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Abstract

Long-lived animals, including social insects, often display seasonal shifts in foraging behavior. Foraging is ultimately a
nutrient consumption exercise, but the effect of seasonality per se on changes in foraging behavior, particularly as it relates
to nutrient regulation, is poorly understood. Here, we show that field-collected fire ant colonies, returned to the laboratory
and maintained under identical photoperiod, temperature, and humidity regimes, and presented with experimental foods
that had different protein (p) to carbohydrate (c) ratios, practice summer- and fall-specific foraging behaviors with respect to
protein-carbohydrate regulation. Summer colonies increased the amount of food collected as the p:c ratio of their food
became increasingly imbalanced, but fall colonies collected similar amounts of food regardless of the p:c ratio of their food.
Choice experiments revealed that feeding was non-random, and that both fall and summer ants preferred carbohydrate-
biased food. However, ants rarely ate all the food they collected, and their cached or discarded food always contained little
carbohydrate relative to protein. From a nutrient regulation strategy, ants consumed most of the carbohydrate they
collected, but regulated protein consumption to a similar level, regardless of season. We suggest that varied seasonal food
collection behaviors and nutrient regulation strategies may be an adaptation that allows long-lived animals to meet current
and future nutrient demands when nutrient-rich foods are abundant (e.g. spring and summer), and to conserve energy and
be metabolically more efficient when nutritionally balanced foods are less abundant.
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Introduction

Reproduction, hibernation (diapause), and migration are

perhaps the best-known examples of life history events in long-

lived animals that are entrained to circannual shifts in photoperiod

and related environmental factors (i.e., seasonality per se) [1]. As

animals shift in and out of these circannually driven life history

events [2,3,4] they experience correlated shifts in their physiology

and behavior [5,6]. What is less well appreciated and understood is

the extent to which seasonality per se modifies animal physiology

and behavior, particularly foraging behavior.

The two most likely observed seasonal modifications associated

with foraging behavior are changes in the amount of food

collected, and changes in food preferences. In terms of modifying

amounts collected, animals such as squirrels [7] and pika [8] are

good examples. They collect summer foods in excess of amounts

required for immediate use, and cache this excess for use during

winter when food is scarce. In terms of switching food preferences,

optimal foraging theory predicts that an animal’s foraging

decisions should maximize energetic gain [9]. Here animals might

switch their food preferences to reflect shifts in the availability of

particular foods (e.g., [10]). Alternatively, preference switches

might indicate active regulation of nutrient intake, despite the

relative abundance of available foods [11,12]. In this latter case, an

animal should forage for foods having a nutrient content that best

matches its immediate multiple nutritional demands. Currently,

much of the literature on seasonal shifts in animal foraging

behavior is descriptive, relating the spatiotemporal relationship

between animals and their foods (e.g., [13,14]), and using food

preference as an indicator of the immediate requirement for

nutrients contained in exploited foods [15,16]. To our knowledge,

no studies have attempted to experimentally demonstrate how

seasonality per se modifies foraging behaviors associated with

nutrient regulation.

For a broad range of reasons it is challenging to study the effects

of seasonality on the shifts in foraging behavior of vertebrates,

particularly as it relates to nutrient regulation. In contrast, colonies

of social insects provide an excellent, experimentally tractable

model. First, social insect colonies are a long-lived ‘superorganism’

[17] that experience multiple yearly cycles of seasonal changes in

both food availability and demand. Although reproductive queens

are typically the only colony member that directly experience such

yearly cycles, remarkably queens of some social insects can live

.10 years [18]. But even if the founding queen dies, replacement

by related young queens can allow colonies of some ant species to

persist for multiple decades [19]. Second, colonies of social insects

have been shown from both laboratory and field studies to actively

regulate nutrient intake [20,21,22]. Finally, insect and non-insect

societies parallel one another in many aspects [17]. Among these is

the requirement to obtain enough nutrients, and in the correct

ratios, to promote the collective well-being of the society. Although

individuals of social insect colonies differ in task and nutritional
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requirements, individuals work to promote the survival of the

whole society, perhaps even beyond their own lifetime. In the short

term, intricate interactions between adult and developing

nestmates are believed to direct food collection behaviors of

foragers. Whether a mechanism also exists that directs food

collection behavior of foragers for long-term colony well-being,

and the extent to which it is dynamic and can be modified in

response to different nutritional and environmental conditions,

remains poorly understood.

