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Abstract

In this report, a fully integrated solution for laboratory digitization is presented.
The approach presents a flexible and complete integration method for the dig-
itally assisted workflow. The worker in the laboratory performs procedures in
direct interaction with the digitized infrastructure that guides through the pro-
cess and aids while performing tasks. The digital transformation of the laboratory
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A central lab server channels all device communication and keeps a database
record of every measurement, task and result generated or used in the lab. It acts
as a central entry point for process management. This backbone enables a process
control system to guide the worker through the lab process and provide addi-
tional assistance, like results of automated calculations or safety information.
The description of the infrastructure and architecture is followed by a practical
example on how to implement a digitized workflow. This approach is highly use-
ful for — but not limited to — the biotechnological laboratory and has the potential
to increase productivity in both industry and research for example by enabling
automated documentation.
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1 | INTRODUCTION

In this article, a concept for digital integration of a biotech-
nological laboratory is presented. The main goals are cen-
tralized and automatic acquisition of data and metadata,
enabling assistant technologies for the researcher and
automated documentation. In contrast to decentralized
approaches [1, 2], this method is focused on a central-
ized control- and data-management system that interacts
with human inputs and orchestrates procedures based on
the results and outcomes of previous steps. Most digiti-
zation concepts available focus on highly automated lab-
oratories [3-5] with processes that require only a small
amount of human-machine interaction [6]. This creates
automated and smart “digitized islands” in the laboratory
that are surrounded by an ocean of dumb lab equipment
and devices. Often these islands are not standing separate
but other devices and manual procedures are needed for
additional steps. Even though this user interaction prob-
lem was named by Frey in 2004 [7], interaction of the dig-
itized lab with humans is still a daunting task today. Espe-
cially in the biotechnological lab, where complex protocols
are carried out and a lot of additional information has to
be processed by the researcher, a method for adding digital
support seems promising.

In this approach, all devices and resources can be
accessed in a central place. The laboratory server guar-
anties a full record of measurements, results and events.
This enables possibilities for certification — for example
GxP (Good Manufacturing/Laboratory Practice) compli-
ance [3]. Also implementing FAIR (Findable, Accessible,
Interoperable, Reusable) data principles [8], which are for
example required by the NFDI (Nationale Forschungs-
dateninfrastruktur), is possible.

For good maintainability, a micro-service based archi-
tecture was chosen. The approach focuses on standardized
communication of all components. This enables good hor-
izontal scaling, which is important in digital transforma-
tion of existing infrastructures [9]. One central Represen-
tational State Transfer (REST) Application Programming
Interface (API) is used for operation procedure orchestra-
tion and data requests. All devices are connected using the
Standard in Lab Automation 2 (SiLA2) standard for lab-
oratory device communication'. The usage of one single
standard highly increases the flexibility and usability of the
setup [10]. The first stable version of the SiLA2 standard
was released in 2019 and several implementations in dif-

IThe open source SiLA2 standard definition documents can be
found online. Part A: https://drive.google.com/file/d/1QWrSD4-
YBMwT9HTBzJe3TIBbJSGqq_LC/view Part B: https://drive.google.com/
file/d/1a9XJnQUHysW6DQGz4j2m1zngLX-pakxo/view Part C: https://
drive.google.com/file/d/1dqQTqRN6vyJy6KBISCsnV_qte_kNh62l/view
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PRACTICAL APPLICATION

The presented architecture can be used to trans-
form a traditional laboratory into a digitized one.
It focuses on the interaction with the laboratory
worker in processes that cannot - or should not —
be automated. Procedures are defined in advance
and are carried out in a structured way that
ensures a correct workflow. The architecture cen-
tralizes information and laboratory device com-
munication in a server, which also hosts a database
that stores all data generated in the laboratory.
The focus lies on small research or analysis lab-
oratories where procedures are not highly auto-
mated, but where data quality and productivity
can significantly benefit from digital assistance.
This opens up possibilities of interactive workflow
guidance for the lab worker, automated result doc-
umentation and an improved control over the lab
processes. Workers can spend more time on pro-
ductive tasks when calculations, data analysis and
documentation are carried out fully automated in
the background.

