broken red
circles show ethyl groups at the 3 and 3′ positions.

The vinyl groups and attached electron withdrawing groups significantly contributed to HOMO
and LUMO. Thus, the TD-DFT calculations revealed that the alkyl groups on the bipyrrole 3,3′-positions
greatly influenced photophysical properties.

3. Experimental

3.1. Materials and Instruments

All chemical reagents and solvents used in this study were obtained from commercial sources
and used as received unless otherwise stated. 3,3′,4,4′-tetraethyl-5,5′-diformyl-2,2′-bipyrrole (1) has
been prepared according to the literature [12]. Compounds 2–4 were synthesized using the similar
reaction condition reported in the previous paper [22].

UV-Vis absorption spectra were recorded on a JASCO V-670 spectrophotometer (JASCO
Corporation, Tokyo, Japan). Emission spectra were measured by a Hitachi F7000 spectrophotometer
(Hitachi High-Technology, Tokyo, Japan). 1H and 13C NMR spectra were obtained at 25 ◦C on a JEOL
ECS-400 FT-NMR spectrometer (JEOL, Tokyo, Japan) with tetramethylsilane as an internal standard of
the chemical shift. Infrared (IR) spectra were recorded on a JASCO FT/IR-410 spectrometer (JASCO
Corporation, Tokyo, Japan). Electrospray ionization time of flight mass (ESI-TOF-MS) spectra were
measured with JEOL JMS-T100CS spectrometer (JEOL, Tokyo, Japan) using methanol/dichloromethane
as a solvent system. The drying cavity was heated to 250 ◦C. The needle voltage, orifice 1,
and orifice 2 voltages were within the range of 2500–4000 V, 50–80 V, and 3–15 V, respectively.
Absolute photoluminescent quantum yields of 2–4 were determined by using a Hamamatsu Absolute
PL Quantum Yield Spectrometer C11347 Quantaurus-QY (400–1100 nm), which equipped with an
integrating sphere.

3.2. X-ray Crystallography

X-ray crystallography was performed using a Bruker SMART APEX CCD diffractometer equipped
with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) from a fine-focus sealed tube operated
at 50 kV and 30 mA. Single crystals of 3 and 4 were mounted on a glass fiber and the data frames
were integrated using SAINT [45]. The integrated data were merged to give a unique data set for the
structure determination. Absorption corrections by SADABS were carried out [46]. The structure was
solved by a direct method and refined by the full-matrix least-squares method on all F2 data using
the SHELXL-2014/7 suite of programs [47]. All nonhydrogen atoms were anisotropically refined.
Hydrogen atoms were placed at geometrically idealized positions and constrained to ride on their
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parent atoms with Uiso(H) = 1.2Ueq(NH, CH and CH2) and Uiso(H) = 1.5Ueq(CH3). Crystallographic
data (excluding structure factors) have been deposited with the Cambridge Crystallographic Data
Centre as supplementary publication no. CCDC-1535686 and 1535687 for 3 and 4, respectively. Copies
of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ,
UK (fax: (+44) 1223-336-033; email: deposit@ccdc.cam.ac.uk).

3.3. Synthesis

(a) Compound 2. In a round bottomed flask, 32 mg (0.11 mmol) of 1 and 311 mg (4.7 mmol) of
malononitrile were dissolved in 10 mL of acetonitrile. The solution was heated to refluxing temperature
and then 359 mg (4.7 mmol) of ammonium acetate was added to the solution. The reaction mixture
turned dark red and was further heated for 20 min. The reaction mixture was cooled to room
temperature and 20 mL of water was added to the mixture. Resulting red precipitates were collected
by filtration and washed with water. The product was purified by a neutral alumina. Yield: 29 mg
(69%). Elemental Analysis Found: C 72.44, H 6.08, N 20.96, Calcd. (C24H24N6) C 72.70, H 6.10, N
21.20; 1H NMR (400 MHz, 298 K, CDCl3, ppm): δ = 9.57 (s, 2H, NH), 7.47 (s, 2H, vinyl-CH), 2.72,
2.66 (q, J = 7.5 Hz, 8H, -CH2CH3), 1.21, 1.16 (t, J = 7.5 Hz, 12H, -CH2CH3); 13C NMR (100 MHz, 298
K, CDCl3, ppm) δ = 142.2, 140.3, 130.1, 128.6, 125.6, 116.3, 115.0, 68.4, 17.9, 17.5, 17.0, 15.5; IR (KBr)
wavenumber cm−1: 2217 (νCN); ESI-TOF-MS (CH3OH/CH2Cl2): m/z = 397 ([M + H]+).

