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Abstract. Systemic lupus erythematosus (SLE), a common 
autoimmune disease with a global incidence and newly 
diagnosed population estimated at 5.14 (range, 1.4‑15.13) 
per 100,000 person‑years and 0.40 million people annually, 
respectively, affects multiple tissues and organs; for example, 
skin, blood system, heart and kidneys. Accumulating data 
has also demonstrated that psoriasis (PS) can be a systemic 
inflammatory disease, which can affect organs other than the 
skin and occur alongside other autoimmune diseases, such as 
inflammatory bowel disease, multiple sclerosis, rheumatoid 
arthritis and SLE. The current explanations for the possible 
comorbidity of PS and SLE include: i) The two diseases 
share susceptible gene loci; ii) they share a common IL‑23/T 
helper 17 (Th17) axis inflammatory pathway; and iii) the 
immunopathogenesis of the two conditions is a consequence 
of the interactions between IL‑17 cytokines with effector Th17 
cells, T regulatory cells, as well as B cells. In addition, the 
therapeutic efficacy of IL‑17 or TNF‑α inhibitors has been 
demonstrated in PS, and has also become evident in SLE. 
However, the mechanisms have not been investigated. To the 
best of our knowledge, there remains a lack of substantial 
studies on the correlation between PS and SLE. In the present 
review, the literature, with regards to the epidemiology, genetic 
predisposition, inflammatory mechanisms and treatment of 
the patients with both PS and SLE, has been reviewed. Further 
investigations into the molecular pathogenic mechanism 
may provide drug targets that could benefit the patients with 
concomitant PS and SLE.
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1. Introduction

Psoriasis (PS), a chronic T cell‑mediated inflammatory 
disease, affects ~3% of the general population worldwide, and 
has increased in recent years (1). Systemic lupus erythema‑
tosus (SLE) is a recurrent and remitting autoimmune disease 
that occurs in a number of organs and systems, for instance, 
skin, blood system and kidneys (2). Environmental and genetic 
variables have been considered as dominant causes to induce 
autoimmune responses, resulting in the overproduction of 
inflammatory cytokines, for instance IL‑6, and autoantibodies 
from B cells, especially in SLE. Indeed, the presence of 
antibodies against nuclear and cytoplasmic antigens is a diag‑
nostic indication of SLE (3). PS and SLE affect the appearance 
and quality of life of the patients. Both autoimmune disorders 
manifest as chronic inflammatory conditions, which cause 
skin lesions and damage to the joints and other organs, such 
as those in the cardiovascular system. However, these two 
disorders have long been considered as distinct diseases on 
the basis of their relatively disparate pathologic mechanisms. 
While the chronic inflammatory condition has been associated 
to T helper (Th)1 and Th17 cell activation in PS (4,5), overacted 
B cells and Th2 cell‑associated abnormalities are associated 
to SLE development (6,7). It has also been hypothesized that 
the pathogenic mechanisms for SLE and PS are opposite (8); 
however, this cannot explain the numerous published cases of 
comorbid PS and SLE (9‑14).

The key factors that cause autoimmunity in SLE include 
the overproduction of autoantibodies, complement activa‑
tion and immune‑complex deposition (15‑19). A number of 

Molecular consideration relevant to the mechanism of the 
comorbidity between psoriasis and systemic lupus 

erythematosus (Review)
YUYING QU1,  DONGMEI LI2,  WEIDA LIU3  and  DONGMEI SHI4

1Department of Dermatology, College of Clinical Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China;  
2Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA;  

3Department of Medical Mycology, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, Jiangsu 272002; 
4Department of Dermatology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China

Received March 8, 2023;  Accepted August 3, 2023

DOI: 10.3892/etm.2023.12181

Correspondence to: Professor Dongmei Shi, Department of 
Dermatology, Jining No. 1 People's Hospital, 6 Jiankang Road, 
Jining, Shandong 272011, P.R. China
E‑mail: shidongmei28@163.com

Key words: psoriasis, systemic lupus erythematosus, IL‑17, B cell, 
autoimmune diseases



QU et al:  PSORIASIS COMORBIDITIES2

recent studies have observed that patients with PS not only 
have affected skin but also have other accompanying autoim‑
mune conditions, such as rheumatoid arthritis, alopecia areata, 
celiac disease, systemic sclerosis, Crohn's disease, Sjögren 
syndrome, vitiligo, ulcerative colitis, giant cell arthritis and 
SLE (20‑22). PS is considered an autoimmune condition that 
may be induced by the activation of T cells and B cells in the 
absence of persistent infection or other discernible causes (23).

In the present review, a number of developments in humoral 
and cellular immunities that occur in patients with comorbid 
SLE and PS are presented and discussed. The present review 
aimed to find the possible links between PS and SLE by 
reviewing the epidemiological data, immunopathogenic 
mechanisms, genetic traits and therapeutic efficacies.