ferent programming languages are available today”. The
“race for the lab communication standard” is on [11] and
nobody can predict which standard will be widely adopted
in the future. However, with its open source concept and
good documentation, SiLA2 offers some significant advan-
tages for the developer that aims on integrating existing
devices without a common communication principle. For
these kind of devices, a “translator” for SiLA2 must be
used [5]. This, at first sight, might look like only shifting
implementation efforts. However, as no common standard
for lab device integration exists, the focus on one standard
wants to empathize the need for standardization and flaw-
less integration. Furthermore, from a software architect’s
point of view, the separation of concerns is an important
pattern in complex systems. When using a standard, the
laboratory server does not need to know about all the dif-
ferent protocols for all devices. It can be kept simple in
both design and implementation, which is important for
good scalability and maintainability. This approach divides
the big integration problem into small separate tasks. All
translators share a common structure and form a swarm

2 Both the official reference implementations in several programming lan-
guages and also the sila_tecan C# implementation used in this article can
be found at: https://gitlab.com/SiLA2
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of micro-services that are managed from a central web-
interface of the laboratory server. In addition, deployment
of these services is automated by a central publish-system.
Both the management and publish system, as well as a
guide on how to write SILA2 translators as micro-services,
were published by the authors before [12] and are available
under an open-source license.

Devices that cannot be connected directly to the labo-
ratory network, are integrated using a gateway module.
This was described in detail by the authors before [12] and
all necessary information and software are available under
open licenses.

The flexible nature of the system and the central REST
interface of the laboratory server enable easy connecting of
different process management tools. Using an appropriate
middleware, an electronic lab notebook or any other form
of data structuring or data analysis solution can easily be
connected to the lab server as well.

The communication of the laboratory system with the
researcher is modeled using a standard gateway to all possi-
ble user interface devices (UI-devices). For example, these
can be head-mounted displays (“smart-glasses”), tablets,
etc. Due to its complexity, the user-interface-system and
the process management tool co-implemented with this
system cannot be described in detail in this article. How-
ever, the interested reader can find the details in the sup-
plementary data.

Traditionally, a researcher needs to follow a printed
standard operating procedure and must document all
steps by hand. Additionally, interpreting, calculating and
archiving of result data needs to be carried out manually
afterward. Using the presented architecture, these tasks
can be automated and standardized. This is possible due
to the central data storage and fully flexible availability
of data.

This increases data quality [5, 6, 11] as human errors or
mistakes in copying notes are much less likely. The auto-
mated data management takes the burden of result docu-
mentation from the researcher and leaves more time for
performing qualified tasks. This may help to overcome the
lack of skilled labor currently experienced in the fields of
laboratories and research [3, 4, 6, 11] - especially in the
biotechnological sector.

2 | MATERIALS AND METHODS

This approach relies on a dependable infrastructure to
ensure fast and secure communication of the distributed
systems. Wherever possible existing technologies were
used. Today’s technology is quite capable of performing all
relevant tasks in a digitized lab. The current hype in home

automation and the “internet of things” shows what can
be achieved when manufacturers agree on communication
standards [13]. However, such industry standards are not
yet present in the laboratory world. Therefore, some effort
has to be made to enable devices from different manufac-
turers to exchange data and commands [5].

2.1 | Hardware integration

Figure 1 shows an overview of the hardware used for
the digital network. For communication of digital com-
ponents Transmission Control Protocol/Internet Proto-
col based protocols are widely used and easily scalable.
Thus, an Ethernet-based local area network with DHCP
(Dynamic Host Configuration Protocol) forms an adequate
base for lab digitization. Wherever possible wire-based
connections were used due to their reliability. User inter-
face devices, like wearables or handheld devices are con-
nected via WLAN (Wireless Local Area Network) access
points. User computers, which run protocols and interact
with the lab server, are connected to Ethernet ports in the
lab or via WLAN.