In this study we used the red-imported fire ant, Solenopsis invicta

to examine how seasonality per se affects foraging behavior. We

conducted two experiments that utilized summer- and fall-

collected ant colonies, split into experimental colonies with similar

demographic traits (a single queen, plus similar numbers of

workers and brood). In our first experiment we restricted summer-

and fall-colonies to foods with fixed protein (p) to carbohydrate (c)

ratios. In our second experiment, summer- and fall-collected

colonies were allowed to self-select their protein-carbohydrate

intake. For both experiments we measured and compared the

amount of protein and carbohydrate collected, and ingested, by

summer- and fall-collected colonies. All experiments were

conducted over a 5-week period, in a growth chamber set with

fixed photoperiod, temperature and humidity levels. We show that

summer- and fall-collected ants practice different protein-carbo-

hydrate regulation strategies, and discuss the functional signifi-

cance of this contrasting behavior in terms of the value of protein

and carbohydrates for ant colonies.

Results

No-Choice Experiment
In this experiment summer and fall colonies were restricted to

feeding on one of five singly-available foods with different protein

(p) to carbohydrate (c) ratios (see Materials and Methods and

Table S1). Summer colonies collected more food, on average, than

fall colonies, but more interestingly, a significant diet-by-season

interaction was detected (Fig. 1A; Table 1). Summer and fall

colonies collected similar amounts of balanced (37% protein, 37%

digestible carbohydrate (p37:c37)) and slightly protein-biased foods

(p42:c32), but summer colonies collected significantly more food

when it was slightly carbohydrate-biased (p33:c43). The differ-

ences in food collection between summer and fall colonies were

even more pronounced on the two highly unbalanced foods

(p19:c57 and p54:c18).

Nutrient collection, expressed as the amount of protein and

carbohydrate gathered, is shown in Figure 1B. There was a

significant season and food effect for both protein and carbohy-

drate collection, and for protein there was a marginally significant

season-by-food interaction (Table 1). When a ‘collection array’

(sensu [23]) was fit separately to the summer and fall protein-

carbohydrate collection points, to explore whether summer and

fall colonies differed in their nutrient regulation strategies

(reviewed by [24]), a striking difference was observed (Fig. 1B).

A strongly concave intake array was observed for summer

colonies, but for the fall colonies a convex intake array was

observed. The most noticeable difference is seen on the two most

extreme foods (p19:c57 and p54:c18). On these two diets, summer

colonies ate significantly greater combined amounts of protein and

carbohydrate than did fall colonies. The implication of these

different nutrient regulation strategies is considered in the

discussion.

An important observation in this experiment was that ants did

not eat all the food they collected; the majority of summer and fall

colonies contained some unconsumed food (see Supporting

Methods and Results; Figure S1). Interestingly, chemical analyses

of unconsumed foods revealed a different protein-carbohydrate

profile compared to the respective experimental food (Table S2).

In general, very little carbohydrate was detected in any of the

unconsumed foods (see Supporting Methods and Results),

indicating that summer and fall ants consumed most of the

Figure 1. Food and nutrient collection for summer and fall
colonies on diets with different protein-carbohydrate ratios.
Panel (A) shows the mean (6 S.E.) amount of food collected, over 5
weeks, by summer (open columns) and fall (filled columns) colonies.
Significant differences in food collection between the food treatments
for summer colonies are indicated by different capital letters above
columns. Panel (B) shows the mean (6 S.E.) amount of protein and
carbohydrate collected, for the same five diets, for summer (open
symbols) and fall (closed symbols) colonies. The lines emanating from
the origin represent the p:c ratio of five diets: inverted triangle (19%
protein, 57% carbohydrate; p19:c57); square (p33:c43); circle (p37:c37);
diamond (p42:c32); and triangle (p54:c18). The solid and long-dashed
curves represent the fitted intake arrays (see text for details) for summer
and fall colonies, respectively. Different letters in the figure legend
indicates significant differences in protein and carbohydrate collection
between the diets (for each season).
doi:10.1371/journal.pone.0025407.g001

Seasonality Affects Foraging Behavior of Ants

PLoS ONE | www.plosone.org 2 September 2011 | Volume 6 | Issue 9 | e25407



carbohydrate they collected (Fig 2A & 2B). In contrast, the protein

content of the cached food increased proportionately with the

protein content of the food (Fig. 2A & 2B).

After taking into account the amount of both protein and

carbohydrate contained in unconsumed foods, actual protein and

carbohydrate consumption was compared. This revealed a

significant season-by-diet interaction (Fig. 2A & 2B; Table 1),

which was investigated more thoroughly by conducting separate

post hoc analyses for protein and carbohydrate consumption. Here,

and between seasons, the only difference in protein-carbohydrate

consumption was on the highly carbohydrate-biased treatment

(p19:c57). Summer colonies on this treatment, compared to fall

colonies, consumed significantly greater amounts of both protein

and carbohydrate (Fig. 2A & 2B).