2. Epidemiological evidence of PS coexistence with SLE

Prevalence of SLE in patients with preexisting PS. Two types 
of comorbid diseases have been reported in patients with PS: 
Those diseases sharing the main pathogenic mechanisms 
and those not sharing pathogenesis but with clinically severe 
chronic inflammatory conditions (24). SLE belongs to the latter 
category (25). According to an epidemiological study of PS 
comorbidity, patients with PS were at greater risk of developing 
an immune‑mediated inflammatory disease (IMID) compared 
with general population controls (26). The majority of concur‑
rent IMIDs appeared before the diagnosis of PS, indicating 
that there could be a pathophysiologic mechanism under‑
lying PS and concurrent IMIDs (27‑33). A population‑based 
case‑controlled study of the coexistence of PsA and SLE in 
Israel revealed a 2.3‑fold increase in the prevalence of SLE 
among patients with PsA compared with age and sex‑matched 
controls from the general population (34). According to 
research reports, when analyzed by level of severity, severe PS 
demonstrated a 3‑ to 7‑fold increased risk for SLE compared 
with mild PS, especially in Asian patients (28,35,36). The 
explanation was that patients with moderate to severe PS may 
be more likely to be receiving additional phototherapy. Both 
of these treatments increase the risk for the development of 
SLE (37,38). A 10‑year retrospective study identified 42 cases 
of SLE in 9,420 patients with PS (39). In the same study, the 
prevalence rate of PS that coexists with SLE was ~1.1%, and 
was slightly higher in female patients due to the fact that 
prevalence of SLE is higher in women compared with men. 
Therefore, when treating female patients with PS, caution 
should be exercised in medication and vigilance should be 
exercised against the occurrence of SLE.

Prevalence of PS in patients with preexisting SLE. A previous 
study, investigating the prevalence of PS in patients with prin‑
cipally diagnosed SLE, analyzed a large national population 
database for admission probabilities of patients with SLE, and 
demonstrated that 150 of a total of 20,630 hospitalized patients 
with SLE (0.7%) had a co‑existing PS condition (40). In another 
study, it was reported that 0.6% of 520 patients with SLE had 
PS (41). Patients have a sequential occurrence of PS and SLE, 
but the probability of both occurring together is <1.2%, and 
the lower incidences in both cases suggest that comorbidity 
between two diseases could be an accidental event. According 
to reports, patients with SLE experienced a psoriatic flare 

that was likely due to the use of antimalarial drugs such as 
hydroxychloroquine (10,42). Therefore, when treating patients 
with SLE and a family history of PS, an alternative drug to 
hydroxychloroquine would be more appropriate, such as 
mycophenolate mofetil.

3. Common immunopathogeneses between PS and SLE

Inflammatory mechanism. Prior to the discovery of comorbid 
PS and SLE, it was hypothesized that the pathological 
mechanisms of PS and SLE were different; PS is a systemic 
inflammatory reaction caused by Th1 cell activation while 
abnormalities of SLE are due to highly reactive Th2 
responses (43,44). To initiate an inflammation, exposure to 
external infectious or non‑infectious substances, such as 
bacteria, viruses and ultraviolet radiation, damage the host 
cells to form an antigen complex with released nucleotides and 
antimicrobial peptides in the epidermis. Antigen‑presenting 
cells, such as plasmacytoid dendritic cells (DCs), identify this 
complex and stimulate antigen‑specific T cell growth in the 
skin and lymph nodes (45). The plasmacyte DCs secrete type I 
interferon that increases the production of IL‑23 and TNF‑α 
in myeloid DCs (46). These cytokines promote Th17 cell 
differentiation, which together with IL‑1 stimulation, produce 
IL‑17 and IL‑22 that further increase the expression of TNF‑α, 
C‑C motif chemokine ligand 20 (CCL20) and antimicrobial 
peptides such as LL37 (47), leading to an inflammatory 
response in the skin and to keratinocyte proliferation (48). 
Cytokines associated with SLE include IFN‑α, IL‑6 and 
IL‑17 (49). These inflammatory cytokines, in particular B‑cell 
activating factor of the TNF family (BAFF), also serve roles in 
autoimmunity and autoantibody production in SLE.

A number of B cell subsets may be strongly associated with 
SLE. Currently, there are three known B cell effectors involved 
in the pathogenesis of SLE: i) Pathogenic plasmablasts may be 
produced without the assistance of T cells, as demonstrated in 
the BAFF transgenic model (50); ii) autoreactive B cells and 
CD4+ T cells interact at the T cell: B cell boundary after initial 
autoantigen recognition; and iii) co‑stimulatory signals and 
cytokine crosstalk activate B cells and autoantibody produc‑
tion through a T cell‑dependent extrafollicular route or inside 
spontaneous, autoimmune germinal centers (51,52). Therefore, 
the aberrant activation of human B cells is a phenotypic 
hallmark of SLE and is associated with the progress of the 
disease.