Lab devices with an Ethernet port can easily connect to
the lab network, as no further hardware is needed. Older
or simpler devices do not have Ethernet or WLAN capa-
bilities. These devices can usually be connected to a con-
troller or computer by a serial- or Universal Serial Bus
(USB)-connection. These connection methods are not eas-
ily scalable, not sharable and cable lengths are limited. This
means a lab server would have to be connected to every of
those devices directly. As the server will usually not be in
the same physical location as the devices but in a dedicated
server room, connecting legacy devices is a great challenge.
A gateway-module was used to integrate such devices into
the digitized lab network. The building and programming
of this gateway module was described in detail by the
authors before [12] and all plans and software are available
under an open-source or open-hardware license. The mod-
ule is part of the laboratory network and connects to the
lab device via USB or serial/Recommended Standard 232.
Communication from the module to the device is done in
whatever protocol is required by the specific device. One
module can connect multiple lab devices, which can be
desirable if they are placed close together.

2.2 | Data transfer and protocols for
device integration

For data transfer, standardized network protocols
were used. The lab server offers all functionality via
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FIGURE 1 Overview of the hardware used in the digitized laboratory. All components are connected to the same VLAN (Virtual Local

Area Network) either with wire-based Ethernet connections or to WLAN. Legacy devices are connected to the network using hardware gateway
modules. With this network architecture, the flawless communication of all devices is ensured

a single RESTful® Hypertext Transfer Protocol web
service. All devices are controlled with the SiLA2
protocol.

SiLA2 focuses on consistent communication standards
for all devices. It is based on the Google Remote Proce-
dure Call Protocol. All device commands and properties
are logically organized in “features.” One device can imple-
ment several features, which can interact and modify each
other if necessary. For example, a magnetic stirrer would
implement a “heating,” a “stirring,” and the mandatory
“SiLA2” standard feature. The service, that hosts features
and presents them in the network, is called the SiLA2
server. A SiLA2 client can establish a network connec-
tion to the server, use the standard feature to obtain doc-
umentation on all implemented features and initiate com-

3 The term “RESTful” describes an API that follows the principles of Rep-
resentational State Transfer (REST), which denotes a HTTP-based web
API that offers information in a structured way (usually in the format of
JavaScript Object Notation (JSON) strings) at pre-defined “endpoints” or
URLSs (Uniform Resource Locators). The endpoints itself are constant in
the server and need to be known a priori to the client.

mand execution on the device according to this in-place
self-documentation.

So far only very few lab devices offer their function-
ality in form of a SiLA2 server off the shelf. This raises
the need for “translators” or gateways between SiLA2 and
the vendor-specific protocols. For legacy devices that are
connected via the hardware gateway module, the SiLA2
servers for these devices are running on the embedded
computer of the module. For every other device, one vir-
tual machine hosts the specific SiLA2 server.

2.3 | Virtualization server

To minimize the demand for hardware and to ease main-
tenance and scalability a Proxmox Virtual Environment
virtualization server is used [14]. Server applications and
virtual gateways to lab devices all run as virtual machines
on this central virtualization server. One laboratory needs
at least one machine for hosting the lab server, one per
network-connected device and some more for infrastruc-
ture requirements (i.e. controller for WLAN access points,
data server(s), etc.).



Engineering

in Life Sciences

212 PORR ET AL.

. r —>
} — — -interprets —

ControlFlow Runtime

00 O
AAO
b 1 L]
Lab User Lab Manager < — T
T T |
I wri‘1es |
executes protocol ! re;;ds
| A 4 [
v Protocol :
|
|
.y

Lab REST API H Web Frontend

D Process

IPC Library
| dotnet core C# Process
_________________ |
|

- oy

The digitized laboratory is based on a central lab server (DeviceLayer). The DeviceLayer implements a generic SiLA2

SilA client

Non SiLA Device

FIGURE 2
client that connects all laboratory devices. This is done either directly, via a virtual gateway or using a hardware gateway module. A

virtual user interface controller generalizes interaction with Ul-devices. Services or resources are implemented as SiLA2 servers and are
connected the same way as lab devices. The DeviceLayer also implements a web frontend for administration and a REST API for inter-
acting with the laboratory. All data from the lab is stored in a database that is also running on the same machine as the two DeviceLayer

processes

3 | RESULTS AND DISCUSSION

Following a micro-service based strategy the system is
implemented as several small components that commu-
nicate and interact with strictly defined and standardized
interfaces or APIs. In Figure 2A an overview of all soft-
and hardware components and their interaction with the
human lab manager and researcher is given. The complete
system is implemented using free software and the key
parts of it were made publically available under appropri-
ate open-source licenses (see Table 1).

