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Introduction: Computational models of the cardiovascular system are widely used
to simulate cardiac (dys)function. Personalization of such models for patient-specific
simulation of cardiac function remains challenging. Measurement uncertainty affects
accuracy of parameter estimations. In this study, we present a methodology for
patient-specific estimation and uncertainty quantification of parameters in the closed-
loop CircAdapt model of the human heart and circulation using echocardiographic
deformation imaging. Based on patient-specific estimated parameters we aim to
reveal the mechanical substrate underlying deformation abnormalities in patients with
arrhythmogenic cardiomyopathy (AC).

Methods: We used adaptive multiple importance sampling to estimate the posterior
distribution of regional myocardial tissue properties. This methodology is implemented
in the CircAdapt cardiovascular modeling platform and applied to estimate active
and passive tissue properties underlying regional deformation patterns, left ventricular
volumes, and right ventricular diameter. First, we tested the accuracy of this method
and its inter- and intraobserver variability using nine datasets obtained in AC patients.
Second, we tested the trueness of the estimation using nine in silico generated virtual
patient datasets representative for various stages of AC. Finally, we applied this method
to two longitudinal series of echocardiograms of two pathogenic mutation carriers
without established myocardial disease at baseline.

Results: Tissue characteristics of virtual patients were accurately estimated with a
highest density interval containing the true parameter value of 9% (95% CI [0–79]).
Variances of estimated posterior distributions in patient data and virtual data were
comparable, supporting the reliability of the patient estimations. Estimations were
highly reproducible with an overlap in posterior distributions of 89.9% (95% CI [60.1–
95.9]). Clinically measured deformation, ejection fraction, and end-diastolic volume were
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accurately simulated. In presence of worsening of deformation over time, estimated
tissue properties also revealed functional deterioration.

Conclusion: This method facilitates patient-specific simulation-based estimation of
regional ventricular tissue properties from non-invasive imaging data, taking into account
both measurement and model uncertainties. Two proof-of-principle case studies
suggested that this cardiac digital twin technology enables quantitative monitoring of
AC disease progression in early stages of disease.

Keywords: arrhythmogenic right ventricular cardiomyopathy, speckle-tracking echocardiography, deformation
imaging, cardiac computational model, adaptive multiple importance sampling

INTRODUCTION

Computational models of the cardiovascular system are widely
used to simulate cardiac (dys)function and related clinical
application of therapies for cardiac disease (Niederer et al.,
2019). Various attempts to generate a digital twin of the human
heart have been made (Corral-Acero et al., 2020). Previously,
we proposed a framework to create a digital twin (van Osta
et al., 2020) for quantification of the disease substrate underlying
abnormal tissue deformation in patients with arrhythmogenic
cardiomyopathy (AC) (van Osta et al., 2021).

Inheritable AC primarily affects the right ventricle (RV) and
predisposes to ventricular arrhythmias and sudden cardiac death
in young individuals (Thiene et al., 1988; Basso et al., 2009).
Therefore, early disease detection is important. We previously
determined an in silico disease substrate with decreased regional
RV contractility and compliance, with the potential to predict
disease progression on a patient-specific level (van Osta et al.,
2021). This method was, however, not able to include uncertainty
present in both measurement and model.

Uncertainty will inevitably play a role in comparing estimated
properties and thus Bayesian inference methods should be used
to estimate the posterior distribution of model parameters,
rather than only providing point estimates. Cardiovascular
computational models are in general complex, meaning that the
posterior distribution cannot be calculated analytically. Various
techniques have been proposed to solve this problem, in which
Markov chain Monte Carlo (MCMC) methods are often used
(Schiavazzi et al., 2017; Dhamala et al., 2018; Meiburg et al., 2021).
Adaptive multiple importance sampling (AMIS) is an important
alternative to MCMC since it enables estimation of the posterior
distribution in a model with a relatively high number of input
parameters (Cornuet et al., 2012; Bugallo et al., 2017).

In this study, we apply AMIS to quantify parameter
uncertainties in digital twins based on echocardiographic
deformation imaging. We validate the methodology based on
both in silico generated virtual data and datasets obtained from
patients with AC and mutation positive family-members at risk
of developing the disease. Furthermore, we use longitudinal
series of echocardiograms in two AC patients to validate clinical
applicability of this methodology.

MATERIALS AND METHODS

This section and Figure 1 elucidate the methodology used
to estimate parameters and related uncertainties using the
CircAdapt model. First, we elaborate the mathematical basis
and implementation of AMIS, which is generally applicable.
Secondly, we describe the mathematical problem and introduce
the included clinical measurements and the computational
model used for the likelihood function. Finally, we explain
the simulation protocol. More detailed information is shown
in Supplementary Material, including pseudocodes of the
algorithm. The source code as well as the virtual patient
datasets are available.