Th17 cells and associated cytokines with B cell activation 
in comorbid PS and SLE. Th17 cells are associated with 
the pathogenesis of various autoimmune and inflammatory 
diseases, such as rheumatoid arthritis, SLE, multiple sclerosis, 
PS, inflammatory bowel disease and allergy and asthma (53), 
by producing several effector molecules. They are character‑
ized by the expression of the orphan nuclear factor receptor 
retinoic acid receptor‑related orphan receptor‑γ‑t (RORγt), 
the cytokines IL‑17 and IL‑22, the chemokine CCL20, and 
the inflammatory chemokine receptor C‑C motif chemokine 
receptor 6 (CCR6) (54‑56). IL‑17 is a potent proinflamma‑
tory cytokine produced by highly activated Th17 cells and is 
known to serve a role in maintaining chronic inflammation in 
PS. Indeed, highly expressed IL‑17, IL‑22 and IL‑23 have been 
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demonstrated in skin biopsies from patients with PS (57,58). 
IL‑22 is also known to be essential for maintaining the immune 
barrier within the epidermis and is able to induce the release 
of antimicrobial agents and β‑defensins from keratinocytes 
and promote epidermal hyperplasia (57). In the recruitment of 
Th17 cells to local tissues, the CCL20/CCR6 axis has been 
demonstrated to serve a crucial role (59). Finally, several 
other factors associated to the Th17 response also engage in 
the vascular inflammatory pathway by recruiting leukocytes, 
activating B cells and producing autoantibodies, and therefore 
may contribute to the occurrence and development of SLE 
and PS (60,61). The current data indicates the factors that are 
common between SLE and PS are an increase in the number of 
Th17 lymphocytes and an increase in the serum levels of IL‑17 
and IL‑23, in which IL‑17 is a main proinflammatory cytokine 
that serves a crucial role in the pathogenesis of various inflam‑
matory diseases, including PS and SLE (62‑64).

Patients with SLE have higher serum levels of IL‑17 and 
IL‑23 compared with healthy controls (65). Furthermore, 
IL‑17 levels in the plasma are correlated with the severity 
of SLE (66). Compared with a healthy control group, the 
concentration of IL‑17 in the serum of patients with SLE and 
the expression of IL‑17 mRNA in activated peripheral blood 
mononuclear cells were increased, which were positively 
correlated with the Systemic Lupus Erythematosus Disease 
Activity Index (67‑69). The skin biopsy examination of 
patients with SLE and skin involvement demonstrated that the 
expression level of IL‑17 was increased compared with that of 
normal individuals, confirming that IL‑17 is involved in the 
immune pathogenesis of SLE (70). IL‑17 promotes inflamma‑
tion and tissue damage in the context of SLE by recruiting 
neutrophils and monocytes, facilitating T‑cell tissue infiltra‑
tion and promoting antibody production (71). By contrast, 
IL‑17 also facilitates T‑cell activation and infiltration into the 
tissues along with increased expression levels of intercellular 
adhesion molecule‑1 (ICAM‑1) and matrix metalloproteinase 
(MMPs) (72,73).

The IL‑23/Th17 axis has previously been suggested to be 
essential in developing lupus nephritis, both in mice models 
and in patients with SLE (74,75). In mouse models, IL‑17 is 
associated not only to T cell‑mediated tissue injury, but also to 
the production of pathogenic autoantibodies and it was demon‑
strated that Th17 cells were increased in a MRL/lpr lupus 
nephritis mouse model (76). The IL‑23/IL‑17 axis is involved 
in the pathogenesis of SLE where activated DCs produce the 
inflammatory cytokines IL‑6 and IL‑23, which then stimulate 
Th17 cells to produce IL‑17 (77). In two in vitro studies, T cells 
from patients with SLE increased their IL‑17 production and 
concomitantly limited production of the regulatory cytokine 
IL‑2 in the presence of IL‑23, leading to exacerbated inflam‑
mation (56,57). Additionally, an attenuated inflammation with 
a striking decrease in the accumulation of double‑negative 
T cells were revealed in the kidneys and secondary lymphoid 
organs when a IL‑23 receptor deficient MRL/lpr mouse SLE 
model was used (78,79).