All devices are connected to a central laboratory server
(DeviceLayer) using the SiLA2 protocol. For devices that
do not offer SiLA2 compatibility directly, gateway is in
place. This can be either a virtual machine or a physi-
cal gateway module. User interface devices are abstracted
by a generic Ul-device gateway.* The DeviceLayer offers
a uniform interface for any kind of software to connect
to the laboratory. A process control system can use this
interface to issue commands on lab devices, collect mea-
surement results and orchestrate steps accordingly. A pro-

4 Implementation details of this generic approach to user interaction and
the principles it implies on digital laboratory protocols are described in
the supplementary materials.

cess management tool (“ControlFlow Runtime”), which
is highly focused on user-friendly interaction of the dig-
itized lab with the researcher, was developed in this
approach and is described in detail in the supplementary
materials.

3.1 | Laboratory server (DeviceLayer)
The central component of the digitized lab is the Device-
Layer laboratory server. One instance of the DeviceLayer
forms the virtual representation of “a laboratory” in means
of all devices and resources used together. Figure 2B shows
the implementation principles of the DeviceLayer. All
communication is channeled through this component to
ensure full control and data integrity. A database stores
every event that occurs in the lab. Furthermore, the
Device Layer acts as a central interface for administration.
A lab manager can monitor the status of all connected
devices and their gateways with a single web interface.
The source code for this web interface was described
before [12] and is publicly available under an open-source
license.

The DeviceLayer communicates with all devices and
service-providers using SiLA2 and presents the entry point



Engineering

in Life Sciences

213

PORR ET AL.
TABLE 1 Summary of all tools and libraries used for the presented system including references to documentation and download sources
Element Tools and libraries used References

Virtualization server

SiLA2 servers for:

* UI controller

* “Service as a Device”
controller

* Gateway modules

* Virtual gateways

Gateway modules

Virtual gateways

DeviceLayer lab server

Generic SiLA2 client in
DeviceLayer

IPC library in DeviceLayer

REST server and
web-frontend in
DeviceLayer

Database in DeviceLayer

ControlFlow library and
runtime

Proxmox Virtual Environment version: 6.1

* sila_tecan SiLA2 Implementation (C#) Git commit
used:@45b977b6

* Publish-System (bash) Git commit used:
@0c7a5778

* Based on Embedded Computer: Hardkernel
ODroid C2 Purchased from Hardkernel Co. Ltd. In
December 2019

* Ubuntu Linux Version 3.16 from ODroid-wiki
(based on Ubuntu 18.04.3, update-state Mai 2020)

* sila_tecan SiLA2 Implementation (C#), ported to
dotnet core for embedded applications (see Branch
“tci-gwm”) Git commit used: @45b977b6

* gRPC (forked to work with embedded processor
architectures) Git commit used: @0d417d55 based
on: @c564d28f in official repository

Arch Linux Linux kernel version: 5.0-5.7, tested with
updated rolling system in Mai 2020

Arch Linux Linux kernel version: 5.0-5.7, tested with
updated rolling system in Mai 2020

DynamicClient from sila_tecan SiLA2
Implementation (C#) Git commit used: @45b977b6

POSIX Message Queues (Utilized In C# and D)
Tested with version from Linux 5.0-5.7

vibe.d REST and web application framework (D)

D, dmd/phobos version: 2.089

vibe.d version: 0.8.6

mongoDB tested with version: 4.0.6

* curl and curl D library (D) Library D,
dmd/phobos version: 2.089 Tested with curl
version: 7.67

* imgui GUI library (C++ library invoked from D)
commit used: @3bde3750 (v1.75 WIP + docking)

https://www.proxmox.com/en/proxmox-ve

https://gitlab.com/SiLA2/vendors/sila_tecan
https://gitlab.uni-hannover.de/tci-gateway-
module/gateway-publish

