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Abstract
Obstructive nephropathy is the end result of a variety of diseases that block drainage 
from the kidney(s). Transforming growth factor‐β1 (TGF‐β1)/Smad3‐driven renal fi‐
brosis is the common pathogenesis of obstructive nephropathy. In this study, we iden‐
tified petchiether A (petA), a novel small‐molecule meroterpenoid from Ganoderma, 
as a potential inhibitor of TGF‐β1‐induced Smad3 phosphorylation. The obstructive 
nephropathy was induced by unilateral ureteral obstruction (UUO) in mice. Mice re‐
ceived an intraperitoneal injection of petA/vehicle before and after UUO or sham op‐
eration. An in vivo study revealed that petA protected against renal inflammation and 
fibrosis by reducing the infiltration of macrophages, inhibiting the expression of pro‐
inflammatory cytokines (interleukin‐1β and tumour necrosis factor‐α) and reducing 
extracellular matrix deposition (α‐smooth muscle actin, collagen I and fibronectin) in 
the obstructed kidney of UUO mice; these changes were associated with suppression 
of Smad3 and NF‐κB p65 phosphorylation. Petchiether A inhibited Smad3 phospho‐
rylation in vitro and down‐regulated the expression of the fibrotic marker collagen 
I in TGF‐β1‐treated renal epithelial cells. Further, we found that petA dose‐depend‐
ently suppressed Smad3‐responsive promoter activity, indicating that petA inhibits 
gene expression downstream of the TGF‐β/Smad3 signalling pathway. In conclusion, 
our findings suggest that petA protects against renal inflammation and fibrosis by 
selectively inhibiting TGF‐β/Smad3 signalling.
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1  | INTRODUC TION

Renal fibrosis is the most common progressive process in the 
pathogenesis of chronic kidney diseases, degrading kidney func‐
tion and eventually causing end‐stage renal disease in patients.1‐5 
Renal fibrosis is characterised by extracellular matrix deposition 
in glomerular and tubulointerstitial tissue. Increasing evidence 
shows that obstructive nephropathy, which is commonly caused 
by urolithiasis, benign prostatic hyperplasia and pelvic or ureteral 
tumours, leads to proximal tubular cell loss and interstitial fibrosis. 
The unilateral ureteral obstruction (UUO) model is widely used to 
study the mechanisms of tubulointerstitial fibrosis via surgically 
induced obstructive renal injury.6 In experimental animal models 
and patients with obstructive nephropathy, the major pathologi‐
cal features in local are infiltration of inflammatory cells, secre‐
tion of proinflammatory cytokines, such as interleukin‐1β (IL‐1β), 
tumour necrosis factor‐α (TNF‐α) and monocyte chemoattractant 
protein‐1 (MCP‐1) and the accumulation of fibrotic markers, such 
as collagen I, fibronectin and α‐smooth muscle actin (α‐SMA). The 
TGF‐β/Smad signalling pathway may be a viable therapeutic target 
for treating renal fibrosis.7‐9 Treatments that manipulate TGF‐β/
Smad signalling have shown beneficial effects in the kidneys of 
laboratory animals.10‐16 However, this treatment is not available in 
current clinical practice because of several associated problems, 
such as safety issues and immunological tolerance.

The genus Ganoderma (also called Lingzhi) is a medicinal fungal 
genus that includes various species, for example, G petchii, G australe 
and G lucidum. Ganoderma is traditionally used in China to promote 
health and longevity, lower the risks of cancer and heart disease, 
protect against liver and kidney diseases, and boost the immune 
system.17‐21 Derivatives of Ganoderma have shown a renoprotective 
effect in diabetic nephropathy, chronic glomerulonephritis and tub‐
ulointerstitial fibrosis.22‐25

Petchiether A (petA), a novel small‐molecule meroterpenoid iso‐
lated from the fruiting body of G petchii, inhibits fibronectin in rat 
kidney tubular epithelial cells.26 However, the in vivo mechanisms 
and functional significance of this activity remain unknown. The 
present study examined the effects of petA on UUO‐induced ob‐
structive kidney injury and its underlying mechanisms both in vivo 
and in vitro.

