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INTRODUCTION

Ischemic stroke is a common nervous system disease that poses 
long-term disability and high rates of mortality.1,2 Related in-
tervention and treatment strategies seek to achieve blood flow 
recovery that can result in cerebral ischemia/reperfusion (I/R) 
injury, and accumulating reports suggest that cerebral I/R 

elicits an excessive release of reactive oxygen species (ROS), 
inflammatory responses, and cell apoptosis, leading to irre-
versible brain damage.3,4 Although encouraging progress has 
been achieved in the field of reperfusion therapy over the last 
few decades,5 therapeutic outcomes remain unsatisfactory. 
Hence, improved understanding of pathological mechanisms 
and novel treatment strategies for cerebral I/R injury are desper-
ately needed. 

Basic helix-loop-helix family member e40 (Bhlhe40), a basic 
helix-loop-helix protein, has been shown to play significant 
roles in multiple cellular behaviors, including cell differentia-
tion, cell proliferation, cell apoptosis, and cell metabolism: 
Bhlhe40 has been found to mediate the inhibitory effects of 
hypoxia on myogenic differentiation;6 to modulate cytokine 
production via T cells and be crucial for pathogenicity in auto-
immune neuroinflammation;7 and to promote cell prolifera-
tion in breast cancer.8 Interestingly, upregulation of Bhlhe40 
has been shown to decrease ROS production.9 Nevertheless, 
although cerebral I/R injury is characterized by excessive ROS 
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production, the potential role of Bhlhe40 in cerebral I/R injury 
has yet to be investigated. 

MicroRNAs (miRNAs) are a category of short, single-strand-
ed, noncoding RNAs (20–24 nucleotides) that are involved in 
numerous biological processes.10,11 A series of miRNAs have 
been shown to play essential roles in pathological processes of 
cerebral ischemia. For example, miR-138 appears to attenuate 
myocardial I/R injury by inhibiting mitochondria-mediated 
apoptosis.12 Researchers have also found that miR-26a is a crit-
ical mediator in exosomes derived from human urine-derived 
stem cells after ischemic stroke.13 As miRNAs have previously 
been shown to carry out various biological functions in multi-
ple cellular processes through complementarily binding to 
the 3'-untranslated region (UTR) of mRNAs,14,15 we conducted 
bioinformatics analysis to predict the putative upstream miR-
NAs of Bhlhe40. In doing so, we determined that miR-494-3p 
binds to Bhlhe40: miR-494-3p inhibition was reported to pre-
vent neurotoxic T helper cell 1-skewed neurotoxicity in a mouse 
model of ischemic stroke.16 Moreover, research has indicated 
that miR-494-3p could contribute to neuronal network degen-
eration by targeting semaphorin 3A in amyotrophic lateral scle-
rosis.17 Accordingly, we investigated the roles of Bhlhe40 and 
miR-494-3p in cerebral I/R injury using oxygen-glucose de-
privation/reperfusion (OGD/R) SH-SY5Y cells and middle ce-
rebral artery occlusion/reperfusion (MCAO/R) mice.

MATERIALS AND METHODS

Animals
Male C57BL6 mice (21–24 g, 6–8 weeks, Vital River Co. Ltd., Bei-
jing, China) were housed under a 12 h of light/dark cycle un-
der controlled temperature and humidity. All animal experi-
ments were conducted in strict accordance with the Guide for 
the Care and Use of Laboratory Animals of the National Insti-
tutes of Health and were approved by the Experimental Animal 
Ethics Committee of Wuxi Second People’s Hospital (Jiangsu, 
China).

MCAO/R operation
A mouse MCAO/R model was established as described in pre-
vious studies.16,18 Briefly, mice were intraperitoneally injected 
with ketamine (65 mg/kg) and xylazine (6 mg/kg) for anesthe-
sia. After being fixed with adhesive tape, an incision was made 
on the necks of mice to expose the right common carotid artery. 
Next, a 6–0 nylon filament with a rounded tip (Doccol Corpora-
tion, Redlands, CA, USA) was inserted from the common ca-
rotid artery into the end of the internal carotid artery to ob-
struct the origin of the right middle cerebral artery. Two hours 
after occlusion, the surgical nylon filament was removed, and 
reperfusion was administered for 12, 24, 48, or 72 h. Mice in 
the sham group were treated similarly without MCAO opera-
tion. After mice were sacrificed under deep anesthesia, brain 

tissues were harvested for further investigation. 