Detailed descriptions for developing and
deploying in [12]

https://wiki.odroid.com/odroid-c2/odroid-c2
https://ubuntu.com/
https://gitlab.com/SiLA2/vendors/
sila_tecan/-/tree/tci-gwm
https://github.com/grpc/grpc
https://gitlab.uni-hannover.de/tci-gateway-
module/grpc

Detailed descriptions for building, installing,
programming and running in [12]

https://www.archlinux.de/

https://www.archlinux.de/

https://gitlab.com/SiLA2/vendors/sila_tecan

https://www.man?7.org/linux/man-

pages/man7/mq_overview.7.html

https://vibed.org/

https://www.mongodb.com/

https://curl.haxx.se/
https://dlang.org/phobos/std_net_curl.html
https://github.com/ocornut/imgui

All components are either based on open-source software or have been previously described and released by the authors under an open-hardware or open-source

license [12]

for all user-side software by hosting a REST API in the net-
work that wraps up all device functions.

The DeviceLayer software is implemented as two sep-
arate processes that communicate using an inter process
communication mechanism based on Portable Operating
System Interface message queues. One part of the Device-
Layer is written in dotnet core C#. It implements a generic
SiLA2 client. For that, the “DynamicClient” from the open-
source sila_tecan library is used. All devices are connected
to the DeviceLayer and one instance of that client is gener-
ated for every lab device. The other part of the DeviceLayer
is written in D and consists of a database API, the REST-
ful Hypertext Transfer Protocol web API and a web fron-

tend for laboratory administration purposes. For imple-
menting these three components, the open source vibe.d
library is used. An open source NoSQL database (mongo
DB) is running on the same virtual machine to store all
data of every command executed and every result gener-
ated in the lab. The database API models the connection
for the other components of the DeviceLayer to use. The
REST-API offers all device functionality from the whole
lab in one place to interact with for a process management
tool or any other client. It can also be used to access data
from the database.

This API acts as a central entry point to the lab and offers
a consistent way of interacting with all kinds of devices
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FIGURE 3 Screenshot of the web frontend hosted by the
DeviceLayer

and services. When a command or property is requested
for a specific device, the availability of the desired device is
checked. If the device accepts commands, the SiLA2 call is
generated and passed through to the device’s SILA2 server.
The command’s results are then available for further pro-
cessing or archiving.

Every command execution is given a unique identifier
(ID) by the API and all final or intermediate results are
stored in the database. They remain accessible using this
specific ID, even when the devices used to carry out the
operation seize to work.

The DeviceLayer also hosts a web interface (see Figure 3)
that can be used by the lab manager to administrate all lab-
oratory devices. The devices states can be monitored and
gateways can be remote controlled. In addition, logs from
all SiLA2 servers in the lab are available. SiLA2 devices can
be attached to or removed from the lab during runtime of
the DeviceLayer.

3.2 | Lab device integration with SiLA2
The SiLA2 Protocol is used for all device communication
from the DeviceLayer to lab devices. This means, every
device is hosting a SiLA2 server that presents all device
functionality on the network. This ensures a streamlined
design of the DeviceLayer and encapsulates device integra-
tion tasks in small subunits that do not interact with each
other. In case several devices of the same type are in use or
several devices of the same manufacturer “speak the same
language,” these units can be duplicated and scaled easily
in a horizontal way.

A generic user interface controller, which is also imple-
mented as a SiLA2 server, generalizes interaction with UI-

devices (like tablets or smart-glasses). Services or resources
are wrapped by SiLA2 servers and are connected the same
way as lab devices.

3.2.1 | SiLA2 virtual gateways and
gateway modules

Today most devices do not come with a standardized
interface and almost no devices offer SILA2 capabilities.
This raises the need for “translators” or gateways from
manufacturer/device-specific protocols to SiLA2. Depend-
ing on each device-type, either a virtual gateway or a gate-
way module is used. Every gateway is a standalone appli-
cation that hosts a SiLA2 server and transforms SiLA2
commands to device specific calls. These are transported
depending on the hardware interface of the device. Many
new devices offer common interfaces to their devices,
such as REST, Extensible Markup Language- Remote Pro-
cedure Call or JavaScript Object Notation. Nevertheless,
often these services fail in following the chosen standard
fully and some extra work has to be done to circum-
vent this. These devices can be integrated in the lab net-
work directly and a translator gateway can interact with
these devices via Transmission Control Protocol/Internet
Protocol-communication. Thus, a virtual machine on the
virtualization server can run one or more gateways for
Ethernet-capable devices. In the solution presented here,
for reasons of conformity and scalability, every virtual gate-
way runs in its own virtual machine.