2  | MATERIAL S AND METHODS

2.1 | Drug isolation and identification

The fruiting bodies of G petchii and G australe were purchased from a 
market selling Chinese medical materials in Zhonghao‐Luoshi‐Wan, 
Kunming, Yunnan Province, China. The material was identified by 

Prof. Zhu‐Liang Yang at the Kunming Institute of Botany, Chinese 
Academy of Sciences.

The procedure of PetA isolation was previously described.26 The 
powders of fruiting bodies of G petchii were extracted by reflux with 
70% ethyl alcohol (EtOH). The extraction was suspended in water, 
followed by the participation with ethyl acetate (EtOAc). Eight parts 
(Fr1‐Fr8) were separated from the EtOAc extract using a MCI gel CHP 
20P column (75‐150 μm) washing with gradient aqueous methyl al‐
cohol (MeOH) from 10%‐100%. The Fr5 was further separated into 
seven portions (Fr5.1‐Fr5.7) using a MCI gel CHP 20P column eluting 
with gradient aqueous MeOH (20%‐100%). Among the fragments, pet 
A was separated from fr5.6 using Sephadex LH‐20 (MeOH) followed 
by an RP‐18 column (MeOH/H2O, 30:70‐100:0), and preparative TLC 
(CHCl3/Me2CO, 8:1). Because of the low content of petA in G petchii, 
the compound was also enriched from G australe (176 mg from 90 kg 
fungus) using a similar isolation procedure and structurally identified 
using multiple spectroscopic methods and further confirmed by the 
Mosher's method (Figure 1D). The purity of petA was over 98%.

2.2 | Animal model

Ten‐ to 12‐week‐old male C57BL/6J mice (bodyweight 20‐25 g) were 
used for this study. Unilateral ureteral obstruction was performed 
using an established protocol as described previously.27,28 To evalu‐
ate the effect of petA on renal fibrosis, we randomised the mice into 
four groups (n = 5‐8 per group): (a) the sham‐operated group; (b) the 
UUO group, in which mice received intraperitoneal (ip) injections of 
vehicle for four consecutive days; (c) the prevention group, in which 
mice received 4 consecutive days of petA (ip) before UUO; and (d) 
the treatment group, in which mice received 4 days of petA (ip) after 
UUO. Petchiether A was dissolved in dimethyl sulfoxide (DMSO). All 
mice were killed on day 5 after left ureter ligation. Kidney tissues were 
collected for histology, immunohistochemistry, Western blotting and 
real‐time reverse transcript‐PCR analysis as previously described.29 
All studies were approved by the Animal Experimentation Ethics 
Committee of the University of Hong Kong, and the experimental 
methods were performed in accordance with the approved guidelines.

2.3 | Morphological and 
immunohistochemical analysis

To examine the changes in renal morphology, we stained formalin‐
fixed, paraffin‐embedded sections (3 µm) with haematoxylin and 
eosin or a Masson's trichrome staining kit (ScyTek Laboratories, West 
Logan, UT) according to the manufacturer's instructions and as pre‐
viously described.29,30 Immunohistochemistry was performed in par‐
affin sections using a microwave‐based antigen retrieval method.31 
The primary antibodies used in this study included antibodies against 
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TNF‐α, IL‐1β, TGF‐β1, fibronectin (Santa Cruz Biotechnology, Santa 
Cruz, CA), F4/80 (AbD Serotec, Kidlington, UK), phospho‐Smad3 
(Rockland Immuno‐chemicals, Gilbertsville, PA), α‐SMA (Sigma, St. 
Louis, MO), collagen I (Southern Biotech, Birmingham, AL) and phos‐
pho‐nuclear factor κ light chain enhancer of activated B cells (NF‐κB)/
p65 (Abcam, Cambridge, MA). Positive signals were analysed with 
the quantitative Image Analysis System (Image‐Pro Plus 7.0; Media 
Cybernetics, Bethesda, MD) as described previously.32,33