Mathematical Basis of Adaptive Multiple
Importance Sampling
We consider an nθ -dimensional vector as a set of parameters
θ of a numerical model z =M (θ). This model M : Rnθ →

Rnz maps the parameter vector to an nz-dimensional vector of
modeled data z. Measurement uncertainties are included in the
likelihood function p (z | θ) representing the similarity between
patient observation and model output. The posterior distribution
p (θ | z) is the probability of having parameters θ given the
observation z and is given by Bayes’ rule as

p (θ | z) =
p (z | θ) p (θ)

p (z)
∝ p (z | θ) p (θ) , (1)

with p (θ) the prior knowledge of the parameters and p(z) the
normalizing constant. No prior knowledge of the parameters
p (θ) is known, so p (θ) was assumed to be uniform.

Importance sampling is an algorithm which estimates the
posterior distribution p (θ | z) (Bugallo et al., 2017). The set of
samples 2 =

{
θ ∼ q (θ)

}
drawn from the proposal distribution

q (θ) form an empirical estimation of the posterior distribution
p (θ | z) in which each sample is weighted with the sample weight
w described by

w (θ) ∝
p (θ | z)

q (θ)
. (2)

The weights are normalized such that
∑

θ∈2 w (θ) = 1.
Importance sampling is most effective when the proposal
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FIGURE 1 | Non-invasive measurements were used as input for a fully automatic automated uncertainty quantification algorithm. This algorithm produced a digital
twin based on estimated parameters with accompanying uncertainty. This digital twin can be used to get more insight in the estimated tissue properties. RVfw, right
ventricle free wall; LVfw, left ventricle free wall; IVS, inter ventricular septum; HR, heart rate; EDV, end-diastolic volume; EF, ejection fraction; RVD, right ventricular
diameter.

distribution q(θ) is close to the posterior distribution p (θ | z)
such that variance in weight of the samples is small and the
effective sample size is close to the actual sample size. Since no
information was available on the posterior distribution, we used
adaptive importance sampling in which the proposal distribution
is iteratively updated to better describe the posterior distribution
(Bugallo et al., 2017).

The computational cost of calculating the likelihood p (z | θ)
in cardiovascular models is relatively high compared to the cost
of calculating the probability density function of the proposal
distribution q (θ), so the samples from all previous iterations were
included in defining the proposal distribution q (θ) to optimally
recycle past simulations following the AMIS (see Figure 2)
(Cornuet et al., 2012).

Each iteration in this algorithm consists of two stages. First,
samples are drawn from the proposal distribution and weights
of all samples are updated. Second, the proposal distribution is
updated based on the new sample weights.

Draw Samples and Calculate Sample Weights
At the start of each iteration i, 100 samples are drawn from the
current proposal distribution πi (θ). Samples are drawn without
statistical dependencies between parameters, which may result
in non-physiological combinations of parameters. For example,
the model is not parameterized for a low contractile heart to

be able to supply a high cardiac output (CO) and is therefore
likely to become numerically instable. To circumvent this, only a
small uniform distribution around the reference is used as initial
proposal distribution q0 (θ). AMIS will increase and decrease the
search area of the proposal distribution and will move this to the
area of interest in which physiological samples will be drawn close
to the desired posterior distribution.

Each iteration, the weights are updated based on the proposal
function and likelihood (Equation 2). The probability density
function of all previous proposal distributions is given by the sum
of all individual proposal distributions

qi (θ) =
1

Nsamples

niter−1∑
i=0

nsamples, i · πi (θ), (3)

with nsamples, i the number of samples in iteration i and Nsamples =∑niter−1
i=0 nsamples, i the total number of samples. Samples drawn

from poorly performing proposal distributions are eliminated
through the erosion of their low weights (Cornuet et al., 2012).

The likelihood function is defined based on the normalized
dimensionless summed squared error X ()2. This X(θ)2 is
problem dependent and the X2 used in this study is described in
section “Likelihood Function.” We assumed a non-informative
uniform prior and neglected all interactions between individual
errors. Furthermore, annealed adaptive importance sampling (Li
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FIGURE 2 | Visualization of adaptive multiple importance sampling. In the first iteration, samples θ are drawn from a uniform distribution and stored in the sample set
2. For each sample, the corresponding sample weight w is calculated. Then, based on all previous samples θ in the sample set 2 and corresponding sample
weight w, the next proposal distribution is defined and new samples are added to the sample set 2. This iterates niter times.

and Lin, 2015) was used to prevent the algorithm from premature
convergence (Černý, 1985; Neal, 2001), resulting in a likelihood

p (z | θ, Ti) ∝ e−
X(θ)2

Ti , (4)

in which Ti = 1 in each iteration i and represents the
annealing temperature. This method is included to control
convergence rate, thereby improving global search capabilities
and limiting premature convergence toward local minima. The
initial temperature is set to Tmax = 10, and decreases each
iteration i such that

Ti + 1 =

{
min

(
10, Ti + X2

opt

)
if X2 is improved

max (1, 0.8 · Ti) else
(5)

with X2
opt the difference between the old and new X2 of

the best sample.