(b) Compound 3. Yield: 80%. Elemental Analysis Found: C 64.43, H 6.43, N 4.96, Calcd. (C30H36N2O8)
C 65.20, H 6.57, N 5.07; 1H NMR (400 MHz, 298 K, CDCl3, ppm): δ = 12.96 (s, 2H, NH), 8.28 (s, 2H,
vinyl-CH), 2.85, 2.82 (q, J = 7.5 Hz, 8H, -CH2CH3), 1.79 (s, 12H, C(CH3)2), 1.26, 1.20 (t, J = 7.5 Hz, 12H,
-CH2CH3); 13C NMR (100 MHz, 298 K, CDCl3, ppm) δ = 165.0, 164.5, 145.4, 137.7, 132.4, 130.6, 127.9,
104.3, 99.1, 77.2, 27.2, 18.1, 17.8, 17.3, 15.6; IR (KBr) wavenumber cm−1: 1731, 1681 (νCO); ESI-TOF-MS
(CH3OH/CH2Cl2): m/z = 552 ([M]+); X-ray crystallography: C30H36N2O8, triclinic, P−1, a = 10.006(14)
Å, b = 11.205(16) Å, c = 13.232(19) Å, α = 82.71(3)◦, β = 80.50(5)◦, γ = 73.03(3)◦, V = 1395(3) Å3, Z = 2,
T = 100 K, λ(Mo Kα) = 0.096 mm−1, R1 = 0.0428 (I > 2σ(I)), wR2 = 0.1091, GOF = 1.363.

(c) Compound 4. Yield: 52%. Elemental Analysis Found: C 62.19, H 6.18, N 14.37, Calcd. (C30H36N6O6)
C 62.49, H 6.29, N 14.57; 1H NMR (400 MHz, 298 K, CDCl3, ppm): δ = 13.65 (s, 2H, NH), 8.38 (s, 2H,
vinyl-CH), 3.43 (s, 12H, -NCH3), 2.91, 2.86 (q, J = 7.5 Hz, 8H, -CH2CH3), 1.28, 1.22 (t, J = 7.5 Hz,
12H, -CH2CH3); 13C NMR (100 MHz, 298 K, CDCl3, ppm) δ = 164.0, 163.6, 151.6, 145.0, 137.2, 132.1,
130.7, 128.7, 104.7, 28.8, 28.4, 18.2, 17.9, 17.5, 15.7; IR (KBr) wavenumber cm−1: 1720, 1660, 1638 (νCO);
ESI-TOF-MS (CH3OH/CH2Cl2): m/z = 577 ([M + H]+); X-ray crystallography: C30H36N6O6, triclinic,
P−1, a = 8.363(9) Å, b = 8.754(11) Å, c = 10.446(12) Å, α = 102.81(2)◦, β = 108.034(14)◦, γ = 100.24(4)◦,
V = 683.6(14) Å3, Z = 1, T = 100 K, λ(Mo Kα) = 0.099 mm−1, R1 = 0.0572 (I > 2σ(I)), wR2 = 0.1468,
GOF = 1.027.

3.4. Computational Methods

The computational studies were carried out by using the Gaussian 09 suite of program [42].
The initial coordinates of the compounds were optimized by the CAMB3LYP/6-31G(d) basis set [43].
The calculations were performed in dichloromethane. The solvent environment was treated using the
IEFPCM model [44]. The transition energies were also calculated by using the CAMB3LYP/6-31G(d)
level of theory.

4. Conclusions

In conclusion, we synthesized novel luminescent bipyrroles with four ethyl groups and vinylic
extensions. The ethyl groups were found to be effective for the solubility improvement. The X-ray
structure analysis revealed that compound 3 and 4 have a planar structure and possess intramolecular
hydrogen bonding in the solid state. The strong hydrogen bonding resulted in a rigid molecular
structure, which led to enhanced quantum yield. The ethyl substituents served to not only provide
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solubility improvement in organic solvents but also in tuning of the HOMO–LUMO gap. Compound 4,
for example, showed 13 nm longer absorption wavelength and exhibited enhanced photoluminescence
compared to the previously reported dimethyl analog 4Me. TD-DFT calculation further shed light that
the alkyl substitutions at the bipyrrole 3 and 3′-positions have an effect on the HOMO energy level,
thereby resulting in the bathochromic shift of the absorption and fluorescence spectra. It is anticipated
that the knowledge gained from these studies will contribute towards the development of enhanced
organic photoluminescent materials utilizing π-extended bipyrrole derivatives.

Supplementary Materials: Supplementary materials are available online. Crystallographic data for 3 and 4,
1H NMR. 13C NMR, IR and MS spectra, elemental analysis of 2–4, absolute quantum yield measurements of 2–4,
HOMO and LUMO orbitals of 1–4 and 4Me, and initial coordinates of 1–4 and 4Me for TD-DFT calculations.
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