SH-SY5Y cell culture
SH-SY5Y cells (Chinese Academy of Sciences, Shanghai, China) 
were cultured in Dulbecco’s modified Eagle’s medium (DMEM; 
Gibco-BRL, Grand Island, NY, USA) containing 10% fetal bo-
vine serum and 1% penicillin/streptomycin (Gibco-BRL). Cells 
were cultured at 37°C in a humidified atmosphere with 5% 
CO2.

Cell transfection
MiR-494-3p mimics, miR-494-3p inhibitor, negative control 
(NC) mimics, and NC inhibitor were synthesized by GenePh-
arma (Shanghai, China). Full-length Bhlhe40 was inserted into 
the pcDNA3.1 vector (Invitrogen, Carlsbad, CA, USA) to gener-
ate a Bhlhe40 overexpression vector (pcDNA3.1/Bhlhe40), and 
an empty pcDNA3.1 vector was used as a NC. Cell transfection 
was performed using Lipofectamine 2000 (Invitrogen).

OGD/R operation
An OGD/R operation was adopted to mimic neuronal injury 
in vitro. Briefly, SH-SY5Y cells were cultured in glucose-free 
DMEM in a hypoxia chamber filled with N2 (95%) and CO2 
(5%) at 37°C for 4, 8, 12, or 24 h. Subsequently, cells were cul-
tured under normal conditions in high-glucose DMEM at 37°C 
for an additional 24 h. 

Adeno-associated virus injection
Adeno-associated virus (AAV) (serotype 2, Vigene Bioscienc-
es, Shanghai, China) containing full-length Bhlhe40 or NC 
(empty AAV) was injected (1011 v.g/mL) into mice via the tail 
vein 2 weeks before MCAO/R operation. 

Neurological score
Neurological deficits were determined after 24  h of MCAO/R 
by two investigators blinded to animal groupings. Zea-Longa 
score was used to score neurological deficits as follows: 0, the 
animal behaved normally; 1, the contralateral fore paw could 
not be fully extended; 2, the contralateral fore paw could not 
be extended; 3, animal mildly turned around in a circle to the 
contralateral side; 4, animal severely turned around in a circle 
to the contralateral side; and 5, animal fell to the contralateral 
side.

Triphenyl tetrazolium chloride staining
Brain infarct volume was determined using triphenyl tetrazo-
lium chloride (TTC) staining after 24 h of MCAO/R. After mice 
were sacrificed, brain tissues were cut into coronal slices (2-
mm thickness). The slices were stained with 1% 2,3,5-TTC 
(Sigma-Aldrich, St. Louis, MO, USA) at 37°C for 30 min in the 
dark and then fixed with 4% paraformaldehyde. The infarct 
area (white) and normal areas (red) were analyzed using Im-
ageJ software (National Institutes of Health, Bethesda, MD, 
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USA), and the infarct ratio was calculated by the following for-
mula: (red area on the left-red area on the right)/red area on 
the left.

Quantitative real-time polymerase chain reaction
Total RNA was extracted from SH-SY5Y cells or brain tissues of 
mice using TRIzol reagent (Invitrogen). A TaqMan MicroRNA 
Reverse Transcription Kit (Applied Biosystems, Foster City, 
CA, USA) or High-Capacity cDNA Reverse Transcription Kit 
(Applied Biosystems) was used for synthesis of cDNA. U6 act-
ed as the internal reference for miRNA expression. Real-time 
PCR was performed using SYBR Green Real-Time PCR Mas-
terMix (Toyobo, Japan), with GAPDH serving as the internal 
reference for mRNA expression. The 2-ΔΔCt method was used to 
calculate relative gene expression. 

Western blot analysis
Proteins were extracted using radioimmunoprecipitation assay 
buffer (Cell Signaling Technology, Inc., Danvers, MA, USA). 
Next, the concentrations of individual proteins were deter-
mined with a Bicinchoninic Acid Protein Assay Kit (Beyotime, 
Beijing, China). The proteins were separated by 10% sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis and then 
transferred to polyvinylidene difluoride membranes (Millipore, 
Billerica, MA, USA). Next, the membranes were blocked for 1  h 
with 5% skim milk, followed by incubation with primary anti-
bodies at 4°C overnight. Subsequently, secondary antibody was 
added for another 2  h of incubation. The proteins were visual-
ized with enhanced chemiluminescence detection kits (Beyo-
time) and quantified using ImageJ software. The primary anti-
bodies included Bax (ab32503; Abcam Inc., Shanghai, China), 
Bcl-2 (ab182858), Bhlhe40 (ab97525), and GAPDH (ab181602). 