Update Proposal Distribution
Each iteration, the proposal distribution is updated based on
all drawn samples in the sample set 2 and its corresponding
weight w. Details on the definition of the proposal distribution are
shown in Supplementary Material 1.1. In the updated proposal
distributions, samples were drawn along the principal component
axes of the weighted sample set 2.

This protocol ran for at least 500 iterations. Additional
iterations were performed in the case that the effective sample size

Neff > 10 · nθ was not fulfilled. The Kish effective sample size was
Neff used (Beskos et al., 2014), which is defined as

Neff =

[∑
θ∈2 w (θ)

]2∑
θ∈2

(
w (θ)2) . (6)

Problem Description
Clinical Data
Patient-specific simulations were based on echocardiographic
data from AC mutation carriers in various disease stages.
Besides clinically measured LV and RV regional deformation
imaging data, the LV end-diastolic volume (EDV), LV ejection
fraction (EF), and right ventricular basal diameter (RVD) were
used as model input. We used echocardiographic data of nine
pathogenic AC mutation carriers which were evaluated in the
University Medical Center Utrecht, Netherlands. As previously
described (van Osta et al., 2021), deformation analyses of these
echocardiograms were performed twice by two observers to
determine clinical inter- and intra-observer variability. Lastly,
longitudinal datasets with >2 echocardiograms per patient at
different time points were used to explore applicability of
the model for follow-up of tissue properties over time. These
longitudinal datasets were acquired from AC mutations carriers
which were evaluated in the Oslo University Hospital, Norway.

All echocardiographic data were obtained on a Vivid 7,
Vivid 9, or Vivid E95 ultrasound machine (GE Vingmed,
Horten, Norway). The echocardiographic protocol was described
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previously (Kirkels et al., 2021). In this study, we focused on
the right ventricular free wall (RVfw). This is typically the
most affected area in AC mutation carriers (Marcus et al.,
2010), which is expressed in typical deformation abnormalities
(delayed onset of shortening, decreased peak systolic strain, post-
systolic shortening, and increased RV mechanical dispersion)
(Kirkels et al., 2021). Therefore, deformation patterns of three
RVfw segments (apical, mid-ventricular, and basal) were used as
input for our modeling framework (Figure 1) (van Osta et al.,
2021). Additionally, LV free wall (LVfw) and interventricular
septal (IVS) deformation patterns were included to ensure
realistic mechanical boundary conditions for the RVfw in
terms of ventricular interaction. These patterns were obtained
by averaging the 12 LVfw and 6 IVS segmental deformation
curves, respectively, using the standardized 18-segment model
(Voigt et al., 2015).

Computational Model of Heart and Circulation
Clinical measures were simulated using the CircAdapt model.
This model is a fast biomechanical lumped parameter model of
the heart and circulation. Via the one fiber model (Arts et al.,
2005), wall stress is related to cavity pressure. The TriSeg module
allows inter-ventricular interaction over the IVS (Lumens et al.,
2009). Phenomenological material laws prescribe the stress–
strain relation in the spherical walls. The MultiPatch module
allows for regional heterogeneity of tissue properties within a
single wall (Walmsley et al., 2015) and is used to describe the
heterogeneity in the RVfw. Three segments were created in
the RVfw to model the mechanics in the three different RVfw
segments (apical, mid-ventricular, and basal).

The parameter subset θ included for estimation was based
on a previous sensitivity analysis (van Osta et al., 2021) and is
shown in Table 1. Parameters included were regional parameters
describing the constitutive behavior of active (SfAct) and passive
stress (k1), activation delay (dT), reference wall area (AmRef),
and global parameters relative systole duration (RSD), and
CO. Heart rate (HR) in the model was set to match clinically
measured HR to ensure equal cycle lengths in measured and
modeled signals.

Strain was defined as the segmental displacement relative to
its reference length at end diastole (see Supplementary Material

1.2). Additionally, EF, EDV, and RVD were included. Modeled
EDV was defined as the maximum cavity volume of the LV cavity
assuming perfect valve behavior. EF was defined as the ratio of
stroke volume over maximum volume. RVD was defined as the
maximum cavity diameter between the RVfw and IVS.

Likelihood Function
As shown in Equation 4, the likelihood function was based on
the summed squared error X2. This error consists of the error in
strain of the five segments and on the error in EF, EDV, and RVD.
Because the measured diastolic strain is less reliable due to the
drift affecting most of this phase, we only included strain during
the systolic phase in this study. This systolic phase was defined
from the onset of the QRS complex until 100 ms after peak strain
of the segment with longest shortening phase.