For legacy devices that only come with a serial- or USB-
connector, hardware gateway modules are used. These
modules essentially consist of an embedded computer that
is connected to the lab device and runs the SiLA2 for that
device. The module itself is connected to the lab network
via Ethernet and thus enables the flexible integration of
older or simpler devices.

All gateways are implemented in dotnet core C# using
the open source sila_tecan library. sila_tecan was ported
to dotnet core, which allows using the same software on
the gateway module and virtual gateways. sila_tecan and
also the dotnet core port are available under an open-
source license. The usage of the ported variant and also the
modifications necessary to use it on the embedded hard-
ware of the gateway module were described by the authors
in detail [12]. The gateway modules run Ubuntu/Debian
Linux systems, whereas the virtual gateways are running
Arch Linux systems. For devices that need manufacturer
software that runs uniquely on Windows, the platform
independent dotnet core runtime can be used in the same
way. The gateway module was released by the authors of
this article under an open source/open hardware license
[12] and SiLA2 driver development with dotnet core
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servers from the DeviceLayer administration web frontend

C# using the sila_tecan library was also described in a step-
by-step tutorial [12].

3.2.2 | Development and maintenance of
SiLA2 servers in a distributed system

To simplify the development, testing and deployment
workflow, a publish system was implemented. Figure 4
visualizes the workflow of the publish system. The devel-
oper implements the SiLA2 server functionality on a desk-
top computer using dotnet core C# and the sila_tecan
library. For performance reasons, the publish system pre-
compiles the dotnet core source code to Common Inter-
mediate Language code that is platform independent and
can be executed by a dotnet core runtime on the gateway
modules or the virtual gateways. The publish system then
transfers this software package via Secure Shell to the tar-
get gateway and registers a systemd/systemcontrol service
for remote controlling the SiLA2 server. This service is con-
trolled by the lab manager via the DeviceLayer’s web fron-
tend. The publish-system was described in detail before
[12] and is available under an open-source license. It is
based on bash-scripts, which were extended for this appli-
cation by a method for a configuration-file based “batch-
deployment,” that can update or reinstall the whole lab at
once.

3.2.3 | Services and resources as devices

Following the “divide and conquer” principle, non-device
services were also wrapped in SiLA2 servers. These are
integrated into the digitized laboratory via a virtual gate-
way in the same way, as actual devices would be. This
approach generalizes knowledge and keeps the protocols

in Life Sciences

thin. For example, a complex mathematical computation,
such as a process modeling based parameter estimation,
becomes a “device” that has a SiLA2 interface. It can be
used from within the protocol script via the Lab REST API
in the same way as any other lab device.

In a similar fashion, other services, such as automated
image analysis tools or an AniML (Analytical Information
Markup Language) generator can be integrated. In addi-
tion, a resource planner or scheduler can be added. When
there are multiple devices of the same type in the labora-
tory, a “meta-device” for scheduling would implement the
same SiLA?2 interface as the devices themselves. The pro-
tocol would only interact with that scheduler and the task
would automatically be performed on the first device from
the pool becoming available.

3.3 | Practical example for the setup and
execution of a digitized workflow

To increase understanding, an example workflow for
water analysis is now discussed. The focus lies on high-
lighting the principle steps that need to be taken to
encounter a digital transformation. Due to reasons of
complexity, this cannot be a detailed step-by-step tuto-
rial. However, the systematics for SiLA2 gateways and
its central administration, the implementation of SiLA2
servers, the usage of the publish system and the underly-
ing principles for system and software design are all avail-
able under open-source licenses. They were described in
detail (including step-by-step bash command instructions
and extensive source code documentation) in an earlier
publication [12].