2.4 | Cell culture

Human kidney (proximal tubular epithelial) cell line 2 (HK‐2) cells, 
a normal adult human renal tubular epithelial cell line, were cul‐
tured in serum‐free DMEM/Ham's F12 medium (Invitrogen Life 

Technologies, Gaithersburg, MD). To investigate the effect of petA 
on TGF‐β1‐induced phosphorylation of Smad3, we pre‐treated 
HK‐2 cells with the indicated doses of petA for 12 hours before 
adding TGF‐β1 (2.5 ng/mL) for another 12 hours. To determine 
the preventive and therapeutic effects of petA on TGF‐β1/Smad3 
signalling‐induced collagen I expression, we incubated HK‐2 cells 
with petA (25 μmol/L) for 12 hours before or after 12 hours of 
TGF‐β1 (2.5 ng/mL). Each experiment was repeated independently 
at least three times.

2.5 | MTT assay

HK‐2 cells were seeded into 96‐well plates at a density of 1 × 105 cells/
mL in a volume of 200 μL per well and allowed to attach for 24 hours. 

F I G U R E  1   Petchiether A (PetA) attenuates the collagen deposition and histological injury observed in the obstructed kidneys at 5 d after 
unilateral obstructive (UUO) operation. Mice receiving daily intraperitoneal injection of vehicle or petA (40 mg/kg/d) 4 d before or right 
after UUO operation were killed 5 d after UUO. A, Haematoxylin and eosin and Masson's trichrome staining. B, Semi‐quantitative analysis 
of the interstitial injury score and (C) relative collagen deposition area of the obstructive kidney in each group. D, The structure of petA. 
Data represent the mean ± SEM for 6‐8 mice per group. *P < 0.05, ***P < 0.001 vs the sham group; #P < 0.05, ##P < 0.01 vs the vehicle UUO 
group. Bar = 50 μmol/L. Magnification ×200. PetA Px, PetA prevention; PetA Tx, PetA treatment
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The cells were starved with serum‐free medium for 24 hours and 
then incubated with the indicated amounts of petA (1, 2.5, 5, 10, 25, 
50, 100 μmol/L) for 12 hours. Cell viability was determined by adding 
20 μL of the reagent 3‐[4,5‐dimethylthiazol‐2‐yl‐]‐2,5‐diphenyltetra‐
zolium bromide (MTT) at a concentration of 5 mg/mL and incubat‐
ing the cells for 4 hours at 37°C. The MTT‐containing medium was 
removed, and 150 μL of DMSO was added to dissolve the formazan 
crystals. The absorbance value was measured at 540 nm using a mi‐
croplate reader (Bio‐Tek Instruments, Inc, Ontario, Canada).

2.6 | Smad3‐responsive promoter assay

HK‐2 cells were transiently transfected with the Smad3‐responsive 
promoter p(CAGA)12‐Luc (kindly provided by Professor Hong‐Jian 
Zhu, University of Melbourne) as described previously.28 The PGL3 
Basic plasmid was co‐transfected into the cells as a control. After 
transfection, cells were treated with petA (5, 25, 50 μmol/L) for 
12 hours, followed by the addition of TGF‐β1 (2.5 ng/mL) for another 
12 hours. The luciferase activity of p(CAGA)12 was analysed using a 
Promega Luciferase Assay kit (Promega Corporation, Wisconsin, USA) 
according to the manufacturer's instructions and measured using a 
PerkinElmer 2030 Multilabel Luminescence Microplate Reader 
(PerkinElmer Life and Analytical Sciences, Finland). Three independ‐
ent experiments were performed.