To account for dependencies in strain, we included weighted
dimensionless errors based on strain (e2

ε, seg), strain rate (e2
ε̇, seg),

and inter-segmental strain differences (e2
εinter

). Errors in EF
(e2

EF), EDV (e2
EDV ), and RVD (e2

RVD) were assumed independent,
resulting in the X2 to be the sum of all individual weighted
dimensionless errors e2:

X2
=

∑
seg∈segments

(
e2
ε, seg + e2

ε̇, seg

)
+

∑
inter∈interseg

e2
1εinter

(7)

+

∑
m∈[EF, EDV, RVD]

e2
m.

Standard deviations used to normalize each individual term were
manually estimated a priori to meet differences between the
inter- and intraobserver datasets. Standard deviations used to
normalize EF, EDV, and RVD were set a priori in consultation
with clinical partners. A more detailed description of the
likelihood function is included in Supplementary Material 1.2.

Right Ventricle Tissue Properties
To relate our simulations to clinical measures, four RV tissue
properties were investigated, namely contractility, activation
delay, compliance, and myocardial work. These measures are
explained in more detail in Supplementary Material 1.5. In
brief, segmental contractility was defined as the maximum rate
of active stress rise, which can be seen as the equivalent of the

TABLE 1 | parameters included in this study.

Model parameter Unit Description Sample
distribution

Parameter range N parameters

SfAct kPa Active stress
scaling factor

logit-uniform [0, 1000] 5 [LVfw, IVS, RVapex, RVmid, RVbase]

k1 – Stiffness
exponent

logit-uniform [1, 100] 5 [LVfw, IVS, RVapex, RVmid, RVbase]

dT ms Activation delay logit-uniform [−200, 800] 5 [LVfw, IVS, RVapex, RVmid, RVbase]

AmRef cm2 Eccentric
hypertrophy

log-uniform [0,∞] 3 [LVfw, IVS, RVfw]

RSD – Global systolic
duration scaling

log-uniform [0,∞] 1 Global

Q0 L/min Cardiac Output log-uniform [0,∞] 1 Global

20
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maximum rate of ventricular systolic pressure rise (dP/dtmax) on
a local tissue level. Segmental wall compliance was defined as the
slope of the end-diastolic myofibre stress–strain relationship at
time before first ventricular activation and can be interpreted as
the regional equivalent of the slope of the global end-diastolic
pressure–volume relation. Myocardial work density was defined
as the area within the stress–strain loop and can be interpreted as
the regional equivalent of global stroke work.

Simulation Protocol
Uncertainty Quantification of Real Patient Datasets
Nine clinical datasets in which the echocardiographic images
were analyzed twice by two independent observers were included
to test reproducibility, leading to 36 datasets. For each individual
dataset, parameters were estimated three times resulting in 108
estimations in total. Since no ground truth exists for estimated
model parameters, only the reproducibility of estimations was
evaluated. Three kinds of reproducibility were investigated,
namely computational reproducibility, reproducibility including
interobserver variability, and reproducibility including
intraobserver variability. First, computational reproducibility was
defined as the reproducibility of the exact same clinical dataset
and quantified by the mutual information (MI) between two
model parameter estimations. The same protocol was repeated
three times with a different random seed. To calculate the MI,
two distributions were discretized into 100 bins. The MI was then
defined as the overlap divided by the union of the distributions.
Secondly, reproducibility including interobserver variability was
tested on the nine patient datasets, whereby a second blinded
observer performed deformation imaging analysis on the same
echocardiographic loops as the first observer. It was defined as
MI between two estimated model parameter distributions from
two datasets observed by the two different observers. Finally,
reproducibility including intraobserver variability was quantified
similarly from two different datasets, whereby the observer
performed the deformation analysis again after at least 2 weeks,
blinded to previous results. The median MI with 95% confidence
interval (CI) of all parameter estimations was reported. In
case the estimations from different observations fully overlap,
MI = 100%. In case of no overlap at all, MI = 0%.

Uncertainty Quantification of Virtual Patient Datasets
To test the trueness of the estimation, in silico generated virtual
patients were generated. To ensure these virtual patients to be
representable for real AC patients, nine virtual patients were
created based on the nine real patient datasets. For each real
patient, the simulation with maximum likelihood was selected.
The output of this simulation was used as virtual patient dataset,
which was used as input of the modeling framework.

Trueness of the virtual estimations was tested by comparing
the estimated distribution with the known true parameter values.
For each parameter, the highest density interval (HDI) for which
the true value is in the interval was calculated. The HDI was
defined as the area of the distribution for which the posterior
holds p (θ | z) = p(θtrue|z). The distribution was approximated
with a histogram with bin width defined by the Freedman–
Diaconis rule (Freedman and Diaconis, 1981). The HDI for each

parameter should be near 0% meaning the true value is near the
maximum a posteriori.