Figure 3 shows the weekly pattern of food collection by summer

and fall colonies. Generally, the amount of food collected was

greatest during week one and decreased successively in weeks three

and five (repeated measures ANOVA of log-transformed data; F2, 47

= 19.62, P,0.001). More importantly, however, a significant

season-by-time interaction was observed (F2, 47 = 4.96, P = 0.011).

Here food collection was higher for summer colonies in week one,

but by week five the amount of food collected by summer and fall

colonies was similar (Fig. 3). No diet-by-time (F8, 94 = 0.86,

P = 0.550) or season-by-diet-by-time (F8, 94 = 0.96, P = 0.471)

interaction was observed.

Choice Experiment
In this experiment, colonies were presented with paired

nutritionally complimentary foods (three possible combinations),

allowing colonies to self-select their protein and carbohydrate

intake. Two key results were obtained. First, neither summer or

fall foragers fed randomly (Table S3); on all food pairings colonies

always showed a preference (in terms of the total amount collected)

for the carbohydrate-biased food (Fig. S2). Second, food collection

patterns revealed that summer colonies amassed significantly more

of each food than did fall colonies, except for colonies on

treatments that paired the p33:c43 and p54:c18 foods (Table 2,

Fig. S3).

Food collection expressed in terms of the amount of protein and

carbohydrate is shown in Figure 4A and 4B. Protein and

Table 1. Results from ANOVA and MANOVA on food
collection and consumption in no-choice experiments.

No-choice Source F df P

Total food collected Season 26.63 1,57 ,0.001

Food 1.31 4,54 0.278

Season-by-Food 3.12 4,54 0.023

Protein collected* Season 10.23 1,57 0.002

Food 8.58 4,54 ,0.001

Season-by-Food 2.37 4,54 0.065

Carbohydrate collected* Season 9.57 1,57 0.003

Food 7.71 4,54 ,0.001

Season-by-Food 2.34 4,54 0.690

Protein and
carbohydrate

Season 0.55 2,46 0.580

consumed* Food 10.29 8,92 ,0.001

Season-by-Food 2.88 8,92 0.007

These analyses tested the effect of season and dietary factors on total food and
macronutrient collection, and macronutrient consumption by summer and fall
colonies on no-choice foods.
*Analyses conducted on log-transformed data.
doi:10.1371/journal.pone.0025407.t001

Figure 2. Nutrient consumption for summer and fall colonies
on diets with different protein-carbohydrate ratios. These
figures show the mean (6 S.E.) total amount of protein and
carbohydrate consumed [dark symbols in both panel (A) and (B)] and
collected [light grey symbols in both panel (A) and (B); data from
Figure 1B]. The dashed lines emanating from the origin represent the
protein-carbohydrate (p:c) ratio of five diets: inverted triangle (19%
protein, 57% carbohydrate; p19:c57); square (p33:c43); circle (p37:c37);
diamond (p42:c32); and triangle (p54:c18). Protein consumption was
calculated by subtracting the amount of protein in unconsumed foods
from the amount of protein from collected food; carbohydrate
consumption was calculated using a similar approach (see Supporting
Methods and Results for complete details; also see Fig. S1). Different
letters in the figure legend indicate significant differences in protein
and carbohydrate consumption between the diets.
doi:10.1371/journal.pone.0025407.g002
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carbohydrate collection were both significantly affected by season

and food pairing, but no season-by-food pairing interaction was

observed (Table 2). In general, summer colonies collected greater

combined amounts of protein and carbohydrates. With respect to

comparisons between the three food pairings, carbohydrate

collection was similar on treatments that had a dish of highly

biased-protein (p54:c18), but significantly higher on the treatment

lacking the highly biased-protein food. Significant differences in

protein collection were also observed between the three food

pairings. However, the difference in carbohydrate collection

between treatments was greater than the difference in protein

collection between treatments (Fig. 4A & 4B).

As in no-choice experiments, the majority of ants did not eat all

the food they collected (see Supporting Methods and Results), and

seasonal colonies on most treatments (except fall colonies feeding

on the protein-biased food pairing) extracted much of the

carbohydrate from collected foods (Table S4). Therefore, actual

protein and carbohydrate consumption (as opposed to collection)

was compared across the three food pairings after taking into

account the amount of both protein and carbohydrate contained

in unconsumed foods (see Supporting Methods and Results). This

analysis revealed a marginally significant difference between

seasons, but a highly significant effect of food pairing on protein

and carbohydrate consumption (Figs. 4A and 4B; Table 2). This

outcome was investigated further by conducting separate post hoc

analyses for both protein and carbohydrate consumption. Summer

and fall colonies consumed very similar amounts of protein, but

summer colonies feeding on the treatment pairing foods p19:c57

and p42:c32 consumed more carbohydrate than colonies on the

other treatments (Fig. 4A).