2.7 | Western blot analysis

Protein was extracted from the kidney tissues and cultured HK‐2 cells 
using radio‐immunoprecipitation assay lysis buffer, and Western blot 
analysis was performed as described previously.28 Five percent bovine 
serum albumin (BSA) was used to block non‐specific binding before the 
membranes were incubated with primary antibody overnight at 4°C. The 
antibodies used in this study included primary antibodies against colla‐
gen I (Southern Biotech), fibronectin (Santa Cruz Biotechnology), phos‐
pho‐NF‐κB/p65, NF‐κB/p65, phospho‐Smad3 and Smad3 (Cell Signalling 
Technology Inc, Danvers, MA) and secondary antibodies labelled with LI‐
COR IRDye 800 (Rockland Immuno‐chemicals). Signal detection was per‐
formed using the Odyssey infrared imaging system (LI‐COR Biosciences, 
Lincoln, NE) and quantified by Imagej software (National Institutes of 
Health). The expression level of each protein was normalised to the ex‐
pression level of β‐actin and is expressed as the mean ± SEM

2.8 | RNA extraction, quantitative real‐time PCR

Total RNA was isolated from the renal tissues and cultured HK‐2 cells 
using TRIzol reagent from Invitrogen according to the manufacturer's 

instructions, and real‐time PCR was performed using Bio‐Rad IQ SYBR 
Green Supermix with Option 2 (Bio‐Rad, Hercules, CA) as previously 
described.27 The primers used in this study for mouse IL‐1β, TNF‐a, 
TGF‐β1, a‐SMA, collagen I and fibronectin mRNAs have been described 
previously.27,28,30‐32,34 The housekeeping gene β‐actin was used as an 
internal control. The expression level of each mRNA of interest was 
normalised to that of β‐actin and expressed as the mean ± SEM

2.9 | Statistical analysis

All the data obtained from this study are expressed as the 
mean ± SEM from at least three independent experiments or 
groups of five to eight mice each. Statistical analyses were per‐
formed with one‐way ANOVA followed by the Newman‐Keuls post 
hoc test. The tests were performed in GraphPad Prism 5 (GraphPad 
Software, La Jolla, CA). A P‐value <0.05 was considered significant.

3  | RESULTS

3.1 | Toxicity of petA

To detect the toxicity of petA, we incubated human proximal tubu‐
lar cells (HK‐2) with the indicated doses of petA. Cell viability was 
detected by MTT (3‐[4,5‐dimethylthiazol‐2‐yl‐]‐2,5‐diphenyltetrazo‐
lium bromide) experiments. Petchiether A did not affect the viability 
or proliferation of the cells at any of the tested doses (1, 2.5, 5, 10, 
25, 50, 100 μmol/L; Figure S1).

3.2 | PetA attenuates kidney injury after UUO

We evaluated the effect of petA on renal fibrosis in a typical model 
of renal interstitial fibrosis caused by UUO. In the preliminary study, 
based on our previous study of G lucidum,35 petA was administered 
immediately after UUO operation by ip injection at dosages of 20 
and 40 mg/kg/d (n = 8 in the 20 mg/kg group, n = 5 in the 40 mg/
kg group). Mice were killed on day 5 after UUO. Morphological and 
Western blot analyses showed that 40 mg/kg petA significantly de‐
creased histological injury and Smad3 phosphorylation and collagen 
I expression (Figure S2). Therefore, 40 mg/kg of petA was used in 
the following prevention and treatment studies.

The haematoxylin and eosin and Masson's trichrome staining 
analyses indicated the obstructed kidney showed severe tubuloint‐
erstitial damage, such as tubular dilatation, atrophy, infiltration of 
inflammatory cells and accumulation of collagen deposition com‐
pared to the sham‐operated kidney (Figure 1A). However, admin‐
istration of petA (40 mg/kg), initiated either immediately after or 