Application in Longitudinal Datasets
Two subjects with a baseline and two follow-up echocardiograms
were selected (Table 2). For all six datasets, clinical data was
extracted and the datasets were estimated independently of each
other, similarly as described above. The two longitudinal sets
of estimated tissue properties were investigated. Due to the
retrospective nature of this study, LV EDV was only available at
baseline. We assumed that it did not change during follow-up.

Code Implementation
The CircAdapt model was written in C++. All other code was
written in Python. Each individual dataset was solved sequentially
and independently. The source code of the CircAdapt model
has been made available before (van Osta et al., 2020). All
other source code is publicly available on Zenodo1. Datasets
were estimated in parallel with Python 3.9.4 on a AMD Ryzen
Threadripper 3970X.

RESULTS

Uncertainty Quantification of Real
Patient Datasets
Regional deformation characteristics were accurately simulated
close to the measured deformation and with reasonable
uncertainty {X2

opt = 9.4 (95% CI [5.4− 20.9])}. Figure 3 (left)
shows a representative example. The modeled strain followed
the pattern of clinically measured strain during systole and
heterogeneity between the segments was well captured. A 1D
representation of the convergence of the proposal distribution,
corresponding to the estimated model parameters is shown in
Figure 4. In the first 50 iterations, the proposal distribution
decreased, increased, and moved to the area of interest. From
the 50th iteration, most proposal distributions stabilized. This
behavior was also observed in estimations in other datasets (see
Supplementary Material 2.2).

The estimated posterior distributions of the model parameters
(Figure 4) of most parameters were estimated with small
variances, except for parameters SfAct and k1, because they
were unidentifiable in some segments. The posterior correlation
matrix (Figure 5, top) shows the correlation between estimated
posterior distributions. Notable are the correlations between

1https://doi.org/10.5281/zenodo.5084657

TABLE 2 | Patient characteristics of the two subjects at baseline and follow-up
used in the likelihood function.

Subject 1 Subject 2

Time after
baseline (year)

0 4.5 9.1 0 5.2 7.3

LV EDV (mL) 112 150

LV EF (%) 61 61 61 59 64 57

RVD (mm) 43 43 42 45 38 40
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FIGURE 3 | Measured and estimated strain of real subject (left) and violin plots of estimated parameters (right). Deformation patterns and regional heterogeneity was
well captured by the model. The best simulation in the sample set was in good agreement with to the patients dataset (X2

opt = 8.9).

model parameters SfAct, k1, dT, and AmRef describing
mechanics in the same wall segment. Additionally, there was
a high correlation between different segments for the model
parameters dT and AmRef. From the two global parameters, only
RSD seemed to correlate with dT.

Figure 3 (right) shows the estimated regional RV model
parameters and the RV tissue properties contractility, activation
delay, compliance, and work density. The RV tissue properties
were estimated with distributions with a smaller variance
compared to the estimated model parameters. A decrease in basal
contractility, compliance, and work density with respect to the
apical and mid segment was found which is in line with the
abnormal basal deformation pattern.

Figure 5 (bottom) shows the correlation between posterior
model parameter distributions with the RV tissue properties
contractility, compliance, and work density. Contractility was
mostly correlated with SfAct, AmRef, and CO. In the RVapex
and RVmid, contractility was not only dependent on the
parameters prescribing its own segmental mechanics, but also
on the parameters prescribing other segmental mechanics.
Similar results were observed for compliance, which was
correlated with SfAct, k1, and dT. Compliance showed no
correlation with AmRef, RSD, and CO. Work density was mostly
correlated with CO.

Estimated model parameters were highly reproducible.
Computational reproducibility was found with an MI of
89.9% (95% CI [60.1–95.9]). The reproducibility error given
inter- and intraobserver variability were estimated with

an MI of 86.5% (95% CI [46.0–95.2]) and 85.9% (95% CI
[43.7–95.3]), respectively. More details on reproducibility
and inter- and intraobserver variability are shown in
Supplementary Material 2.1.

Uncertainty Quantification of Virtual
Patient Datasets
Nine virtual patients were created based on the nine real-
patient estimations. As an example, Figure 6 shows the virtual
patient based on the patient results described above. Regional
deformation characteristics were simulated close to the virtual
patients deformation characteristics (X2

opt = 2.0 (95% CI =
[1.2− 3.0]). The true parameter values were well captured by the
estimated distributions. The HDI of the true parameter values
was 9% (95% CI [0–79]). Heterogeneity in model parameters was
well preserved. The width of the distribution in virtual fits was
similar to that in the original patient estimation.

Application: Longitudinal Datasets
Two subjects with a baseline and two follow-up echocardiograms
were included in this study (Table 2). The first subject had a
follow-up examination after 4.5 and 9.1 years and the second
subject after 5.2 and 7.3 years. Results of these case studies are
shown in Figures 7, 8.