Flow cytometry analysis
The apoptosis rate of SH-SY5Y cells was examined with flow cy-
tometry with an Annexin V-FITC/PI Detection Kit (Beyotime). 
The cell suspension was digested in trypsin, washed with phos-
phate buffer saline, and then centrifuged for 10 min. After be-
ing resuspended in binding buffer, SH-SY5Y cells were incu-
bated with Annexin V-FITC (5 μL) and propidium iodide (5 
μL) for 15 min at room temperature in the dark. A FC500MCL 
flow cytometer (BD Biosciences, San Jose, CA, USA) was used 
to assess apoptosis.

Bioinformatics analysis
The online database starBase (http://starbase.sysu.edu.cn/) 
was used to predict the miRNAs that have binding sites for Bhl-
he40. The binding site of miR-494-3p in Bhlhe40 was predict-
ed in the TargetScan database (http://www.targetscan.org/
vert_70/).

Dual-luciferase reporter assay
The 3'-UTR of Bhlhe40 was inserted into the pmirGLO report-

er vector (Promega, Madison, WI, USA) to construct a wild-
type Bhlhe40-expressing vector (Bhlhe40-Wt). Site-specific 
mutagenesis of TSPAN5 was performed to generate mutant 
(Mut) TSPAN5 (Bhlhe40-Mut). Then, Bhlhe40-Wt or Bhlhe40-
Mut vectors were co-transfected, respectively, with NC-mim-
ics, miR-494-3p mimics, NC-inhibitor, or miR-494-3p inhibi-
tor into cells. Lipofectamine 2000 (Invitrogen) was used for 
transfection. After 48 h of transfection, luciferase activity was 
determined using a dual-luciferase assay system (Promega).

RNA immunoprecipitation assay
RNA immunoprecipitation (RIP) assay was conducted using an 
EZ-Magna RIP Kit (Millipore) following the manufacturer’s in-
structions. Briefly, prepared magnetic beads coated with anti-
Ago2 and the NC anti-IgG were added to cell lysates for incuba-
tion at 4°C overnight. RIP wash buffer was added to wash the 
beads. After purification with proteinase K, the purified RNA 
contents were subjected to RT-PCR. 

Measurement of ROS
In order to measure the production of ROS, SH-SY5Y cells were 
cultured in DMEM supplemented with 0.1% 2',7'-dichlorodi-
hydrofluorescein diacetate for 30 min at 37°C according to the 
protocols of an ROS Assay Kit (Beyotime). Cells were then col-
lected by centrifugation and resuspended in phosphate buffer 
saline. Fluorescence intensity was determined using a Micro-
plate Reader (Molecular Devices, Sunnyvale, CA, USA) at an op-
timal excitation wavelength of 500 nm and an emission wave-
length of 525 nm.

Statistical analysis
Data are expressed as the means±standard deviation from 
three independent experiments and were analyzed using SPSS 
23.0 (IBM Corp., Armonk, NY, USA). Student’s t-test or one-
way analysis of variance (ANOVA) followed by Tukey’s post hoc 
test was used for comparisons between groups. P values <0.05 
were considered statistically significant.