It is well known that B cells and autoantibodies directed 
against numerous nuclear and cell surface antigens serve roles 
in SLE immunopathogenesis. Given the fact that SLE‑derived 
B cells would increase anti‑DNA production in the presence 
of IL‑17 (66), an extensive body of data obtained in mice 

models and humans in terms of the T cell‑B cell interactions 
have revealed that T cells aid the activation of the autoanti‑
body‑producing B cells in SLE (80‑82). However, the exact 
function of IL‑17 that leads to SLE remains unknown. In the 
SLE development process, B lymphocyte stimulator (BLyS) 
can become upregulated and it may act as a survival factor 
to inhibit B cell apoptosis, to stimulate B cell proliferation 
and differentiation through an interaction with IL‑17, and ulti‑
mately to increase the production of autoantibodies (83,84). 
In addition, increased levels of BLyS would promote the 
proliferation of Th17 cells leading to increased levels of 
IL‑17, which in turn could act in conjunction with BAFF to 
promote the survival and proliferation of human B cells and 
their differentiation into antibody‑producing cells (81). In 
addition to IL‑17, the roles of other cytokines in the T cell‑B 
cell interaction have been noted with regard to SLE pathogen‑
esis. For example, IL‑21, produced by Th17 cells, stimulates 
CD8+ T cell proliferation and B cell differentiation for immu‑
noglobulin production (66,85,86). These roles of IL‑21 have 
been validated in a lupus‑prone mouse model, in which the 
IL‑21/IL‑21 receptor pathway was blocked by the adminis‑
tration of a fusion protein, resulting in an alleviated disease 
progression (87,88). Finally, the production of autoantibodies 
by activated B cells leads to the activation of DCs and the 
secreted IL‑23 can increase production of IL‑17 (89) (Fig. 1).

Collectively, this data indicates that the multifarious func‑
tions of the Th17 cells and B cells as well as the inflammatory 
environment created by the T cell‑B cell interaction all func‑
tion together to lead to SLE, as demonstrated in other human 
IMIDs.

Regulatory T (Treg) cells and B cells in comorbid PS and 
SLE. Treg cells are a distinct lineage of T‑cell subsets (90) 
and control the immune responses to self‑ and non‑self‑anti‑
gens (91). Under normal physiological conditions, Treg cells 
serve a critical role in maintaining a balance in the immune 
homeostasis, and abnormalities in the function Treg cells 
have been associated with the pathogenesis of autoimmune 
disorders, allergic diseases and even cancer, such as PS, 
asthma, prostatic carcinoma and lymphoma (92). For auto‑
immune diseases, low volume or inactivated Treg cells fail 
to suppress self‑reactive T cell proliferation and cytokine 
production, leading to the imbalanced activities of other 
effector immune cells such as Th1 and Th17. The suppres‑
sive functions of the Treg cells occur mainly through direct 
contact and/or through its secretion of suppressive cytokines, 
such as IL‑10 and transforming growth factor (TGF)‑β (93). 
In addition, Treg cells reduce the differentiation of cytotoxic 
CD8+ T cells and inactivate B cells (94). Furthermore, the 
suppressive function of Treg cells is impaired in patients with 
PS and an altered Th17/Treg ratio in the peripheral blood of 
patients with PS is due to a decreased number of Treg cells 
and an increased number of Th1 and Th17 cells (95). The 
imbalance in the Th17/Treg ratio promotes inflammation due 
to the production of inflammatory cytokines such as IFN‑γ 
or IL‑17 (96,97). Similar phenotypic effector cells and Treg 
cells are also considered to contribute to SLE pathogen‑
esis (98‑100). Therefore, it is possible that the inflammatory 
environment of PS could be conducive to the development 
and deterioration of SLE. Although IL‑10 is the key cytokine 
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that is produced by Treg cells (CD4+CD25+FOXP3+), it has 
also been revealed that the D4+CD25+FOXP3‑Treg cells could 
also secrete high levels of IL‑10 (in a FOXP3+ independent 
manner) to inhibit the in vitro proliferation of CD4+CD25‑ T 
cells with a similar efficiency to that of FOXP3+ Tregs (91). 
However, no matter the origin of IL‑10 in PS and SLE, the 
increased levels of IL‑10 are associated with the increased 
levels of antibodies in patients with SLE (101). The increased 
levels of IL‑10 has been hypothesized to stimulate the prolif‑
eration of B cells (102,103) and to promote their synthesis 
of IgG through the upregulation of the interactions between 
cytokines and B cell receptors (102,104). In addition to 
secreting IL‑10, Treg cells collected from patients with SLE 
were demonstrated to directly suppress the B cell‑mediated 
antibody production in an in vitro experiment (105), in which 
Treg cells induced a contact‑dependent apoptosis of the B 
cells through the perforin‑ and granzyme‑pathways (106). 
Therefore, functional defects in Treg cells, or a lack of 
Treg cells and IL‑10 are considered to contribute to SLE 
pathogenesis (98‑100).

TNF‑α in comorbid PS and SLE. TNF‑α is a pleiotropic 
cytokine that affects the activities of variant cell types in 
various physiological and pathological conditions, such as in 
the development of T cells, B cells and DCs. This cytokine is 
a potent inflammatory mediator and also an apoptosis inducer. 
Overexpression of TNF‑α has been observed in patients with 
PS for two decades and it was revealed to be distributed 
throughout the epidermis and specifically localized to the 
upper dermal blood vessels (107).