Subject 1 developed an abnormal deformation pattern of
the basal RV segment at last follow-up which was not seen
at baseline. Computer simulations showed homogeneous RV
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FIGURE 4 | Convergence of estimated model parameters. The distributions on the right show the final estimated posterior distribution.

contractility, activation delay, compliance, and work at baseline.
In the last follow-up examination, an apex-to-base heterogeneity
in compliance and work density was present.

Subject 2 showed normal RV deformation patterns at
baseline and did not develop clear deformation abnormalities
during follow-up. Contractility, activation delay, compliance,
and work density were estimated homogeneously at baseline.
In the final follow-up, a small apex-to-base heterogeneity in
compliance was present.

DISCUSSION

In this work, we successfully applied AMIS to estimate posterior
distributions of model parameters describing local passive and
active tissue behavior based on echocardiographic deformation
measurements. Estimated deformation closely resembled the
clinically measured myocardial deformation with a realistic
level of uncertainty originating from both the measurement
and the model. Estimated RV tissue properties reflected
progression of the disease substrate over time present in the
clinical case studies.

Model-Based Inference
Personalization of cardiac computational models is becoming
more popular and several approaches have been proposed.
Schiavazzi et al. (2017) used MCMC to estimate model
parameters in a simplified model of the single-ventricular heart in
a close-looped circulation, based on clinically measured pressures
and flows. Corrado et al. (2015) used a Reduced Order Unscented
Kalman Filter to estimate model parameters to optimize
body surface potential maps and myocardial displacement.

Meiburg et al. (2021) used the Unscented Kalman Filter to
predict post-intervention hemodynamics after trans-aortic valve
implantation. Zenker (2010) used importance sampling to
estimate model parameters in a cardiovascular model. Dhamala
et al. (2020) used high-dimensional Bayesian optimization
for parameter personalization of a cardiac electrophysiological
model. Coveney and Clayton (2018) used history matching
to calibrate the maximum conductance of ion channels and
exchangers in two detailed models of the human atrial action
potential against measurements of action potential biomarkers.
Daly et al. (2017) used sequential Monte Carlo Approximate
Bayesian Inference to quantify the uncertainty amplification
resulting in a cellular action potential model. Camps et al.
(2021) used the same technique to estimate key ventricular
activation properties based on non-invasive electrocardiography
and cardiac magnetic resonance imaging.

These studies used computational models with different levels
of model complexity in both anatomical and physiological
detail. Complex models allow personalization with a high
number of details, however, they suffer from a high-dimensional
unknown space increasing the difficulty of personalization due to
unidentifiability of the model parameters. This problem can be
solved by reducing the complexity of the optimization problem
by assuming global model parameters (Davies et al., 2019) or
regional model parameters (Dhamala et al., 2017). However,
this does not reduce the computational cost and increases
model discrepancy. It is suggested to use a surrogate model
to approximate the exact posterior probability density function
(Paun et al., 2019), but this creates a new source of uncertainty.
Including model discrepancy in the estimation often fails due to
the non-identifiability between model parameter estimations and
model discrepancy (Lei et al., 2020). The pseudo-true parameter
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FIGURE 5 | Posterior correlation matrix of the estimated model parameters (top) and the correlation between the posterior distribution of model parameters and
derived tissue properties (bottom).
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FIGURE 6 | Measured and estimated strain of virtual subject (left) and violin plots of estimated parameters (right). The estimated properties are close to the true
properties of the virtual patient (black dot) and the heterogeneity is well captured. The best simulation in the sample set was closely related to the virtual patients
dataset (X2

opt = 2.0).

value found by ignoring model discrepancy can still be valuable
for clinical interpretation.

Another approach is to reduce the complexity of the model.
Various lumped parameter models of the heart and circulation
have been used for fast personalization (Zenker, 2010; Schiavazzi
et al., 2017; Meiburg et al., 2021). The cost of low complexity
may lead to an increase in model discrepancy due to model
assumptions and simplifications (Lei et al., 2020). It was, however,
demonstrated before that the CircAdapt model is highly efficient
in simulating regional mechanics and is able to simulate realistic
hemodynamics (Arts et al., 2012; Walmsley et al., 2015). We
previously showed that the CircAdapt model can simulate
segmental mechanics with a similar spatial resolution as in
clinical strain imaging measurements with low discrepancy
(Walmsley et al., 2015; van Osta et al., 2021). Therefore, we
assume the CircAdapt model is a suitable model for modeling
regional strain in AC patients.

In this study, we chose importance sampling because it is
highly effective for complex high-dimensional models (Bugallo
et al., 2017). The computational cost of our model was
approximately 1000 times higher compared to the calculation
of the probability density of a sample drawn from the proposal
distribution. Therefore, AMIS was the most suitable variant to
optimally reuse all samples (Cornuet et al., 2012).

