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ABSTRACT
Adipose tissue-derived stromal vascular fraction (AdSVF) comprises a heterogeneous cell
population, including the multipotent mesenchymal stem cells, hematopoietic stem cells,
immune cells, endothelial cells, fibroblasts, and pericytes. As such, multipotent adipose tis-
sue-derived mesenchymal stem cells (AdMSCs), are one of the important components of
AdSVF. Commonly used techniques to harvest AdSVF involve enzymatic or non-enzymatic
methods. The enzymatic method is considered to be the gold standard technique due to its
higher yield. The cellular components of AdSVF can be resuspended in normal saline, plate-
let-rich plasma, or phosphate-buffered saline to produce a ready-to-use solution. Freshly iso-
lated AdSVF has exhibited promising osteogenic and vasculogenic capacity. AdSVF has
already been proven to possess therapeutic potential for osteoarthritis management. It is
also an attractive therapeutic option for enhancing wound healing. In addition, the com-
bined use of AdSVF and platelet-rich plasma has an additive stimulatory effect in accelerat-
ing wound healing and can be considered an alternative to AdMSC treatment. It is also
widely used for managing various orthopaedic conditions in clinical settings and has the
potential for regenerating bone, cartilage, and tendons. Autologous AdSVF cells are used
along with bone substitutes and other biological factors as an alternative to conventional
bone grafting techniques owing to their promising osteogenic and vasculogenic capacity. It
can also be used for treating osteonecrosis, meniscus tear, chondromalacia, and tendon inju-
ries in veterinary practice. It has several advantages over in vitro expanded AdMSC, including
precluding the need for culturing, reduced risk of cell contamination, and cost-effectiveness,
making it ideal for clinical use.
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1. Introduction

The adipose tissue is a multifunctional tissue that
acts as an energy storehouse and plays an essential
role in endocrine and immune responses. The adi-
pose tissue contains several cell types in addition to
the mature adipocytes that are embedded into an
extracellular matrix (Marx et al. 2015). Fat can either
be surgically extracted or liposuctioned to obtain the
lipoaspirate. The mechanical or enzymatic digestion
of fragmented adipose tissue releases the cellular
constituents from the extracellular matrix (Marx et al.
2015; Si et al. 2019). This mixture of various cell
types is known as the adipose-derived stromal vascu-
lar fraction (AdSVF). AdSVF comprises heterogeneous
cell populations that include adipocytes, pericytes,
endothelial cells, pre-adipocytes, and various other

cells, including stem cells (Bourin et al., 2013; Lee
et al. 2013; Si et al. 2019). Although fat-derived mes-
enchymal cells have been studied for several deca-
des, in 2001, a significant finding was reported that
a stem cell population of mesenchyme origin exists
in lipoaspirate that could be isolated and maintained
in-vitro for extended periods (Zuk et al. 2001; 2002).
Furthermore, a study in the following year demon-
strated their ability to differentiate into neural-like
cells (Safford et al. 2002). Subsequently, their trans-
differentiation potential was extended to numerous
other cell lineages. These cells, known as multipotent
adipose tissue-derived mesenchymal stem cells
(AdMSCs), are one of the important components of
AdSVF (Kim et al. 2012; Bourin et al., 2013; Gugjoo,
Fazili et al. 2018; Gugjoo, Makhdoomi et al. 2019;
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Gugjoo, Fazili et al. 2020). Adipose-derived stromal
cells (ADSCs) present in AdSVF can be maintained
and expanded in vitro without losing their differenti-
ation potential for long periods (Mazini et al. 2019).

AdMSCs are now being explored and utilized with
promising prospects in clinical trials for their benefi-
cial values in regenerative medicine and possessing
therapeutic potential in human and veterinary medi-
cine (Amarpal et al. 2013; Pieri et al. 2019;
Rajabzadeh et al. 2019; Si et al. 2019; Al-Ghadban
and Bunnell 2020; Laloze et al. 2021). However, sev-
eral challenges have to be addressed related to the
safety and efficacy of AdMSCs in clinical practice.
This requires establishing strict quality control meas-
ures and safety tests at stages such as isolation and
culture, cryopreservation, thawing, and expansion
(Luo et al. 2021). For stromal cells, endothelial cells,
and hematopoietic cell lineages, AdSVF has become
an easily accessible source (Gentile and Cervelli
2018; Stefanis et al. 2019; Sun et al. 2019). To har-
vest, isolate and culture AdMSCs, it takes at least 2-
3weeks to get sufficient cell concentration. To pre-
clude such a step, AdSVF harbours AdMSCs along
with other growth factors and reduces the risk of
culture period contamination. Therefore, it is a safe
and cost-effective strategy (Kim et al. 2012; Gugjoo,
Amarpal, et al. 2020). In addition, AdSVF offers a
source full of regeneration potential to the extent of
patient side utilization with little required maneuver-
ing. However, despite the advantages, veterinary
therapeutic research on AdSVF remains limited com-
pared to cultured mesenchymal stem cells.

Although several studies have been conducted to
evaluate the safety and efficacy of AdSVF in veterin-
ary patients, the data available from these studies
are scattered, limiting us from reaching a consensus
on their clinical utility. Therefore, this review aims to
evaluate the therapeutic potential of adipose-derived
AdSVF in veterinary clinical practice with a particular
focus on its applications in bone healing and regen-
eration. This is the first comprehensive review that
gives an overall perspective of the therapeutic pros-
pects of AdSVF in veterinary practice.