RESULTS

Bhlhe40 alleviates cerebral I/R injury in a MCAO/R 
animal model
We performed Western blotting to examine Bhlhe40 levels in 
a MCAO/R mouse model. The results showed that Bhlhe40 
protein levels were reduced after MCAO/R in a time-dependent 
manner after a minimum of 48 h (p<0.01, ANOVA followed by 
Tukey’s post hoc test) (Fig. 1A and B). Next, we explored the ef-
fects of Bhlhe40 on mice after MCAO/R. First, Bhlhe40 was 
upregulated in the animal model by injection with AAV-Bhl-
he40 (p<0.001, ANOVA followed by Tukey’s post hoc test) (Fig. 
1C). In order to evaluate brain infarct volumes in mice, TTC 
staining was performed after 48  h of reperfusion. We found 
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Fig. 1. Bhlhe40 alleviates cerebral I/R injury in a MCAO/R animal model. (A and B) Bhlhe40 protein levels in brain tissues of mice (n=8/group) were mea-
sured by Western blot after MCAO/R treatment for 12, 24, 48, or 72 h. *p<0.05, **p<0.01, ANOVA followed by Tukey’s post hoc test. (C) Bhlhe40 expression 
in brain tissues of mice (n=8/group) was measured by RT-qPCR after injection with AAV-Bhlhe40. *p<0.05, ***p<0.001, ANOVA followed by Tukey’s post 
hoc test. (D and E) TTC staining results of the cerebral cortex in mice (n=8/group) at 48 h after MCAO/R. *p<0.05, **p<0.01, ANOVA followed by Tukey’s 
post hoc test. (F) Measurements of neurological scores in mice (n=8/group). *p<0.05, **p<0.01, ANOVA followed by Tukey’s post hoc test. (G) Western blot 
analysis was performed to determine Bax and Bcl-2 protein expression in brain tissues of mice (n=8/group). *p<0.05, ANOVA followed by Tukey’s post hoc 
test. I/R, schemia/reperfusion; MCAO/R, middle cerebral artery occlusion; Bhlhe40, basic helix-loop-helix family member e40; ANOVA, analysis of vari-
ance; AAV, adeno-associated virus; TTC, triphenyl tetrazolium chloride.

that infarct volume was significantly increased in the MCAO/R 
group, compared with the sham group (p<0.01, ANOVA fol-
lowed by Tukey’s post hoc test), while Bhlhe40 overexpression 
reduced the infarct volume, compared with the model group 
(p<0.05, ANOVA followed by Tukey’s post hoc test) (Fig. 1D 
and E). Moreover, we observed that neurological scores nota-
bly decreased after overexpressing Bhlhe40 in the MCAO/R 

group (p<0.05, ANOVA followed by Tukey’s post hoc test) (Fig. 
1F). Western blot analysis indicated that Bhlhe40 overexpres-
sion decreased the expression of Bax and increased that of Bcl-
2 in MCAO/R mice (p<0.05, ANOVA followed by Tukey’s post 
hoc test) (Fig. 1G).
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Bhlhe40 inhibits cell apoptosis and ROS production in 
OGD/R-induced SH-SY5Y cells 
We found that the Bhlhe40 protein levels in SH-SY5Y cells were 
gradually reduced after OGD/R treatment at 4, 8, 12, and 24 h 
(p<0.01, ANOVA followed by Tukey’s post hoc test) (Fig. 2A and 
B). Bhlhe40 was overexpressed with pcDNA3.1/Bhlhe40 trans-
fection in OGD/R-treated SH-SY5Y cells (p<0.001, ANOVA fol-
lowed by Tukey’s post hoc test) (Fig. 2C). Western blot revealed 
that Bax protein expression was increased and that Bcl-2 pro-
tein expression was reduced in the OGD/R group; however, 
Bhlhe overexpression reversed these changes (p<0.05, ANOVA 
followed by Tukey’s post hoc test) (Fig. 2D). Flow cytometry 
analysis demonstrated that the cell apoptosis rate in OGD/R-
treated SH-SY5Y cells was decreased after overexpressing Bhl-
he40 (p<0.05, ANOVA followed by Tukey’s post hoc test) (Fig. 
2E). Furthermore, we discovered that the production of ROS was 
inhibited after Bhlhe40 overexpression (p<0.05, ANOVA fol-
lowed by Tukey’s post hoc test) (Fig. 2F).