F I G U R E  2   Petchiether A (PetA) inhibits the expression of proinflammatory cytokines and infiltration of macrophages in the obstructed 
kidneys of unilateral obstructive (UUO) mice. Mice receiving daily intraperitoneal injection of vehicle or petA (40 mg/kg/d) 4 d before or 
right after UUO operation were killed 5 d after UUO. A, interleukin‐1β (IL‐1β), tumour necrosis factor‐α (TNF‐α), MCP‐1 and IL‐6 expression 
were examined by quantitative real‐time PCR, as indicated. B, Immunohistochemical staining and (C) semi‐quantitative analysis of F4/80+ 
and IL‐1β expression. Data represent the mean ± SEM for 6‐8 mice per group. *P < 0.05, ***P < 0.001 vs the sham group; #P < 0.05, 
##P < 0.01, ###P < 0.001 vs the vehicle UUO group. Bar = 50 μmol/L. Magnification ×200. PetA Px, PetA prevention; PetA Tx, PetA treatment



     |  5581YOU et al.



5582  |     YOU et al.

4 days before the UUO procedure, markedly reduced these changes 
compared with those in the vehicle group (Figure 1A); this result 
was further confirmed by semi‐quantification of the tubulointer‐
stitial damage observed in haematoxylin and eosin‐ and Masson's 

trichrome‐stained sections of the kidney tissue (Figure 1B,C). Taken 
together, these results indicate that the use of petA for the preven‐
tion and treatment of renal fibrosis in mice protects against renal 
histological damage and fibrosis.

F I G U R E  4   Petchiether A (PetA) inhibits NF‐κB signalling in the obstructed kidneys of unilateral obstructive (UUO) mice. Mice receiving 
daily intraperitoneal injection of vehicle or petA (40 mg/kg/d) 4 d before or right after UUO operation were killed 5 d after UUO. A, 
Immunohistochemical staining and quantitative analysis of nuclear phospho‐NF‐κB/p65 (p‐p65). B, Western blot and quantitative analysis 
of phospho‐NF‐κB/p65 (p‐p65) protein expression. Data represent the mean ± SEM for 6‐8 mice per group. **P < 0.01, ***P < 0.001 vs the 
sham group; #P < 0.05, ###P < 0.001 vs the vehicle UUO group. Bar = 50 μmol/L. Magnification ×200. PetA Px, PetA prevention; PetA Tx, 
PetA treatment

F I G U R E  3   Petchiether A (PetA) inhibits the expression of fibronectin, collagen 1 and α‐smooth muscle actin (α‐SMA) in the obstructed 
kidneys at 5 d after unilateral obstructive (UUO) operation. Mice receiving daily intraperitoneal injection of vehicle or petA (40 mg/kg/d) 4 d 
before or right after UUO operation were killed 5 d after UUO. A, Immunohistochemical staining and quantitative analysis for the expression 
of α‐SMA, collagen 1 and fibronectin. B, Quantitative real‐time PCR analysis of α‐SMA, collagen 1 and fibronectin mRNA expression. C, 
Western blot and semiquantitative analysis of collagen 1 and fibronectin, respectively. Data represent the mean ± SEM for 6‐8 mice per 
group. *P < 0.05, **P < 0.01, ***P < 0.001 vs the sham group; #P < 0.05, ##P < 0.01, ###P < 0.001 vs the vehicle UUO group. Bar = 50 μmol/L. 
Magnification ×200. PetA Px, PetA prevention; PetA Tx, PetA treatment



     |  5583YOU et al.



5584  |     YOU et al.

3.3 | PetA ameliorates renal inflammation and 
fibrosis in the kidney after UUO

We then examined the effect of petA on renal inflammation and fibro‐
sis in UUO mice. Immunohistochemistry and real‐time PCR analysis 
revealed that, compared with the sham‐operated mice, UUO vehicle 
mice developed moderate renal inflammation including a marked up‐
regulation of proinflammatory cytokines/chemokines (TNF‐α, IL‐1β, 
MCP‐1 and IL‐6) and renal infiltration of F4/80+ macrophages (Figure 2). 
However, all these inflammatory features were significantly decreased 
in the obstructed kidney after 5 days of UUO in the petA (40 mg/
kg) prevention and petA (40 mg/kg) treatment group mice (Figure 2). 
Further studies also revealed that moderate renal fibrosis, as indicated 
by the expression of α‐SMA, collagen I and fibronectin mRNA and the 
accumulation of the corresponding matrix proteins, occurred in UUO 
vehicle mice but was substantially attenuated in mice that received petA 
(40 mg/kg) 4 days before or immediately after UUO operation (Figure 3).