2. Why stromal vascular fraction?

Mesenchymal stem cell (MSCs) populations isolated
from different tissues possess unique characteristics
with varying proliferation and differentiation poten-
tial. Therefore, these differences should be consid-
ered while planning for specific clinical use (Fathi
and Farahzadi 2016). Bone marrow harbours MSCs in
a very limited concentration (0.01% to 0.001%) (Bhat
et al. 2021; Dar et al. 2021). The mononuclear cell
(MNC) fraction harvested contains MSCs that are
culture expanded. BM-MSCs have been widely

evaluated for regenerative therapeutics in varied
conditions. But harvesting BM is very cumbersome
and painful and increases the chances of infection
(Sun et al. 2019). Contrarily, adipose tissue as a
source of MSCs is gaining importance in regenerative
stem cell therapy due to the higher concentration of
MSCs (100–1000 times) as compared to bone mar-
row (BM-MSCs) (Nakao et al. 2010; Dar et al. 2021;
Hendawy et al. 2021). In addition, the AdSVF con-
tains angiogenic stem cells that promote vascular
ingrowth and outgrowth (Wu et al. 2019). It also has
a heterogeneous group of cells comprising stromal,
endothelial, and hematopoietic cell lineages that
spontaneously form robust and functional vascula-
tures (Sun et al. 2019).

Even the addition of growth factors like platelet-
derived growth factor-BB (PDGF BB) enhances the
osteogenic differentiation (calcium mineralization) of
the AdMSCs as compared to the BM-MSCs (Hung
et al. 2015). Compared to other sources of mesen-
chymal stromal/stem cells, subcutaneous adipose tis-
sue contains pre-adipocyte cells commonly seen in
the adventitia of blood vessels. These cells present
in both AdSVF (freshly isolated cells) and the adher-
ent fraction of AdMSCs have a significant role in
managing chronic inflammation mainly due to their
anti-inflammatory potential. However, the true
potential of pre-adipocyte cells has not yet been
fully understood (Baptista 2020).

Recent studies have used freshly isolated AdSVF
cells instead of cultured AdMSCs (Upchurch et al.
2016; Kemilew et al. 2019). Expanding AdSVF cells to
AdMSCs alters the phenotype, thereby reducing the
differentiation (adipogenic and chondrogenic) poten-
tial. Therefore, the freshly isolated AdSVF cells have
better regenerative capacity than cultured AdMSCs
(Lee et al. 2014). The AdMSCs present in the AdSVF
has the ability to attach and proliferate on calcium
phosphate scaffolds. This process is followed by
osteogenic differentiation, thereby favouring bone
healing (Overman et al. 2013).

3. Preparation of adipose-derived stromal
vascular fraction

AdSVF is prepared from the subcutaneous adipose
tissue collected from different parts of the animal
(tail base in horses and inguinal region in dogs and
cats) (Marx et al. 2015). AdSVF is commonly isolated
by enzymatic or non-enzymatic (explant) techniques
(Bora and Majumdar 2017; Senesi et al. 2019;
Gugjoo, Amarpal et al. 2020). The enzymatic tech-
nique is widely used to isolate AdSVF from adipose
tissue by digestion with collagenase (Figure 1) (Bora
and Majumdar 2017; Gugjoo, Amarpal, et al. 2020;
Sharun, Dhama, et al. 2021). It is considered the gold
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standard method for AdSVF isolation (Senesi et al.
2019). The enzymatic digestion will separate the con-
tents into two distinct phases: upper mature adipo-
cytes fraction (floats) and lower aqueous fraction
(contains cellular fraction) (Bora and Majumdar
2017). The separation into different fractions can be
enhanced by gravity-based phase separation (centri-
fugation). In addition, filtration can be performed to
capture the required cell types based on size
(SundarRaj et al. 2015; Bora and Majumdar 2017).
Studies suggested that freshly isolated AdSVF, which
is highly packed with adipose-derived stem cells, has
a great potential to promote bone regeneration
when combined with bone substitutes (Prins et al.
2016). Erythrocytes are one of the major contami-
nants present in the AdSVF pellet giving a reddish
colour. It can be lysed using an RBC lysis buffer to
isolate pure AdSVF cells (Riis et al. 2015). The cellular
yield of equine AdSVF was previously evaluated
using different concentrations of type I collagenase
solution (0.1%, 0.05%, and 0.025%). Digestion of
supragluteal subcutaneous adipose tissue using 0.1%
type I collagenase solution yielded the highest num-
ber of nucleated cells (Duan and Lopez 2018).

The enzymatic method of isolating AdSVF is time-
consuming (van Dongen et al. 2019). The non-
enzymatic technique of AdSVF isolation involves
mechanical agitation that breaks down the adipose
tissue releasing stromal cells (Aronowitz et al. 2015;
Bora and Majumdar 2017). AdSVF isolated using
mechanical methods is equally safe and has advan-
tages like low cost and less time-consuming
(Aronowitz et al. 2015; Senesi et al. 2019). However,
it has fewer progenitor cells and a high concentra-
tion of mononuclear cells. In addition, the cellular

yield from mechanical techniques is lower than the
enzymatic methods since mechanical action alone
cannot release the tightly bound adipose tissue
(Aronowitz et al. 2015; Tiryaki et al. 2020). On the
contrary, a more robust final AdSVF product is gen-
erated since the mechanical technique preserves the
extracellular matrix niche (Tiryaki et al. 2020; Gugjoo,
Amarpal, et al. 2020). Another protocol used for
AdSVF isolation is based on sonication-mediated
cavitation. It is a safe, rapid, and cost-effective
method that requires further validation (Amirkhani
et al. 2016). Another non-enzymatic AdSVF isolation
technique is the fractionation of adipose tissue pro-
cedure (FAT). This method can isolate AdSVF within
10-12min, facilitating intraoperative isolation and
rapid implantation (van Dongen et al. 2019). The via-
bility of the AdSVF cells and cellular yield can be
estimated using a trypan blue exclusion test and a
haemocytometer (Hendawy et al. 2021).