The significance of the involvement of TNF‑α in the 
pathogenesis of SLE remains controversial. Previous evidence 
has suggested that this cytokine serves a dualistic, proinflam‑
matory, and an immune‑ or disease suppressive role in SLE 
progress (108). TNF‑α was reported to be increased in patients 
with SLE and was correlated with disease course, and the 
immunopathogenesis of SLE (109,110). Anti‑TNF‑α admin‑
istration also demonstrated that this treatment can suppress 
the inflammatory responses in an experimental SLE model, 
which was induced by the injection of human anti‑DNA auto‑
antibodies in mice (111). However, the use of an anti‑TNF‑α 

Figure 1. Involvement of the Th17 cells and B cells in comorbid PS and SLE. In patients with comorbid PS and SLE, environmental and physicochemical 
stimuli, for example microorganisms, drugs and trauma, would activate DCs to secrete large amounts of cytokines, including IL‑6, IL‑21, IL‑1β and IL‑23. 
These cytokines promote the differentiation of naive CD4+ T cells into Th17 cells for IL‑17 secretion. Meanwhile, apoptosis in injured tissues and organs leads 
to the release of a large amount of double‑stranded DNA and ribonucleoproteins, which combine with autoantibodies to form nucleic acid immune complexes 
and activate pDC. Activated pDC secrete large amounts of IL‑1β, IL‑6 and IFN‑α that further promotes the response of the Th17 cells. Additionally, IFN‑α 
can activate infDC to further amplify the aforementioned processes, resulting in a large infiltration of IL‑17 in the tissues and serum. IL‑17, in combination 
with BAFF and BLyS, promote B cells to proliferate and differentiate into plasma cells and to maintain the generation of germinal centers to continuously 
produce autoantibodies. Furthermore, autoantigens from apoptosis directly stimulate primitive B cells to enhance the aforementioned process. The figure was 
created using Figdraw (www.figdraw.com). Th, T helper; PS, psoriasis; SLE, systemic lupus erythematosus; DC, dendritic cell; infDC, inflammatory DC; pDC, 
plasmacytoid DC; BAFF, B‑cell activating factor of the TNF family; IL‑23R, IL‑23 receptor; BLyS, B lymphocyte stimulator.
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agent can also lead to increased levels of autoantibodies for 
double‑stranded DNA (dsDNA) and cardiolipin (112). Higher 
levels of TNF‑α have been reported in patients with PS than 
in healthy individuals (113); therefore, the pathogenic roles of 
TNF‑α in both diseases should be further classified.

Causes of pathophysiological changes. Different subpopula‑
tions of T cells (Th1, Th2, Th9, Th17, Th22 and Treg cells) 
and their corresponding proinflammatory cytokines are 
all involved in the pathophysiology of PS and SLE (114). 
Activated T cells secrete proinflammatory cytokines, which in 
turn stimulate the resident tissue cells to recruit immune cells 
and further increase the secretion of IL‑2, IL‑4, IL‑9, IL‑17 
A, IL‑22, TNF‑α, IFN‑γ and GM‑CSF in perivascular and 
renal systems of affected patients with PS or SLE (84,115‑118). 
Nevertheless, chronic inflammation due to abnormal immune 
responses is the pathogenic bases of SLE and PS. In addition 
to the aforementioned cytokines and effector cells, other 
inflammatory mediators, such as those from fibroblast‑like 
synoviocytes (FLSs), could also crosstalk with these factors to 
lead to pathophysiological conditions and to accelerate inflam‑
mation in PS and SLE. Previously, local stromal cells, such as 
FLSs, have been revealed as inflammatory effectors that affect 
the phenotype and function of different organs, such as kidney, 
gastrointestinal tract, and joints, in autoimmune disease (119). 
For example, the involvement of FLS in inflammation and 
cartilage destruction has been observed in PsA; however, how 
activated T cells modulate the release of the inflammatory 
mediators is not fully understood in both diseases.

4. Genetic predispositions of PS and SLE

Genetic studies on patients with autoimmune conditions have 
identified the susceptibility loci for a number of diseases, 
including for PS and SLE (120‑123). A number of loci identi‑
fied by genome‑wide association studies have been associated 
with both PS and SLE, such as protein tyrosine phosphatase 
non‑receptor type 22 (PTPN22), TNF receptor associated 
factor 3 interacting protein 2 (TRAF3IP2), signal transducer 
and activator of transcription 4 (STAT4) and TNF‑α‑induced 
protein 3 interacting protein 1 (TNIP1) (121,123‑128). The 
TRAF3IP2 locus, located on chromosome 6q21, encodes 
NF‑κB activator 1, which is both a negative regulator of the 
humoral immunity and a positive signaling adaptor of the 
IL‑17‑dependent NF‑κB activation. As a downstream target of 
the IL‑17 receptor, it may have a pivotal role in the IL‑23/IL‑17 
axis in the pathogenesis of PS (129). The PTPN22 gene 
encodes lymphoid tyrosine phosphatase, a lymphoid‑specific 
tyrosine phosphatase that acts as a negative regulator of T cell 
signaling. A gain of function for PTPN22 could allow it to 
participate in the release of autoantibodies and increase the 
formation and deposition of immune complexes, which would 
trigger an inflammatory response resulting in the possible 
development of SLE and its clinical manifestations (130,131). 
A number of studies have revealed an association between PS 
and rs1217414 located in intron 1 of PTPN22 (122,132). The 
level of PTPN22 transcription could negatively regulate T‑cell 
function and thereby changes susceptibility to PS (122). The 
STAT4 protein is located in T and B lymphocytes, monocytes, 
macrophages, natural killer cells, and DCs. Its expression may 