Efficiency of AMIS heavily depends on the definition of the
proposal distribution (Bugallo et al., 2017). A wider proposal

distribution ensures to visit the full input space of interest,
but is accompanied by a risk of non-converging estimations
due to the high number of samples with a low sample weight.
On the other hand, a more narrowed search has the risk
of finding a local minimum in which the wrong posterior is
estimated, or the risk of collapsing when the weight of the
found minimum drops to zero. As the number of samples
goes to infinity, the sample weight will be equally distributed.
However, for the limited number of samples drawn, an optimal
balance should be found. We successfully implemented annealed
adaptive importance sampling to prevent the model from
premature convergence while still being able to narrow the
proposal distribution in the later iterations. More research
should go into defining the proposal distribution or the initial
proposal distribution.

In this study, it took approximately 16 h per dataset
to converge. This time includes generating the proposal
distributions, generating samples, running simulations,
obtaining the likelihood function, and calculating the sample
weights. The total duration mainly depends on the duration of
each individual simulation, since the number of iterations in
the estimations was equal or close to 500. The duration of each
simulation depended on HR, numerical stability, and number
of beats needed to get a hemodynamically stable solution.
Computational time can be reduced in future studies, since
AMIS allows parallel calculation of simulations. This reduction
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FIGURE 7 | Longitudinal estimations subject 1. Echocardiographic deformation imaging was performed at baseline, and after 4.5 and 9.1 years of follow-up.
Computer simulations showed homogeneous RV contractility, activation delay, compliance, and work at baseline. At last follow-up, subject 1 developed an abnormal
deformation pattern of the basal RV. Estimation of RV tissue properties from these deformation data showed an apex-to-base heterogeneity in activation delay,
compliance, and work density.

in computational time will be essential for clinical application of
our method on a larger scale.

Uncertainty Quantification in
Arrhythmogenic Cardiomyopathy
Cardiovascular models are, in general, complex models with
a multitude of parameters. To create digital twins with the
CircAdapt model, we used a parameter subset that we determined
in a previous study (van Osta et al., 2020). This subset includes
model parameters related to regional RV contractile function,
compliance, and activation delay. This is in line with functional
and structural myocardial changes found in AC patients [e.g.,
fibro-fatty replacement of myocytes (Basso et al., 2009), altered
calcium handling (van Opbergen et al., 2019), and fibrosis (Tandri
et al., 2005)] and early generic simulation based hypotheses (Mast
et al., 2016). These structural changes might cause abnormal
electrical activation observed in patients with AC (Haqqani
et al., 2012). The RV tissue properties are useful to quantify
the substrate, however, the model cannot distinguish the cellular
origin of the substrate.

The likelihood function was based on our prior knowledge of
the pathology. It is not trivial how to include this information
as the amount of uncertainty and its dependencies is not known
but heavily affects the posterior distribution. In this study,
we limited the objectives in the likelihood function to only

that information in the longitudinal study that our model can
simulate realistically. The main contributor is regional RV strain,
as regional deformation abnormalities are found in early stages
of the disease (Sarvari et al., 2011; Mast et al., 2016, 2019;
Leren et al., 2017; Lie et al., 2018; Malik et al., 2020). LV
strain, RVD, LV EF, and LV EDV are included in the likelihood
to personalize geometric properties of the model. Because of
the complex geometry of the thin-walled RV, our 2D imaging
methods did not provide a comprehensive measure of RV size
and wall thickness. In future studies, 3D imaging methods might
provide a more comprehensive inclusion of geometric variability
of the RV. The RVD was included to account for large geometrical
differences between patients and geometrical changes over time.
Wall volumes were not included in the parameter subset because
they were unidentifiable given the available measurements.

Dependencies in strain were partially included by including
strain rate and strain differences. Based on the used likelihood
function, posterior distributions were estimated with a relatively
wide variance (Figure 4), suggesting not all parameters are
identifiable. The low reproducibility in some parameters (HDI
95% CI [0–79%]) is probably related to this unidentifiability.
Heterogeneity in model parameters is, however, well preserved,
suggesting that measurements that are sensitive to segment-
averaged model parameters should also be included in
the likelihood function. Further prospective studies could
investigate the error propagation of dependent and independent
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FIGURE 8 | Longitudinal estimations subject 2. Echocardiographic deformation imaging was performed at baseline, and after 5.2 and 7.3 years of follow-up. Subject
2 had normal RV deformation patterns at baseline and did not develop clear deformation abnormalities during follow-up. Contractility, compliance, and work density
were estimated homogeneously at baseline.

uncertainties, whether all components of the likelihood are
essential to include, and which other measurements should be
included to increase the identifiability of the model parameters.

Derived tissue properties were estimated more precise and
reproducible compared to model parameters, suggesting that
different parameter combinations can result in the same
hemodynamic state. Mechanics of the three RV segments were
modeled with the same mathematical equations, however, they
have different interactions with the surrounding walls as shown
in Figure 5. Compliance in the basal segment was estimated
more precise compared to the other segments (Figure 6). This
results from the non-linear behavior of the model, as basal model
parameters were differently estimated due to basal deformation
abnormalities. Therefore, compliance in the basal segment was
less correlated with the other segments.