The adipose tissue harvesting site should be
selected based on different factors such as patient
factors and biological factors. The viable cells per
gram of adipose tissue obtained after processing
mainly depend on the source or site of collection.
The yield of viable cells obtained from the adipose
tissue collected from the falciform location was sig-
nificantly lower than the tissues collected at the
inguinal and thoracic wall locations in dogs (Astor
et al. 2013). Although breed size and body condition
score did not affect the yield of viable cells, the age
of the animal had a significant impact on the cellular
yield (Astor et al. 2013). Therefore, such factors
should be considered before the collection of adi-
pose tissue.

Figure 1. Steps involved in producing adipose-derived stromal vascular fraction (AdSVF) from adipose tissue collected from
the fat depots using the enzymatic technique.
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The cellular components of AdSVF can be resus-
pended in platelet-rich plasma (PRP), phosphate-buf-
fered saline (PBS), or 0.9% sodium chloride (saline)
to produce a ready-to-use solution (Bukowska et al.
2021). In addition, AdSVF can be expanded in vitro
to obtain AdSVF-derived mesenchymal stem cells
that differentiate into diverse lineages of cells (Han
et al. 2015). The quality and quantity of AdSVF is dir-
ectly dependent on the harvesting site. Hendawy
et al. (2021) compared the quality and quantity of
AdSVF isolated from the subcutaneous abdominal,
peri-ovarian, and falciform ligament fat depots. The
study identified peri-ovarian site as the best (highest
viability, cellular yield, and expression of AdMSCs
surface markers) adipose tissue sampling site in dogs
(Hendawy et al. 2021).

According to the joint statement of the
International Society for Cellular Therapy (ISCT) and
the International Federation for Adipose
Therapeutics (IFATS), AdSVF cells can be phenotypic-
ally identified using the markers: CD45-CD235a-
CD31-CD34þ. In addition, further characterization
can be performed using the surface antigens: CD13,
CD73, CD90, and CD105 (Bourin et al., 2013). The cel-
lular components of AdSVF can get further differenti-
ated into endothelial cells or adipocyte-like cells

based on the medium used. The differentiation of
AdSVF cells towards endothelium is stimulated by
the absence of adipogenic factors and the presence
of serum (Balwierz et al. 2008).

4. Composition of stromal vascular fraction

The cellular constituents of AdSVF are illustrated in
Figure 2. AdSVF contains variable cellular fractions
depending on the species, fat source, age, gender,
and physiological phase of the donor (Metcalf et al.
2016; Dar et al. 2021). One of the studies demon-
strated that AdSVF composes mainly of AdMSCs
(15–30%) along with other cellular components like
immune cells (25–45%), endothelial cells (10–20%),
and pericytes (3–5%) (Bourin et al., 2013). Another
study reported hematopoietic stem cells (2%), adi-
pose-derived stem cells (2–5%), pre/endothelial cells
(7%), pericytes/smooth muscle cells (2%), fibroblasts
(47%), and finally, other cells like macrophages, and
other blood cells (33%) (Figure 2) (Folgiero et al.
2010). The number of stem cells present in the
AdSVF can vary depending on several factors. The
number of nucleated cells in the adipose tissue
ranges from 500,000 to 2,000,000 cells/g. Among
these nucleated cells, 1- 10% are AdMSCs. Hence,

Figure 2. The major and minor cellular components present in the stromal vascular fraction: mature cells (adipocytes, smooth
muscle cells, fibroblasts, endothelial; cells, and blood cells), progenitor cells (pre-adipocytes, endothelial progenitor cells, hem-
atopoietic progenitors, and vascular progenitors), and stem cells (pericytes, mesenchymal stem cells, and hematopoietic
stem cells).
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the number of AdMSCs present in adipose tissue will
range from 5000 to 200,000 stem cells/g (Baer and
Geiger 2012; Dar et al. 2021). The composition of the
AdSVF, as well as the proliferation rate and differen-
tiation capacity of the AdSVF cells, depends on fac-
tors such as animal species, age, type (brown or
white) and anatomical location (subcutaneous or vis-
ceral) of adipose tissue, type of surgical procedure,
method of cell separation, culturing conditions, cul-
ture medium, exposure to plastic, and plating dens-
ity (Gentile et al. 2012; Gugjoo, Amarpal, et al. 2020).

Various studies suggest that the AdSVF contains
several growth factors at high concentrations like
hepatocyte growth factor (HGF), transforming
growth factor-beta (TGF- b), vascular endothelial
growth factor (VEGF), placental growth factor (PGF),
and moderate concentrations of angiopoietin (Ang-1
and Ang-2), and fibroblast growth factor (FGF-2)
(Gimble et al. 2007; Brown 2018; Stefanis et al. 2019).
Among these, HGF plays a significant role in embry-
onic organ development and wound healing in
adults. Furthermore, VEGF induces the growth of
new blood vessels, and PGF also plays a major role
in angiogenesis and vasculogenesis (Brown 2018). At
the same time, TGF-b controls cellular proliferation
and differentiation. In addition, FGF-2 promotes
wound healing and angiogenesis, whereas Ang-1
and Ang-2 are involved in angiogenesis and the for-
mation of blood vessels (Brown 2018).