be associated to immune cell differentiation into inflammatory 
subsets, the production of inflammatory cytokines and autoan‑
tibodies, the suppression of apoptosis, and the presentation of 
autoantigens, all of which may promote the development of 
SLE and PS (133). TNIP1 also serves a critical role in immuno‑
logical homeostasis and autoimmunity prevention, since mice 
with TNIP1 knocked out have been demonstrated to acquire 
almost all autoimmune characteristics, including spontaneous 
germinal center development, isotype switching and autoan‑
tibody production (134,135). Additionally, the protein level of 
TNIP1 was negatively associated with the disease activity of 
SLE and was decreased in the peripheral blood mononuclear 
cells of patients with SLE compared with in that of healthy 
controls (136). In an imiquimod‑induced mouse model of 
dermatitis, downregulation of the TNIP1 expression levels 
resulted in an increased proliferation of human keratinocytes 
and a more severe PS‑like condition (137).

According to a study in China, the NF‑κB‑inhibitor α 
(NFKBIA) and IL‑28 receptor α (IL‑28RA) loci occur at 
increased frequencies in Chinese Han populations with PS 
compared with Chinese Han populations without PS. In this 
study, the susceptible loci, NFKBIA and IL28RA, for SLE 
in the Chinese Han population were also identified (138). 
NFKBIA is an inhibitor of NF‑κB signaling, acting to inhibit 
Th17 cell activity and IL‑17 expression in a healthy indi‑
viduals (139). In patients with PS and/or SLE, the insufficient 
levels of NFKBIA will in turn increase the levels of IL‑17, 
which has been revealed in the skin lesions of patients with 
PS and/or SLE (140). Although IL‑28RA mRNA expression 
levels are increased in the peripheral blood mononuclear cells 
of patients with SLE, they are decreased in the lesional tissues 
from individuals with PS plaques. After the cause of PS has 
been confirmed as due to the reduced expression levels of 
IL‑28RA, IL‑28RA could be a useful pharmacological target, 
at least for the therapy of PS (138,141).

These genetic predispositions may provide hints for the 
early inflammatory mechanism of the coexistence of PS and 
SLE. The present review considers that identification of new 
common susceptible genes for both diseases may provide an 
understanding of the immunopathogenesis of the coexistence 
of SLE and PS and may inspire further treatment options for 
these two conditions.

5. Treatment

The different drugs that are used to treat SLE and PS, with 
regard to treatable and inducible disease are summarized in 
Table I.

Treatment of the IL‑17 cytokine signaling pathway in PS and 
SLE. In the lupus‑induced mouse model, IL‑17 production 
was positively associated with disease progression since 
the manifestation could be eliminated by reducing IL‑17 
production and IL 17‑/‑ mice did not develop anti‑dsDNA, 
anti‑single stranded DNA, anti‑nuclear ribonucleoprotein 
and anti‑chromatin autoantibodies (78). In mouse models, 
overexpression of IL‑17 using an adenovirus increased the 
severity of lupus nephritis, while inhibition of IL‑17 using 
neutralizing antibodies resulted in a reduced severity of 
lupus nephritis (142). These results suggest that IL‑17 is 
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involved in the pathogenesis of SLE (71). Currently, a number 
of IL‑17 inhibitors, including the anti‑IL‑17 monoclonal anti‑
bodies secukinumab, ixekizumab and bimekizumab, and the 
anti‑IL‑17 receptor A monoclonal antibody brodalumab, have 
been demonstrated to be effective as PS treatments (143‑145). 
Furthermore, a case report described the efficacy of an IL‑17 
inhibitor, secukinumab, in a patient with SLE (146). The use 
of an IL‑17 monoclonal antibody to treat lupus was approved 
by the US Food and Drug Administration. Additionally, a 
double‑blind phase II study has demonstrated the efficacy 
and safety of ustekinumab (an IL‑12 and IL‑23 antagonist) 
in patients with active SLE (147). Ustekinumab has been 
demonstrated to improve a number of mucocutaneous and 
musculoskeletal diseases, such as atopic dermatitis, Crohn's 
disease and ankylosing spondylitis, perhaps by decreasing 
the levels of anti‑dsDNA titers and complement 3. It was also 
revealed to improve the renal function of the patients with 
SLE (146,148). After receiving secukinumab treatment, a 
patient with PsA combined with SLE had improved clinical 
symptoms along with decreased levels of IL‑17 in the serum 
and renal tissue (149). The success in treating this patient 
with both SLE and PsA suggests that the IL‑17/IL‑23 axis is 
the common immunogenic mechanism for developing both 
diseases.