3.3.1 | Technical requirements
and protocol description

As a starting point it is assumed, that the hardware and
infrastructure is set up as described in the Materials and
Methods section. A local area network that can connect
all components is in place. A laboratory server running
the DeviceLayer is accessible in this network. The Device-
Layer is the central entry point for administration of all lab
devices (web-frontend), process management (REST-API)
and data storage (database). A hardware gateway module
has been build and installed following the instructions
in [12].

The schematics of the water analysis workflow are
depicted in Figure 5. A given water sample should be
analyzed for microbial contamination. For that, a defined
volume of the sample is first transferred into a digestion
buffer. The digestion is carried out in a combined heating
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and shaking device (thermo-shaker). After the digestion,
the cell debris is separated by centrifugation and the super-
natant is used for a Polymerase Chain Reaction (PCR)
based detection of microbial genetic material.

For this rather simple workflow, four lab devices
are needed: pipettes, thermo-shaker, centrifuge and PCR
cycler. It is assumed, that all devices offer some kind of
digital interface to allow remote control and data aggre-
gation. The pipettes are connectable to a WLAN network
and are controlled by a JavaScript Object Notation-Remote
Procedure Call protocol. The thermo-shaker has a Rec-
ommended Standard 232 serial interface and can be con-
trolled by a simple serial protocol. The centrifuge has a
USB connector, which is mapped internally to a USB-serial
converter. Thus, this device is also controlled by a serial
protocol. The PCR cycler has an Ethernet connector and
runs a REST server that offers endpoints to control the
device. This example situation reassembles a common
starting point in lab digitization.

Additionally smart-glasses offer the possibility to guide
the user through the process and provide additional infor-
mation. The existence of an inventory system is assumed,
thatis used for chemical registration. All chemical contain-
ers are registered with this system and are identifiable via
a ID that is printed on the containers as a Quick Response
code. The inventory system offers a REST-API to access all
information regarding a special ID.

3.3.2 |
setup

Device integration and workflow

To connect the devices needed for this workflow to the
laboratory server, they first need to be placed in the net-

work. For the pipettes and the smart-glasses, this means
connecting them to a WLAN access point in the labora-
tory network. The PCR cycler is plugged into the same
network using an Ethernet cable directly. The centrifuge
(USB-connector) and thermo-shaker (serial-connector)
are plugged into the gateway module which itself is con-
nected to the lab network using its Ethernet port.

After these physical requirements are met, all devices
need to be linked to the laboratory server. This means
that for every device a SiLA2 server needs to be running
in the network that translates SiLA2 calls to the device
specific protocol. For the pipettes and the PCR cycler
virtual machines on the virtualization server are set up to
run those servers. For the centrifuge and thermo-shaker,
the SILA2 servers are to be run on the gateway module.
The developer now needs to implement all SiLA2 servers
following the micro-service template pattern that is used
by the publish system. This essentially means describing
and documenting the SiLA2 interface and wrapping up
the device specific calls described in the devices manual
into the SiLA2 structure. The implementation of a SILA2
server using the sila_tecan library and dotnet core C# is
documented in detail in [12] and in the “SampleServer”
in the sila_tecan repository. Also the special requirements
(using a Google Remote Procedure Call implementation
modified for embedded processor architectures) outlined
in [12] needs to be taken into account when developing
servers for the gateway module.

When the SiLA2 servers are available and were com-
piled and deployed to the target machines (refer to [12] for
detailed instructions) they can be added to the DeviceLayer
using the web-frontend.

For the user interface on the smart-glasses, the generic
UI SILA2 server abstracts the communication to the
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DeviceLayer.” Following the “Services as Devices” pattern,
the inventory application is wrapped in a SiLA2 server that
also runs on a virtual machine. If the results of the experi-
ment should be available according to the FAIR data prin-
ciples [8], a generator, that takes all experimental data and
metadata and generates an AnIML file, which it uploads
to a publically available repository, can be integrated in the
same way. This enables the usage of the system for exam-
ple in context of the NFDI. When a repository for research
data are available (either locally or in the internet), these
standardized data can be uploaded to it automatically by
the AnIML-Generator or a specialized micro-service.

After adding the SiLA2 servers to the device list in the
DeviceLayer, all necessary functionality of the lab can be
accessed using its REST API. To set up a workflow, a pro-
cess management tool needs to be connected to this API.
For this example the ControlFlow library is used, that is
described in the supplementary information. Workflows
are described in a script-like format and are made up of
steps and transitions between them.