Adipose tissue is considered an alternative source
of MSCs. AdSVF contains multipotent progenitor/
stem cells with chondrogenic, osteogenic, and adipo-
genic differentiation potential (Murphy et al. 2013).
The MSCs present in the AdSVF can differentiate into
several specific cell types like osteoblasts, chondro-
cytes, myoblasts, and fibroblasts, which have wide
application in regenerative medicine (Mizuno et al.
2012). One of the major prerequisites for successful
tissue regeneration is adequate vascularization.
Several strategies have been evaluated to improve
the vascularization of tissue-engineered grafts (Wu
et al. 2019). Some of these strategies involve using a

pre-vascularized graft or microvascular fragments
instead of conventional grafts that depend exclu-
sively on the host tissue for vascularization, angio-
genesis, and vasculogenesis. These grafts contribute
to the vascularization process (angiogenesis and vas-
culogenesis) from the graft to the host, further
enhancing the process (Wu et al. 2019). AdSVF being
a rich source of VEGF and a variety of progenitor
cells may contribute to the vascularisation process of
bone grafts.

5. Therapeutic potential of stromal
vascular fraction

Regenerative medicine essentially employs a cellular
component. Among various cells, stem cells or their
products are increasingly being evaluated for veter-
inary applications (Ribitsch et al. 2010; Amarpal et al.
2013; Pieri et al. 2019; Rajabzadeh et al. 2019; Russell
et al. 2020; Voga et al. 2020; Kumar et al. 2021;
Prządka et al. 2021) in dogs (Gugjoo, Amarpal, et al.
2019), cattle/buffalo (Gugjoo, Fazili, et al. 2018; Hill
et al. 2019), cat (Gugjoo, Fazili, et al. 2020; Quimby
and Borjesson 2018), horse (Lopez and Jarazo 2015;
Gugjoo, Makhdoomi, et al. 2019), sheep (Gugjoo
2018; Dar et al. 2021) and goat (Gugjoo, Fazili, et al.
2020). As adipose tissue originates from the meso-
dermal layer, AdSVF can be directly applied, thereby
considered a feasible patient side treatment option
(Figure 3). Adipose-derived stromal cells can differen-
tiate into osteogenic, adipogenic, chondrogenic, and
myogenic lineages (Gimble et al. 2007). The thera-
peutic potential of AdSVF has been previously eval-
uated in different animal models (Figure 4). Many
studies have already explored the potential of these
cells for osteogenic differentiation in animal models
using various scaffolds and biomaterials as cellular
carriers (Levi et al. 2010; Phipps et al. 2011). These
cells can be easily differentiated toward the osteo-
genic cell lineage and expanded and cultured in
large amounts for tissue engineering purposes
(Almubarak et al. 2016). AdSVF also contains other

Figure 3. Cell morphologies of freshly isolated stromal vascular fraction (AdSVF) and cultured adipose-derived mesenchymal
stem cells (AdMSCs) at passages 0 and 3. Reproduced from Zhou et al. (2017) under Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/).
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cell types in addition to MSCs. Therefore, the allo-
geneic use of AdSVF currently remains controversial
(Bora and Majumdar 2017).

5.1. Stromal vascular fraction for osteoarthritis

Osteoarthritis is a chronic joint disease that occurs
secondarily to developmental orthopaedic diseases
such as hip/elbow dysplasia, cranial cruciate liga-
ment disease, and patellar dislocation (Ivanovska
et al. 2022). Secondary osteoarthritis is the common
type of osteoarthritis seen in dogs. It mainly affects
the stifle, hip, and elbow joints (Pettitt and German
2015). The therapeutic strategies commonly used for
managing canine osteoarthritis mostly focus on con-
trolling the pain and inflammation associated with
the disease progression and are not directed at dis-
ease modification (Brondeel et al. 2021). MSCs are
already being evaluated for managing osteoarthritis
due to their ability to restore cartilage defects
(Brondeel et al. 2021; Ivanovska et al. 2022). In add-
ition, regenerative medicine involving cellular ther-
apy is increasingly used as a common mode of
treating osteoarthritis (Gugjoo, Chandra et al. 2018;
Gugjoo, Fazili, et al. 2019). AdSVF has been eval-
uated as therapeutics either alone or more recently,
along with the platelet-rich plasma (PRP). Available
literature indicates that AdSVF can safely be adminis-
tered in dogs with hip osteoarthritis (intra-articular
and intravenous administration) (Upchurch et al.
2016). However, clinical data on stifle and elbow

osteoarthritis are lacking, limiting our ability to reach
a conclusion.

Osteochondral defects created in medial condyles
and trochlear grooves (5mm x 3mm) treated with
AdSVF (5� 106 cells) loaded onto the acellular colla-
gen type I/III scaffold had led to the regeneration of
collagen type II, hyaline-like cartilage. The regener-
ated tissue had higher elastic moduli with glycosami-
noglycan content comparable to the native tissue
cartilage. The healing was comparable to that led by
the implantation of AD-MSCs (5� 105 cells) and was
evaluated through macroscopy, immunohistochemis-
try, biomechanical analysis, micro-CT analysis, and
biochemistry (Jurgens et al. 2013). In the case of hip
dysplasia, AdSVF (0.2 to 0.8� 106) transplantation at
acupoints improved the range of motion, lameness
at the trot, and pain on manipulation of the joints
after 30 days (Marx et al. 2014). AdSVF being rich in
growth factors in addition to the cells might have
led to improved healing of osteochondral defects
(Kazemi et al. 2017). However, the implantation of
AdSVF (16.3� 106) or BM-MSCs (10.5� 106) failed to
improve the healing of middle carpal joint osteo-
chondral defect, except for the PGE2 levels after
70 days period. In the case of AdSVF transplanted
joints, the tumor necrosis factor-a (TNF-a) level was
increased in the synovial fluid (Frisbie et al. 2009).
Similarly, another study demonstrated that AdSVF or
AdSVF loaded on the poly L-lactide-co-glycolide
(PLGA) nanofiber scaffold had reported no significant
improvement in function, cartilage biochemical