CD20 inhibitors in PS and SLE. Cytokines that activate 
B cells and promote the interaction between B and T cells 
contribute to the production of autoantibodies (150,151). 
Inhibition of B cell‑associated molecules should downregu‑
late the overactive immune responses in SLE. B‑lymphocyte 
antigen (126,127) (called CD20) is highly expressed on the 
surface of all B‑cells and also serves critical roles in cell 
cycle progression during human B cell proliferation and 
activation. Anti‑CD20 antibodies have been employed in 
treatment of a number of diseases (152). In patients with 

rheumatic arthritis, anti‑CD20 therapy achieved a rapid and 
almost complete B‑cell depletion in the peripheral blood 
and suppressed the generation of plasma blasts, sustain‑
able for at least 6 months (153,154). The disappearance 
of the anti‑neutrophilscytoplasmic antibody (ANCA) in 
ANCA‑associated vasculitis or anti‑desmoglein antibodies 
in pemphigus confirmed the efficacy of the anti‑CD20 mono‑
clonal antibody (155,156). In addition, a study revealed that 
an anti‑CD20 antibody, Rituximab, can reduce the expres‑
sion levels of RORγt and IL‑22 and decrease the numbers of 
Th17‑positive cells (157). In a case report of palmoplantar 
pustulosis, a less severe and localized variant of pustular PS, 
after treatment failure with an TNF‑α blocker, an improve‑
ment was demonstrated with rituximab treatment (158). The 
present review considered that rituximab might reverse the 
effects of TNF‑α via the antigen‑antibody complex. However, 
contradictory effects of anti‑CD20 are also observed in 
the literaturs. For example, the use of anti‑CD20 therapy 
(Rituximab) for autoimmune diseases such as SLE may be 
the cause of the development of PS (159,160). It is likely that 
the depletion of B‑lymphocytes in these patients caused an 
imbalance between the T and B cells and this interaction may 
promote a hyperactive T cells response.

TNF‑α and IFN‑α inhibitors in PS and SLE. Unlike Th17 
antagonists, the efficacy of IFN‑α antagonists on PS is uncer‑
tain. Collamer et al (161) found that the number of patients 
with new onset or exacerbation of preexisting PS is increasing 
due to TNF therapy. This does not seem to be consistence with 
the fact that IFN‑α is a key element in the early phase of psori‑
atic skin lesion induction (46). It was suspected that an IFN‑α 
antagonist may also be involved in other mechanisms for PS 
induction (161), and inhibition of TNF‑α has been demon‑
strated in turn to induce the overexpression of IFN‑α (162). 
Increased expression levels of IFN‑α in the psoriatic lesions of 
patients that have been administered with anti‑TNF‑α thera‑
peutics were also reported (163). The increased production of 
IFN‑α will stimulate myeloid DCs, promote the polarization 
of Th1 cells and lead to an excessive proliferation of keratino‑
cytes via IL‑15 (164).

Likely acting via the same mechanism, treatment with 
anti‑TNF‑α agents is controversial in SLE as well, since it may 
further induce antinuclear antibodies, anti‑dsDNA and anti‑
cardiolipin antibodies. Indeed, cases of drug‑induced lupus 
have been observed in patients with rheumatoid arthritis (165).

Treatment concerns for the patients with SLE and PS. 
Treatment of patients with both PS and SLE or prevention of 
the occurrence of comorbidity is challenging. The onset of 
PS and SLE could appear in a different order of precedence, 
which may not only affect the profiles of the inflammatory 
cytokines (such as IL‑17, IL‑10 and IL‑23) but also may 
change the efficacy of the treatment in each individual patient. 
For example, phototherapy for PS can exacerbate SLE and 
hydroxychloroquine or systemic corticosteroids for SLE treat‑
ment would exacerbate PS (42).

When ultraviolet (UV) light is used to control PS 
through triggering keratinocyte apoptosis, it also promotes 
an immunopathogenesis in lupus (166). As a result, nucleo‑
protein autoantigens will be transported to the surface of 

Table I. Drugs that are used to treat SLE and PS.