For this example workflow, the simplified protocol lay-
out is shown in Figure 6. The corresponding ControlFlow
script can be found in the supplementary information. The
script is compiled to a ControlFlow Runtime, which can be
executed by the lab user on any computer connected to the
lab network.

5 The mechanisms of abstraction that are used to distribute device run-
time information to all UT and its implications on protocol design are dis-
cussed in the supplementary material.

When starting a run of this ControlFlow Runtime a
unique experiment ID is automatically created in the
DeviceLayer database. All experimental data generated
during this run is automatically linked with this ID. This
creates structural context of result data from different
devices and links this with additional metadata about
the experimental setup. For accessing the DeviceLayer
database, the REST-API can be used by any data analysis
tool (either directly or via a connecting middleware). For
quick database queries, the DeviceManager web frontend
of the DeviceLayer offers a graphical tool for viewing exper-
imental data.

3.3.3 | Execution of the digitized
workflow

After all necessary devices and the workflow script for the
process control system are in place, the new digitized work-
flow can be started. During the process, many different
kinds of information are available and are presented by the
system at different levels of abstraction.

The lab user is presented on the smart-glasses with
screens that display short information snippets about the
current step of the protocol or context sensitive informa-
tion. During the pipetting steps the materials to use are
shown together with relevant safety information, whereas
during the denaturation or centrifugation step, the remain-
ing runtime of the device is displayed. The smart-glasses
are also used to scan the Quick Response-codes generated
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by the inventory system. The contents of these codes are
fed into the “virtual” inventory device. This enables run-
time checking for correctly used chemicals and expiration
dates. It also enables the inventory system to track the use
of all registered materials automatically.

The ControlFlow executable presents the user with a
graphical user interface that allows process coordination
(jumping between steps, re-running steps, etc.) and shows
the communication between devices and lab server in a
condensed form. The lab manager can use the Device-
Layer web-frontend to view the logs from all SILA2 servers
in the laboratory in one place. This can be used for
validating processes or troubleshooting and testing new
workflows.

During the experiment all data generated by the lab is
stored directly in the database of the DeviceLayer. From
there it is instantly accessible for the process management
system (for example to determine the remaining runtime
of a device or intermediate measurement results, etc.) but
is also archived for later use. When a run of the work-
flow is started, the lab server generates an ID that ties
all pieces of information and results generated in this run
together.

The REST-API of the DeviceLayer can also be used
to feed experimental data into an electronic laboratory
notebook (i.e. by using an appropriate middleware that
“speaks” both APIs) or any other data analysis tool for fur-
ther processing.

4 | CONCLUDING REMARKS

In this report, a detailed concept for laboratory digiti-
zation is presented. The methodology used focuses on
micro-services, which have clearly defined purposes and
interfaces. It thus allows easy maintenance and exten-
sion. The data flow is modeled in a strategic way, which
ensures data validity and enables easy validation and cer-
tification of processes. In contrast to other approaches,
which were focused on fully automated applications, the
method presented aims at a broad digital integration
and flawless interaction with the human worker in the
laboratory.

Wherever possible, existing technologies, protocols and
standards were used. However, this often raises the need
for integration of commercial components with specific
communication protocols. In the future, when more and
more digital interaction with lab devices will be required,
the demand for a vendor independent common commu-
nication protocol will grow. For implementing standards
like the FAIR-data principles, an easy method of data
acquisition and processing is without alternatives. This is

enforced for example by the German NFDI and systems
as the one presented in this article will increase data qual-
ity and reduce the need for potentially error-prone manual
data processing by the researcher.

Especially in research or quality testing, were hand-
written protocols that are carried out by trained profession-
als are the standard workflow, a sophisticated method for
interaction of the digitized lab with the human worker is
necessary. The approach presented focuses on good adop-
tion through easy to use hardware and software that does
not interfere with the normal lab process. A great improve-
ment over traditional methods are the possibilities for fully
automated documenting and archiving. As all data gener-
ated in the lab process are available in one place, creation
of analysis protocols can be automated to exploit the full
potential of the data.
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