Figure 4. Applications of stromal vascular fraction (AdSVF) or adipose-derived stem cells (ASCs) in translational research
involving pigs, horse, and sheep models and veterinary practice. ASCs/SVFs can be suspended in either platelet-rich plasma
(PRP), phosphate-buffered saline (PBS), or 0.9% sodium chloride (saline). The suspended cells can be administered via different
routes, including intra-lesional, intravenous injections (musculoskeletal injury treatment, cutaneous wound healing, acute
respiratory distress syndrome), intracoronary delivery using balloon angioplasty catheter (cardiovascular disease), or insemin-
ation catheter (endometriosis). Reproduced from Bukowska et al. (2021) under Creative Commons Attribution 4.0 International
License (https://creativecommons.org/licenses/by/4.0/).
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composition, or histology. Simultaneously AdSVF
loaded onto the PLGA had led to adverse results. In
contrast, leukocyte poor PRP led to the better heal-
ing of the chondral defects in the knee joint in dogs
during six months follow-up (Franklin et al. 2018).
The therapeutic benefits of AdSVF in affected joints
are mediated through the paracrine anti-inflamma-
tory and immune-modulatory mechanisms (Andia
et al. 2019).

Apart from the use of AdSVF as monotherapy, the
combined use of AdSVF and PRP is also commonly
reported in the management of osteoarthritis as well
as articular cartilage injury treatment (Van Pham
et al. 2013; Upchurch et al. 2016). In an experimental
study, chondral defects treated with low laser irradi-
ated AdSVF along with PRP resulted in cartilage
regeneration and restoration of the chondral histo-
morphological picture over six months. In contrast,
the control defects deteriorated over time (Abdallah
et al. 2015). Intra-articular injection of AdSVF and
PRP improved the Canine Brief Pain Inventory (CBPI)
score and peak vertical force (PVF) in dogs with
osteoarthritis of the hip joints (Upchurch et al. 2016).
Intravenous administration of allogenic AdSVF
increased the VEGF levels in serum of dogs with
spine degenerative joint disease. The overexpression
of VEGF indicated the proangiogenic effects of
AdSVF that stimulated regenerative processes in the
damaged tissues (Kemilew et al. 2019). In addition,
the injected AdSVF cells induce a cascade of struc-
tural and molecular events due to the interactions
between AdSVF and infrapatellar fat pad that pro-
motes the regeneration of damaged tissues
(Lapuente et al. 2020). Intra-articular injection of
autologous AdSVF along with hyaluronic acid (HA)
had therapeutic efficacy in preventing the progres-
sion of osteoarthritis and promoting cartilage regen-
eration in sheep model (anterior cruciate ligament
transection and medial meniscectomy). However, it
was lesser than that of autologous AdMSC combined
with HA (Lv et al. 2018).

5.2. Stromal vascular fraction for wound healing

AdSVF is composed of different cell populations, and
most are competent in influencing the wound micro-
environment (Fraser et al. 2014). For example, in
experimentally induced full-thickness burn wounds
of rats, AdSVF, and ADSCs, paracrine secretion of
PDGF and bFGF contributed to increased fibrin and
fibroblasts (Kim et al. 2009). In addition, the cyto-
kines released by AdSVF cells can change the macro-
phage activation profile from classic to regulatory.
This improves the wound healing profile (Gourevitch
et al. 2014). AdSVF promotes wound healing by reg-
ulating gene expression and enhancing the function

of endothelial cells and fibroblasts (Bi et al. 2019).
The combined use of AdSVF and platelet-rich plasma
has an additive stimulatory effect that supports
angiogenesis, thereby accelerating the wound heal-
ing process (Karina et al., 2019). Therefore, such a
combination can be considered an alternative to
AdMSC treatment.

The therapeutic potential of AdSVF in wound
healing could be attributable to the secretion of che-
mokines, epidermal growth factor, epithelialization
growth factors, neutrophil-activating protein-2 (NAP-
2 or CXCL7), and stromal cell-derived factor (SDF-1
or CXCL12) (Chae et al. 2017). An injectable extracel-
lular matrix-AdSVF gel is an attractive therapeutic
strategy for enhancing wound healing (Sun et al.
2017). The extracellular matrix-AdSVF gel increased
the expression of angiogenic factors such as vascular
endothelial growth factor and basic fibroblast
growth factor. Therefore, the potent angiogenic
effects exerted by AdSVF might have contributed to
the improvement of wound healing (Sun et al. 2017).
In addition, AdSVF was also found to be effective for
managing deep partial-thickness burn wounds in
rats. It induced healing by reducing inflammation of
the burn wound and increasing fibroblastic activity,
proliferation, and vascularization (Atalay et al. 2014).
Implantation of AdSVF also accelerates re-epitheliali-
zation and wound closure (Chae et al. 2017). In
another study, AdSVF was found to promote fibro-
blast migration and cellular viability in a hypergly-
caemic microenvironment with the help of wound
healing cytokines. This indicates therapeutic poten-
tial in diabetic wound management (Tan et al. 2018).
Intradermal injection of AdSVF was also found to
enhance epithelialization and angiogenesis in full-
thickness cutaneous wounds in rats (Karagergou
et al. 2018). Therefore, AdSVF accelerates wound
healing by enhancing angiogenesis and neovascula-
rization (Andia et al. 2019).