MiR-494-3p targets Bhlhe40
We searched the starBase v3.0 database to identify miRNAs 
with binding sites to Bhlhe40, and six candidate miRNAs were 
identified (Fig. 3A) (condition: the overlapped gene in human 
and mouse). The miRNAs are listed in Supplementary Tables 
1 and 2 (only online). In response to OGD/R treatment, miR-
494-3p levels significantly increased, while the other miRNAs 
displayed no significant change (p<0.01, Student’s t-test) (Fig. 
3B). In addition, miR-494-3p was present at higher levels in the 
MCAO/R group than in the sham group (p<0.05, Student’s t-
test) (Fig. 3C). Next, miR-494-3p levels were upregulated by 
transfection with miR-494-3p mimics and downregulated by 
miR-494-3p inhibitor (p<0.001, ANOVA followed by Tukey’s post 
hoc test) (Fig. 3D). We found that Bhlhe40 expression was de-
creased in SH-SY5Y cells in the miR-494-3p mimics group and 
increased in the miR-494-3p inhibitor group (p<0.01, ANOVA 
followed by Tukey’s post hoc test) (Fig. 3E). After RIP assay, 
Bhlhe40 and miR-494-3p were found to be significantly en-
riched in the anti-Ago2 group, compared with the anti-IgG group 
(p<0.001, ANOVA followed by Tukey’s post hoc test) (Fig. 3F). 
Furthermore, luciferase reporter assay results showed that the 
luciferase activity of Bhlhe40-Wt was markedly reduced by 
miR-494-3p mimics and increased by miR-494-3p inhibitor, 
compared with the control group. The luciferase activity of Bhl-
he40-Mut exhibited no significant change among SH-SY5Y cells 
in the NC-mimics, miR-494-3p mimics, NC-inhibitor, and miR-
494-3p inhibitor groups (p<0.01, ANOVA followed by Tukey’s 
post hoc test) (Fig. 3G), suggesting that Bhlhe40 is targeted by 
miR-494-3p.

Overexpression of miR-494-3p promotes ROS 
production and neuron apoptosis
In order to further explore the biological function of miR-494-3p, 
RT-qPCR was performed, and the expression of miR-494-3p 

in OGD/R-treated SH-SY5Y cells was upregulated by transfec-
tion with miR-494-3p mimics and downregulated by transfec-
tion with miR-494-3p inhibitor (p<0.001, ANOVA followed by 
Tukey’s post hoc test) (Fig. 4A). Overexpressing miR-494-3p in-
creased apoptosis, while knockdown of miR-494-3p prevented 
cells from apoptosis in the OGD/R group (p<0.05, ANOVA fol-
lowed by Tukey’s post hoc test) (Fig. 4B). As shown in Fig. 4C, 
in response to miR-494-3p mimics, Bax protein levels were in-
creased, and Bcl-2 protein levels were decreased. In the miR-
494-3p inhibitor group, Bax protein levels were decreased, and 
Bcl-2 protein levels were increased (p<0.05, ANOVA followed 
by Tukey’s post hoc test). Moreover, miR-494-3p overexpression 
reduced ROS production, while miR-494-3p downregulation 
had the opposite effect (p<0.05, ANOVA followed by Tukey’s 
post hoc test) (Fig. 4D).

Bhlhe40 can rescue the effects of miR-494-3p on 
neuron apoptosis and ROS production
Finally, rescue assays were conducted to determine whether 
Bhlhe40 improves I/R by interacting with miR-494-3p. The re-
sults showed that miR-494-3p mimics increased cell apopto-
sis and Bax protein expression and the decreased Bcl-2 protein 
level, while Bhlhe40 overexpression could counteract these ef-
fects (p<0.05, ANOVA followed by Tukey’s post hoc test) (Fig. 
5A and B). Additionally, overexpression of Bhlhe40 attenuated 
the promotive role of miR-494-3p in ROS production (p<0.05, 
ANOVA followed by Tukey’s post hoc test) (Fig. 5C). Therefore, 
miR-494-3p was deemed to promote cell apoptosis and ROS 
production by targeting Bhlhe40.

DISCUSSION

Bhlhe40 influences cell apoptosis and oxidative stress, and 
ROS production could be decreased by Bhlhe40 upregulation.9 
The present study was the first to demonstrate that the expres-
sion of Bhlhe40 is downregulated in brain tissues of MCAO/R 
mice and OGD/R-induced SH-SY5Y cells. Next, we further ex-
plored the role of Bhlhe40 in cerebral I/R injury. After a series 
of experiments, Bhlhe40 overexpression was found to reduce 
brain infract volume and neurobehavioral scores in MCAO/R 
animal models. Similarly, Bhlhe40 overexpression restrained 
cell apoptosis and ROS production in OGD/R-induced SH-
SY5Y cells, suggesting the protective effects of Bhlhe40 against 
cerebral I/R injury.