 Treatable Inducible
 diseases disease
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Therapeutic drug SLE PS SLE PS

Methotrexate √ √ No No
Cyclosporine ‑ √ No No
Retinoids ‑ √ No No
TNF‑α inhibitors √ √ Yes Yes
IL‑12/23 antibody √ √ No No
IL‑17 antibody √ √ No No
UV‑B radiation ‑ √ Yes No
Anti‑CD20/CD22 √ ‑ No Yes
Anti‑BAFF √ ‑ No No
Hydroxychloroquine √ ‑ No Yes
Anti‑IFN‑α √ ‑ No Yes

√, can be used to treat this disease; ‑, not available for treatment of 
this disease or unknown; PS, psoriasis; SLE, systemic lupus erythe‑
matosus; BAFF, B‑cell activating factor of the TNF family.
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keratinocytes to stimulate the release of further inflammatory 
cytokines, including IFN‑γ, TNF‑α, IL‑1, IL‑6, IL‑8, IL‑10 
and IL‑17 (167‑170). The accumulation of these apoptotic kera‑
tinocytes would increase the aforementioned changes to cause 
a secondary necrotic process and to amplify the release of 
proinflammatory cytokines and potential autoantigens (171). 
These factors would recruit inflammatory cells into the skin 
and cause tissue inflammation.

By contrast, after the patients with a genetic predisposi‑
tion to PS and lupus receive UV treatment, the skin cells of 
the patients will be more likely to have thymine dimmers in 
their DNA (172). The photo‑induced thymine‑dimmers in the 
DNA are then the target antigens of the autoimmune response, 
thus causing lupus. However, the pathophysiology of induced 
lupus is still poorly understood. In addition, the mechanism 
of drug‑induced PS is not completely understood. A study 
concluded that hydroxychloroquine disrupts the barrier of the 
epidermis by inhibiting transglutaminase activity (173,174). 
Following this initial break in the skin barrier, the epidermis 
undergoes a physiological proliferation in an attempt to restore 
the integrity of the barrier. In a genetically predisposed indi‑
vidual, this damage to the skin barrier may be sufficient to 
initiate a non‑specific stimulus‑induced epidermal prolifera‑
tion (173).

At present, TNF‑α inhibitors have been widely inves‑
tigated for the treatment of PS (175), and anti‑TNF‑α drugs 
are frequently reported to induce systemic drug‑induced 
lupus erythematosus (176,177). A number of hypotheses have 
been proposed for the mechanism of autoantibody induction 
by anti‑TNF‑α agents as follows: i) An imbalance between 
IFN‑α and TNF‑α induces an apoptosis in inflammatory cells; 
ii) decreased expression levels of CD44 causes nucleosome 
accumulation in apoptotic cells and leads to the production 
of DNA and other nuclear antigens; iii) infections in patients 
receiving anti‑TNF‑α can lead to lymphocyte activation and 
subsequently to polyclonal B lymphocytes production; and 
iv) suppression of the Th1 response caused by the anti‑TNF‑α 
and Th2 response, IL‑10, and INF‑α, promotes humoral 
autoimmunity and autoantibody production and suppresses 
cytotoxic T‑lymphocytes (178‑181) (Fig. 2).

In a case report, the symptoms of lupus nephritis in patients 
with both PS and SLE diseases worsened after secukinumab 
treatment (182). Certainly, caution is necessary when admin‑
istering drugs to patients with PS and SLE, since it may 
effective for one of these diseases but it may not be effective 
for the other disease, particularly when TNF‑α antagonists are 
used. As aforementioned, TNF‑α inhibitors have well been 
documented to cause lupus‑like syndromes with the onset of 
antinuclear antibodies and anti‑dsDNA, as well as an exacer‑
bation of PS. Therefore, when treating patients with biological 
agents, their immunological profiles and family history should 
be evaluated in detail in order to avoid a deterioration in the 
inflammation of both diseases.

6. Conclusions and perspectives

PS is a disease that occurs worldwide and its prevalence 
varies from 2‑11% according to the region. The global 
prevalence of SLE ranges from 13‑7,713.5 per 100,000 indi‑
viduals (183). A 40‑year follow‑up study that was carried out 

in the US, revealed that the incidence and prevalence of SLE 
had increased each year (overall prevalence increased from 
30.6 in 1985 to 97.4 in 2015), and PS and SLE occurred in all 
age groups and in both men and women (184). At present, the 
comorbidity of PS and SLE is still a rare skin condition. In the 
present review, the animal and clinical evidence to support 
the possibility of SLE coexisting with PS has been summa‑
rized. Firstly, both diseases share the same susceptibile gene 
loci (138,185‑188), which are associated with IL‑17 signal 
transduction (186,189), and the interactions with Treg cells 
and B lymphocytes that form the foundation of pathogenesis 
of PS and SLE. Secondly, biological agents demonstrated 
efficacy in patients with PS and SLE. For example, IL‑17 
inhibitors that have been widely used for PS, are now 
being tested as treatments for SLE in clinical trials (190). 
Nevertheless, current evidence cannot completely exclude 
that this is simply a coincidence; however, caution may be 
needed when dealing with immunotherapy treatments for 
patients with single PS, SLE or both conditions.
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