Apart from direct skin wound healing, AdSVF
appears promising in anorectal fistula commonly
seen in dogs. For example, in a porcine model of
mechanically induced anorectal fistula, transplant-
ation of AdSVF led to the complete healing of the
fistula in two weeks (Dryden et al. 2017).
Furthermore, AdSVF appears promising in preventing
gastrointestinal fistula tracts following gastrointes-
tinal surgery, as demonstrated in rabbits (Aldaqal
et al. 2015).

5.3. Stromal vascular fraction for promoting
bone healing and regeneration

AdMSCs have broad applications in bone tissue
engineering due to their in vivo osteogenic potential.
They also demonstrate significant angiogenic
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potential, making them suitable for augmenting
bone healing (Kim et al. 2012). AdSVF is currently
used to manage various orthopaedic conditions in
clinical settings. It has superior therapeutic potential
for regenerating bone, cartilage, and tendons. Hence
AdSVF has wide application in regenerative medicine
and is used for treating osteonecrosis (Pak et al.
2017). The AdSVF has several clinical applications
and can be used for managing bone diseases that
involve loss of bone, osteonecrosis, and oncologic
bone resections (Roato et al. 2018). Autologous
AdSVF cells combined with bone substitutes and
other biological factors can be considered an alter-
native to conventional bone grafting techniques
(Najman et al. 2016). Freshly isolated AdSVF exhib-
ited promising osteogenic and vasculogenic capacity
(Najman et al. 2016). Besides potentiating osteogen-
esis, AdSVF diminishes the possibility of osteonecro-
sis at the bone ends (Toplu et al. 2017).

In a study by Pak, autologous AdSVF exhibited
bone regeneration potential in man that was further
used for managing osteonecrosis of the femoral
head (Pak 2011). By modifying the media used for
AdSVF collection and storage, we can induce osteo-
genic differentiation of AdSVF cells. Such differenti-
ated AdSVF cells exhibit superior bone healing
capacity compared to undifferentiated AdSVF cells
(Kim et al. 2012). In addition, AdSVF contains a large
number of CD34þCD45" cells that can stimulate
angiogenesis and play a major role in the neovascu-
larization processes to promote the healing of ische-
mic tissues (Madonna and De Caterina 2008).

Even though AdSVF and ASC exhibit equal in vitro
osteogenic differentiation potential, the AdSVF con-
struct was found to possess superior bone-regenera-
tive capacity compared to the ASC construct upon
implantation in the rat model of the femoral bone
defect (Zhang et al. 2018). AdSVF also exhibited bet-
ter osteoinductive potential than ASCs when it was
plated on a xenohybrid bone scaffold in an osteo-
genic medium (Roato et al. 2018). Furthermore,
freshly isolated AdSVF expressed bone-related and
endothelial-related genes, making it an excellent
therapeutic candidate for managing bone defects
(Najman et al. 2016). The superior osteogenic differ-
entiation potential of AdSVF was also associated
with the distinct differences in immunoregulatory
effects from ASCs (Zhang et al. 2018). On the con-
trary, in another study, ASC-loaded scaffolds pro-
duced greater bone volume and coverage area than
the AdSVF-loaded scaffolds (but not statistically sig-
nificant) in a murine model of critical-sized cranial
defects (Nyberg et al. 2019).

MSC-rich AdSVF was also found to increase bone
healing in an experimental zygomatic bone defect
rat model. This technique can further replace the

clinical use of bone grafts and flaps (Toplu et al.
2017). Intraoperative implantation of freshly isolated
AdSVF cells without in vitro expansion is currently
being used to treat bone defects (Aslan et al. 2006;
Evans et al. 2007). This technique is simple, time and
cost-effective, minimally invasive, and the process of
isolation to implantation will take only a few hours
(M€uller et al. 2010; Coelho et al. 2012).

In addition to progenitor cells (AdMSCs), AdSVF
contains several growth factors such as TGF-b, IGF1,
FGF2 and PDGF that accelerate the bone healing
process (Sananta et al. 2022). TGF-b is essential for
the maintenance and expansion of MSCs, mainten-
ance and differentiation of osteoblasts, and osteo-
progenitor cell proliferation (Chen et al. 2012;
Sananta et al. 2022). Administration of AdSVF
enhanced the healing process in the murine bone
defect model characterized by an increased level of
TGF- b1 (Sananta et al. 2022).

Autologous AdSVF has also been combined with
calcium phosphate ceramics to promote bone regen-
eration. Implantation of calcium phosphate ceramic
seeded with freshly isolated AdSVF in the maxillary
sinus floor elevation model in man was an effective
and safe bone regeneration technique (Prins et al.
2016). Adipose-derived AdSVF was also found to
enhance the remodelling of devitalized hypertrophic
cartilage to bone tissue in the rat calvarial defect
(4mm diameter) model (Todorov et al. 2016).
However, in a study by Thery et al. (2015) to investi-
gate the osteogenic potential of AdSVF, it was found
that the combination of AdSVF and BCP was insuffi-
cient to promote bone formation. Hence, it was
opined that an osteoinductive factor should be
included to promote the differentiation of osteo-
blasts, thereby supporting bone tissue formation
(M€uller et al. 2010).