3.4 | PetA ameliorates renal inflammation and 
fibrosis in UUO mice and is associated with the 
suppression of the NF‐κB and TGF‐β1/Smad3 
signalling pathways

We next investigated the underlying signalling mechanisms by which 
petA protects against obstructive kidney injury. First, we examined 
the NF‐κB inflammation signalling pathway. Immunohistochemistry 
and Western blot analysis revealed significantly elevated concentra‐
tions and nuclear translocation of phosphorylated p65 subunit in the 
obstructed kidneys of the vehicle UUO group, and these measures 
were markedly decreased in the obstructive kidneys of the petA 
(40 mg/kg) prevention and petA (40 mg/kg) treatment group mice 
(Figure 4), suggesting that petA may protect against renal inflamma‐
tion during UUO via NF‐κB signalling.

Furthermore, we also found a significant up‐regulation of renal 
TGF‐β1 at the mRNA and protein levels (Figure 5A) in UUO vehicle 
mice, and this up‐regulation was associated with enhanced Smad3 
signalling, as detected by increased concentrations and nuclear local‐
isation of phosphorylated Smad3 in glomerular and tubulointerstitial 
cells (Figure 5B,C). However, these increases were abolished by petA 
(40 mg/kg) as prevention or treatment in UUO mice (Figure 5). These 
findings suggest that petA may protect against renal fibrosis in UUO 
via the TGF‐β/Smad3 signalling pathway.

3.5 | PetA attenuates fibrosis by inhibiting 
phosphorylation of Smad3

To examine whether petA protected against fibrosis by suppressing 
TGF‐β1‐induced Smad3 phosphorylation, HK‐2 tubular epithelial cells 

were treated with TGF‐β1 with/without petA. Western blot results 
demonstrated that petA significantly inhibited TGF‐β1‐induced Smad3 
phosphorylation in a dose‐dependent manner (Figure 6A), and real‐
time PCR analysis revealed a dramatic decrease in endogenous TGF‐β1 
and collagen 1 expression (Figure 6B,C). However, the baseline level 
of endogenous TGF‐β1 in PetA treated HK‐2 cells had no significant 
change. Further, HK‐2 cells were pre‐treated with or without petA 
(25 μmol/L) for 12 hours either before (prevention group) or imme‐
diately after (treatment group) stimulation with TGF‐β1 (2.5 ng/mL). 
Western blot analysis showed that the addition of petA (25 μmol/L) in‐
hibited the phosphorylation of Smad3 and the up‐regulated expression 
of the fibrotic marker collagen I by TGF‐β1 (Figure 6D‐F). The Smad3‐
responsive promoter assay results demonstrated that petA dose‐de‐
pendently suppressed TGF‐β1‐induced Smad3‐responsive promoter 
activity, indicating that petA significantly inhibited gene expression 
downstream of the TGF‐β/Smad3 signalling pathway (Figure 6G).

4  | DISCUSSION

We report for the first time that petA, a novel small molecule ex‐
tracted from the traditional Chinese medicine Ganoderma, markedly 
attenuates renal inflammation and fibrosis in UUO by inhibiting NF‐
κB and TGF‐β1/Smad3 signalling. Petchiether A can inhibit TGF‐β1‐
induced Smad3 phosphorylation, suggesting a potential role of petA 
as an effective agent against renal fibrogenesis.