In this study, we used a single definition for myocardial
contractility and compliance related to other more global
definitions. There is no consensus on a single indicator for
contractility and compliance, and often multiple (non-invasive)
measures are used to get an impression. For contractility,
the maximum pressure–time derivative dP/dtmax is the
most commonly used index of contractility in the field of
drug safety assessment (Sarazan et al., 2011). Although this
measure is preload and afterload dependent, the regional
stress–time derivative as local equivalent gives insight in
the regional differences in RV contractile function. Other
global measures have been proposed to bypass preload

and afterload dependencies, such as dP/dtmax at a specific
pressure (Sarazan et al., 2011) or end-systolic pressure–
volume relation (Suga and Sagawa, 1974). New techniques
might be useful for future validation of RV tissue properties,
such as shear wave imaging (Pernot et al., 2011) to quantify
cardiac stiffness.

The gold-standard assessment of RV stiffness (inverse of
compliance) is the end-diastolic pressure–volume relation (El
Hajj et al., 2020). The local equivalent is the models material
law describing the stress–sarcomere length relation. The actual
amount of stress prescribed by this law depends on the sarcomere
length during the cycle (Arts et al., 2005). Due to the complexity
of the model, which includes mechanics based on sarcomere
length, an accurate estimation of compliance is difficult. The
compliance measure as used in this study only includes the
compliance at the end diastolic sarcomere length and is therefore
load-dependent. To obtain a load-independent measure, more
information on the loading conditions should be included in the
likelihood distribution.

Case Study and Future Research
Directions
The two subjects included in the case study showed different
behavior over time. The first subject developed an abnormal basal
RV deformation pattern during follow-up which was reflected
in changes in estimated local tissue properties. The second
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subject did not develop clear deformation abnormalities, but
did develop slight abnormal heterogeneity in tissue properties.
In both cases, only small changes in estimations were observed
from baseline to follow-up. It has previously been shown that
heterogeneity in deformation patterns has prognostic value for
disease progression (Mast et al., 2019) and life-threatening
arrhythmia (Sarvari et al., 2011). Although no further follow-up
of these subjects was available, we can hypothesize our model
might identify abnormal tissue substrates before this is clearly
visible in deformation patterns. Further studies should investigate
whether our approach is able to detect AC in an early stage and
whether it has added prognostic value.

In this study, we estimated model parameters to predict
tissue mechanics under mechanical loading similar to loading
during measurement. To achieve this, we included CO in the
parameter subset and EDV and EF in the likelihood function.
The model could be used for predicting the behavior of the
heart under different loading conditions. This could facilitate the
study of loading effects of drug interventions in the digital twin.
Besides, the effect of exercise, which is an important modulator
of phenotypic expression of AC (Prior and La Gerche, 2020),
could be studied in the digital twin. For the latter, a virtual
cardiac exercise performance test as proposed by van Loon
et al. (2020) could be used to give more insight in the severity
of the substrate and possible triggers for disease progressions.
To allow the CircAdapt model to extrapolate its state to
other loading conditions such as exercise, more information
should be included.

Limitations
Uncertainties are assumed statistically independent and additive,
however, this is in fact more complicated. Measurements have
multiple sources for uncertainty. We have only included inter-
and intra-observer variability of the speckle tracking imaging
in our study. Global longitudinal strain has proven to be
reproducible, however, it has been shown that beat-to-beat
variability affects segmental peak strain, end systolic strain and
post-systolic strain (Mirea et al., 2018). More research should
elucidate the origin of this uncertainty, its effect on normalized
strain morphology as included in our study, and how to optimally
include uncertainty in defining the likelihood function. This
could also facilitate inclusion of realistic noise on virtual patient
datasets, which was outside the scope of this study.

Arrhythmogenic cardiomyopathy is not only characterized
by structural disease manifestation, but electrophysiologic
substrates play an important role as well (Groeneweg et al.,
2015). Currently, the CircAdapt model only contains the lumped
effect of electrophysiology to describe the mechanical behavior.
Future studies could extend the model with a more detailed
electromechanical coupling, such as proposed by Lyon et al.
(2020), to be able to describe the electrophysiologic substrate.

CONCLUSION

We presented a patient-specific modeling approach taking
into account uncertainties. With this approach, we were able

to reproduce regional ventricular deformation patterns and
estimate the underlying tissue properties in AC mutation carriers
with an acceptable level of uncertainty. Virtual estimations were
precise and real-world estimations were highly reproducible.
Two subjects in our case study revealed the evolution of early-
stage AC disease over time using longitudinal follow-up datasets.
Future studies should apply our method on a larger cohort and
investigate the course of early stage RV disease development at
individual as well as patient population levels.
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