5.4. Stromal vascular fraction for tendon healing

In tendons, healing is hampered due to its lack of
direct blood supply and the limited concentration of
less active multiplying tenocytes. Therefore, treating
tendon or ligament injuries is a Herculean task as
regenerative medicine is being evaluated (Gugjoo,
Fazili, et al. 2018; Gugjoo, Makhdoomi, et al. 2019;
Gugjoo, Fazili, et al. 2020). In order to improve heal-
ing, various growth factors along with the cells may
be incorporated for enhanced scar- and adhesion-
less healing. Co-culture of AdSVF with tenocytes has
been demonstrated to enhance gene expression for
insulin-like growth factor-1 (IGF-1), stromal cell-
derived factor-1a (SDF-1a), transforming growth fac-
tor-b1 (TGF-b1) and TGF-b3. Such an enhancement
has been significantly higher with AdSVF compared
to AdMSCs (Polly et al. 2019). In the horse, regarding
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superficial digital flexor tendonitis (collagenase-
induced) treatment with AD-AdSVF (three doses at
40-53 hr of 13.83 ± 3.41� 106 cells) significantly
improved tendon fiber architecture with reductions
in vascularity, inflammatory cell infiltrates, and colla-
gen type III formation. Furthermore, tendon fiber
density and alignment were also improved. However,
gene expression analysis of collagen type I and type
III failed to show any difference between control and
cell treatment at six weeks (Nixon et al. 2008).
Similarly, implantation of autologous adipose micro-
grafts along with AdSVF in the sheep model had
improved common calcaneal tendinopathy. Tendon
diameter, fiber orientation score, fiber edema score,
infiltrative-inflammatory process, and necrosis score
showed improvement compared to the control
(Piccionello et al. 2021).

5.5. Miscellaneous applications

In the generation of tissue-engineered bladders,
bladder vascularization is an important aspect.
AdSVF possesses all the requisite cell populations for
promoting cell repair in tissue engineering (Leblanc
et al. 2012; Zhou et al. 2016). The angiogenic factors
viz. VEGF, PDGF-BB, and bFGF catalyze and enhance
neovascularization in tissue-engineered bladders in
man (Zhou et al. 2013). AdSVF is similar to AdMSCs
and is capable of intrinsic angiogenesis (Nunes et al.
2013). Zhao et al. (2019) reported statistically signifi-
cant advantages of AdSVF over AdMSCs. AdSVF and
bladder acellular matrix (BAM) combination enhances
neovascularization. Apart from this, AdSVF has also
shown better safety and tolerance when used along
with BAM than BAM alone (Mizuno et al. 2012; Bora
and Majumdar 2017).

Two different MSC products are in the pipeline as
a novel therapy for treating chronic kidney disease
in felines: AdSVF (non-expanded) and AdMSCs
expanded in culture (Quimby et al. 2016). Intrarenal
autologous MSC injections for feline CKD were safely
tolerated and improved renal function significantly
(Quimby et al. 2011). Both bone marrow MSCs and
AdMSCs showed highly significant kidney protective
effects, viz. decreased fibrosis, intrarenal inflamma-
tory infiltrate, and sclerosis of the glomerulus (Lee
et al. 2010; Villanueva et al. 2011). In addition, overall
health and weight, BUN, creatinine, BP, and haem-
atocrit showed marked improvement. Various routes
of administration in repeated doses, viz. subcapsular,
IV, or intraparenchymal, are all effective (Semedo
et al. 2009; Lee et al. 2010). Furthermore, administra-
tion of AdSVF attenuated acute rejection following
organ donation in the circulatory death renal trans-
plantation model in rats by enhancing indoleamine

2, 3-dioxygenase expression increasing regulatory T
cells ratio (Wang et al. 2021).

Because of the multipotent nature of AdSVF, it
was attempted to be used to treat traumatic brain
injury in animal models. AdSVF administered soon
after a traumatic brain injury could palliate and fore-
stall motor skills and memory deficits that would
otherwise occur in the absence of AdSVF. This was
substantiated by the Rotarod test and Morris water
maze (MWM) test (Berman et al. 2018). In addition,
tail vein administered AdSVF within 4 hours of trau-
matic brain injury can increase the success of ther-
apy as the injury initially alters the permeability of
the blood-brain barrier (Beaumont et al. 2000).
AdSVF loaded with the silicone rubber conduit
improves rat sciatic nerve injury in diabetic
(Mohammadi et al. 2015). The therapeutic potential
of AdSVF derived from omental adipose tissue was
evaluated in a rat sciatic nerve transection model by
loading into a vein graft (Mohammadi et al. 2012).
The findings indicate that AdSVF can be considered
as an ideal candidate for peripheral nerve regener-
ation since it facilitates the functional recovery of sci-
atic nerve injury (Mohammadi et al. 2012).

In treating human patients with scarred vocal folds,
AdSVF is a new hope. It enhances the healing process
and reduces granuloma, fibrosis, and inflammation
(Mattei et al. 2017). Autologous AdSVF injection in
scarred vocal folds was found to be safe and tolerable
in humans (Mattei et al. 2020). In addition, the visco-
elasticity and vibration amplitude was restored
(Hiwatashi et al. 2017). Furthermore, the M2 pheno-
type macrophages and regulatory T cells in AdSVF
express a high level of immunosuppressive cytokines
that contribute to immunomodulatory effects. Similar
studies must be conducted on veterinary patients to
establish the therapeutic potential of AdSVF in vocal
fold-associated pathologies. In rats with acute or
chronic liver failure (ACLF), the AdSVF serves as a
promising therapeutic agent. Ho et al. (2019) studied
the therapeutic effects of CD 34þ/CD34- AdSVF cells
in hepatocyte co-transplantation. The co-transplant-
ation of CD34þ AdSVF cells ensured quick recovery
from liver fibrosis and biliary ductular proliferation
compared with CD34- AdSVF cells. Even in rat testicu-
lar degeneration, AdSVF appears promising (Gao et al.
2016; Zhou et al. 2019) and thus, may be an ideal
therapeutic strategy for animals utilized for breeding
purpose having elite germplasm. In addition, it may
offer a promising strategy for preventing graft rejec-
tion (Weltz et al. 2020).