Cerebral I/R injury is considered a destructive brain process. 
Unfortunately, clinical treatment of I/R induced brain injury 
remains limited. Meanwhile, research has shown ROS to play 
an important role in the pathological process of cerebral I/R 
injury.19,20 Reportedly, a significantly increase of ROS in cerebral 
I/R injury leads to oxidative stress and evokes multiple pro-
apoptotic signaling pathways:21-23 For example, dihydrocapsa-
icin restrains oxidative stress and inflammatory responses 
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Fig. 2. Bhlhe40 inhibits cell apoptosis and ROS production in OGD/R-induced SH-SY5Y cells. (A and B) Bhlhe40 protein levels in SH-SY5Y cells were 
measured by Western blot after OGD/R treatment for 4, 8, 12, or 24 h. *p<0.05, **p<0.01, ANOVA followed by Tukey’s post hoc test. (C) The transfection 
efficiency of pcDNA3.1/Bhlhe40 in OGD/R-treated SH-SY5Y cells was determined by RT-qPCR. *p<0.05, ***p<0.001, ANOVA followed by Tukey’s post 
hoc test. (D) Bax and Bcl-2 protein expression levels were detected by Western blot. *p<0.05, ANOVA followed by Tukey’s post hoc test. (E) Flow cy-
tometry was used to determine apoptosis in OGD/R-treated SH-SY5Y cells. *p<0.05, **p<0.01, ANOVA followed by Tukey’s post hoc test. (F) ROS pro-
duction in OGD/R-treated SH-SY5Y cells. *p<0.05, **p<0.01, ANOVA followed by Tukey’s post hoc test. Bhlhe40, basic helix-loop-helix family member 
e40; ROS, reactive oxygen species; OGD/R, oxygen-glucose deprivation/reoxygenation; ANOVA, analysis of variance.
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through inhibiting the release of ROS.24 Additionally, pretreat-
ment of melatonin was found to diminish increased expression 
levels of Nox2 and Nox4 and thereby reduce the ROS levels in 
cerebral I/R.25 Progranulin (PGRN) is a secreted glycoprotein 
with pleiotropic functions and it protects against cerebral I/R-

induced brain injury by suppressing necroptosis and associat-
ed ROS production.26 

MiRNAs have been widely reported to participate in multiple 
biological processes.10,11 Some miRNAs have been shown to play 
roles in ischemic injury.12,13 After a series of assays, we verified 
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that Bhlhe40 could bind to miR-494-3p. Previously, miR-494-3p 
was reported to aggravate 1-methyl-4-phenylpyridinium-in-
duced neurotoxicity.27 Additionally, miR-494-3p could serve as a 
potential biomarker or a therapeutic target for stroke induced 
by atrial fibrillation.28 Its functional and potential mechanisms 

in cerebral I/R injury are still unclear. In our research, miR-494-
3p upregulation accelerated cell apoptosis and ROS production 
in OGD/R-induced SH-SY5Y cells, and miR-494-3p downreg-
ulation inhibited cell apoptosis and ROS production. Interest-
ingly, Bhlhe40 overexpression reversed the influence of miR-
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494-3p overexpression on cell apoptosis and ROS production 
in OGD/R-induced SH-SY5Y cells.

In summary, this study is the first to demonstrate a protec-
tive role for Bhlhe40 against cerebral I/R injury in vitro and in 

vivo. Additionally, we found that miR-494-3p promotes cell 
apoptosis and ROS production in OGD/R-induced SH-SY5Y 
cells at least partly by targeting Bhlhe40. Our findings indicate 
that a miR-494-3p/Bhlhe40 axis may be a promising therapeu-

Fig. 5. Bhlhe40 rescues the effects of miR-494-3p on OGD/R-induced apoptosis and ROS production. (A) Flow cytometry was used to assess apoptosis 
in OGD/R SH-SY5Y cells transfected with the indicated plasmids. *p<0.05, ANOVA followed by Tukey’s post hoc test. (B) Bax and Bcl-2 protein expres-
sion levels in OGD/R SH-SY5Y cells transfected with the indicated plasmids were measured by Western blot. *p<0.05, ANOVA followed by Tukey’s 
post hoc test. (C) ROS production in OGD/R SH-SY5Y cells transfected with the indicated plasmids. *p<0.05, ANOVA followed by Tukey’s post hoc test. 
Bhlhe40, basic helix-loop-helix family member e40; OGD/R, oxygen-glucose deprivation/reoxygenation; ROS, reactive oxygen species; ANOVA, analy-
sis of variance.
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tic target for cerebral I/R injury and may provide a scientific 
basis for targeted treatment for this disease.
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