The antifibrotic actions of petA may involve multiple mecha‐
nisms. Because TGF‐β1/Smad3 signalling is the critical pathway of 
renal fibrosis,3,4,36‐38 we first examined the effect of petA on the 
activation of TGF‐β1/Smad3 signalling in the UUO model. Our re‐
sults indicated that administering petA to prevent or treat UUO 
suppressed TGF‐β1 expression and blocked the phosphorylation of 
Smad3, subsequently attenuating the expression of fibrotic genes 
(including α‐SMA, collagen I and fibronectin). In support of this con‐
clusion, we demonstrated that petA blocked TGF‐β1‐induced phos‐
phorylation of Smad3 and expression of collagen I in cultured HK‐2 
cells. These results are consistent with our previous report that the 
inhibitory effects of PetA on fibronectin production in rat kidney 
tubular epithelial cells (NRK52E) under the stimulation of TGF‐
β1.26 Therefore, the inhibition of renal fibrosis by petA is mediated 
at least partly by the suppression of the TGF‐β1/Smad axis in the 
 obstructed kidneys.

We previously demonstrated that Smad3 is a key Smad protein 
that mediates fibrosis in multiple organs and tissues.3,28 Inhibition of 
Smad3 using specific inhibitors reduces fibrosis.39‐42 In this study, 
we found that petA is a potential inhibitor of TGF‐β/Smad3 activa‐
tion, which suggests that petA may relieve renal fibrosis as well as 
cirrhosis, cardiac fibrosis and lung fibrosis.

F I G U R E  5   Petchiether A (PetA) inhibits transforming growth factor‐β1 (TGF‐β1)/Smad3 signalling in the obstructive kidneys of 
unilateral obstructive (UUO) mice. Mice receiving daily intraperitoneal injection of vehicle or petA (40 mg/kg/d) 4 d before or right after 
UUO operation were killed 5 d after UUO. A, TGF‐β1 expression was examined by immunohistochemistry and quantitative real‐time PCR. 
Phosphorylation of Smad3 was examined by immunohistochemistry (B) and quantitative Western blot analysis (C). Data represent the 
mean ± SEM for 6‐8 mice per group. *P < 0.05, **P < 0.01, ***P < 0.001 vs the sham group; #P < 0.05, ##P < 0.01, ###P < 0.001 vs the vehicle 
UUO group. Magnification ×200. PetA Px, PetA prevention; PetA Tx, PetA treatment
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Inflammation plays a central mechanism in the initiation and 
maintenance of kidney injury, and a suppressed inflammatory re‐
sponse reduces the extent of renal fibrosis.43,44 Our results indicate 
that administering petA to prevent or treat UUO can suppress the 
expression of multiple proinflammatory cytokines, such as TNF‐α, 
IL‐β, MCP‐1 and IL‐6, and inhibit macrophage infiltration, suggesting 
that inhibition of the inflammatory response is also one of the mech‐
anisms by which petA ameliorates renal fibrosis.

Furthermore, several mechanisms may contribute to the anti‐
inflammatory effects of petA. We previously found that the acti‐
vation of TGF‐β/Smad3 is associated with a decreased expression 
of Smad7, an inhibitory Smad, in UUO, hypertensive and diabetic 
kidneys.27,45,46 The decrease in Smad7 enhances NF‐κB P65 phos‐
phorylation, which consequently aggravates inflammation in the kid‐
neys.27,45,46 Another possible mechanism may be the overexpression 
of TGF‐β1 in UUO kidneys (Figure 5A). Findings from other research 
teams indicate that TGF‐β1 activates renal tubular cells and immune 
system cells to produce inflammatory cytokines and further pro‐
mote the inflammatory response, which, in turn, amplifies fibrosis 
and tubular injury.47‐49 The mechanisms by which petA attenuates 
inflammation will be explored in future studies.

In conclusion, our findings suggest that petA is a potential natu‐
ral small‐molecule inhibitor of TGF‐β1‐induced Smad3 phosphoryla‐
tion. The beneficial effect of petA may occur through the inhibition 
of TGF‐β1/Smad3 and NF‐κB signalling, subsequently reducing renal 
fibrosis and inflammation in UUO kidneys. Our studies may provide 
a useful natural therapeutic agent for the prevention and treatment 
of renal fibrosis during the progression of fibrotic kidney disease.
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