6. Limitations

Science is advancing rapidly, and the progressive
advancements make it difficult to keep up with it,
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especially for a clinician. Although AdSVF and
AdMSCs have already established their therapeutic
utility in various disorders and diseases, they possess
all the disadvantages of cell-based therapeutics
(Sharun, Pawde, et al. 2021). Some disadvantages,
such as tumorigenic potential, pulmonary embolism,
and inability to reach target organs, limit the spec-
trum of therapeutic use (Sharun, Pawde, et al. 2021).
In addition, further efforts are required to optimize
the sources of AdSVF and estimate the transplantation
dose and delivery methods to standardize the thera-
peutic protocols (Devireddy et al. 2017; Kang and Park
2020). Specific standards or recommendations are not
available that define the critical attributes of cell-
based products derived from veterinary species
(Devireddy et al. 2017). Studies must be conducted to
determine the storage life of AdSVF, cryopreservation,
and their reuse. Furthermore, large-scale manufactur-
ing techniques have to be developed that ensures
quality assurance and control following current Good
Manufacturing Practices (Gimble et al. 2017).

Fat is also a common tissue affecting the endo-
crine functioning in the body. It specializes in acting
as a storehouse for various chemicals, including
endocrine-disrupting chemicals (EDCs). Accumulating
such chemicals affects the mesenchymal stem cell
properties of the adipose tissue (AD-MSCs). EDCs
promote adipogenic differentiation of the AD-MSCs
while simultaneously decreasing the osteogenic dif-
ferentiation (Marycz, Kornicka, Basinska, et al. 2016;
Marycz, Kornicka, Grzesiak, et al. 2016; Marycz,
Kornicka, MareRdziak, et al. 2016; Marycz et al. 2018;
Marycz 2021). Additionally, EDCs promote pro-inflam-
matory cytokines and increase oxidative stress, low-
ering their activity (Pakzad et al. 2013; Ricciardi et al.
2012; Hayrapetyan et al. 2015; Bateman et al. 2016).
Similarly, in equine metabolic syndrome (EMS), mito-
chondrial biogenesis and function impairments tend
to affect MSCs osteogenesis (Marycz, Kornicka,
Basinska, et al. 2016; Marycz, Kornicka, Grzesiak, et al.
2016; Marycz, Kornicka, MareRdziak, et al. 2016). It has
been recently proposed that AD-MSCs and hepatic
stellate cells have a critical endocrine relationship
that might be responsible for metabolic syndrome
(Marycz 2021). Thus, AdSVF derived from adipose tis-
sue may not be effective in such cases.

Conclusion and prospects

AdSVF can be isolated from adipose tissue using
enzymatic or non-enzymatic techniques. The enzym-
atic technique is widely used since it is considered
as the gold standard method for AdSVF isolation.
AdSVF isolation using mechanical methods is equally
safe but has a lower cellular yield. The cellular com-
ponents of AdSVF can be resuspended in PRP, PBS,

or 0.9% sodium chloride to produce a ready-to-
use solution.

Adipose-derived AdSVF has osteogenic, adipo-
genic, chondrogenic, and myogenic potential that
can be used for treating a wide array of diseases
and disorders. It is currently being used for manag-
ing various orthopaedic conditions in clinical settings
and has the potential for regenerating bone, cartil-
age, and tendons. In addition, AdSVF can also be
used to promote wound healing and be considered
a therapeutic strategy for managing osteoarthritis
and tendonitis. Furthermore, the anti-inflammatory
activity and immunomodulatory potential of AdSVF
can be utilized for managing immune-mediated and
inflammatory diseases. The heterogeneous cellular
composition of AdSVF (MSCs, pericytes, endothelial
cells, fibroblasts, macrophages, and other immune
cells) contributes to the broad therapeutic potential.
The potential of AdSVF-based regenerative cell ther-
apy is enormous and is currently at its infant stage.
Future studies may widen the clinical utility of
AdSVF further. However, in addition to in vivo stud-
ies, researchers should also focus on conducting
large-scale, randomized clinical controlled trials in
veterinary patients to establish its clinical utility.

Due to their relative ease of access and standar-
dized laboratory procedures, ASCs have become the
most popular sources of cells for stem cell-based
therapy involving different tissues. However, the
need for a sterile laboratory having culturing facili-
ties limits the clinical utility of ASCs in veterinary
practice. In addition, the isolation of ASCs from
AdSVF is time-consuming since it requires an add-
itional culture period. The interval from adipose tis-
sue harvest to the injection of the final cellular
product (ready-to-use AdSVF) is very short.
Therefore, using freshly isolated AdSVF can preclude
the additional culture period, reducing the risk of
extensive cell contamination, thus making it a safe
and cost-effective strategy. However, like all cell-
based therapeutics, disadvantages such as pulmon-
ary embolism and the inability to reach target
organs limit their therapeutic use if administered
intravenously. In addition, the prospects of allogen-
eic use of AdSVF remain controversial due to a lack
of sufficient data. Finally, the lack of proper regula-
tory guidelines for isolation, characterization, and
clinical use makes interpreting the results of clinical
trials difficult. Although cell-free therapeutic strat-
egies are replacing cell-based therapeutics, the ease
of access and simplicity of the latter make it a prom-
ising treatment strategy for clinicians.
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