The weekly pattern of total food collection for summer and fall

colonies on choice food pairings is shown in Fig. S3. Food

collection was greatest during week one and decreased successively

in weeks three and five (repeated measures ANOVA of log-

transformed data; F2, 29 = 14.18, P,0.001), and a significant

season-by-time effect was observed (F2, 29 = 3.89, P = 0.032).

Summer colonies collected, on average, greater amounts of food

in week one, but at the end of the experiment (week 5), summer

and fall colonies were collecting similar amounts of food. No

treatment-by-time interaction (F4, 58 = 2.09, P = 0.093), or season-

by-treatment-by-time interaction (F4, 58 = 1.27, P = 0.291) related

to food collection was observed.

Discussion

Insect societies differ from long-lived solitary animals in many

respects, but both share in common the ability to regulate their

Figure 3. Five-week food collection patterns for summer and fall colonies on diets with different protein-carbohydrate ratios. Bars
represent the mean (6 S.E.) total amount of food collected (for weeks 1, 3, and 5) on each diet for summer (open columns) and fall (filled columns)
colonies.
doi:10.1371/journal.pone.0025407.g003

Table 2. Results from ANOVA and MANOVA on food
collection and consumption in choice experiments.

Choice Source F df P

Total food collected Season 13.13 1,34 0.001

Food Pairing 4.34 2,33 0.023

Season-by-Food Pairing 2.13 2,33 0.137

Protein and
carbohydrate

Season 3.46 2,29 0.045

collected Food Pairing 19.50 4,58 ,0.001

Season-by-Food Pairing 1.34 4,58 0.265

Protein and
carbohydrate

Season 3.10 1,28 0.061

consumed Food Pairing 5.90 4,56 ,0.001

Season-by-Food Pairing 1.41 4,56 0.242

These analyses tested the effect of season and dietary factors on total food and
macronutrient collection, and macronutrient consumption by summer and fall
colonies on choice food pairings.
doi:10.1371/journal.pone.0025407.t002
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nutrient intake [20,21,24,25], and both experience regular cyclical

shifts in environmental conditions (e.g., see Figure S4A and S4B).

In this study we show that the nutrient content of available foods

can influence food collection behavior in fire ants, but that the

nutrient regulation strategies employed by fire ants differ

dramatically between the summer and fall. Importantly, our

experimental set-up (demographically similar experimental colo-

nies, ad libitum feeding conditions, plus fixed temperature,

photoperiod and humidity levels) reveals that these contrasting

nutrient regulation strategies appear pre-programmed, and are

independent of colony composition, food availability and envi-

ronmental conditions. Previous studies have shown that the

response of animals to the nutrient content of foods is dynamic,

and can change depending on an animal’s developmental,

reproductive, and/or energetic demands (reviewed in [23,24]).

Our results are novel because they demonstrate that this nutrient

regulation in animals is also seasonally dynamic.

Our choice experiments, as well as other studies exploring

nutrient regulation in ants [20,21,22,25], demonstrate that ants

prefer a balanced, to slightly carbohydrate-biased diet. Dussutour

and Simpson [20] showed the functional significance of a

carbohydrate-biased diet for ants – increased worker and larval

survival relative to feeding on a protein-biased diet. We too have

found similar results with fire ants [21]. However, our current

experiments indicate that summer and fall ants practice seasonally

distinct foraging behaviors with respect to regulation of nutrient

intake. The best way to understand this contrasting behavior is to

focus on results from the no-choice experiments, specifically the

protein and carbohydrate collection and consumption patterns on

the two most unbalanced foods (p19:c57 and p54:c18), and to

consider the functional value of these two key macronutrients.

Protein provides amino acids that are used predominately by

larvae to grow (and by extension the colony), while carbohydrates

(e.g., sugars) are used as a substrate for energy. On the strongly

carbohydrate-biased diets (p19:c57), protein is limited relative to

carbohydrates, so to collect sufficient quantities of protein for

larval growth, large quantities of this food would need to have

been collected. Ants showed this compensatory behavior in the

summer, but not in the fall. With respect to carbohydrates,

Dussutour and Simpson [25] have shown ants strongly regulate

carbohydrate, and do so under a number of different conditions.

In our no-choice experiment, carbohydrates were most limited on

the strongly protein-biased diet (p54:c18), so here ants would need

to have collected large quantities of food to fuel their energy

demands. Summer ants, but not fall ants, showed this compen-

satory food collecting behavior. Our experimental setup (food

supply, colony demographics, photoperiod, temperature, humid-

ity) was identical for both summer and fall colonies on these two

highly imbalanced foods, so our results suggest there is a season-

specific cue directing them to display such contrasting nutrient

regulation behavior.

Despite differences in food collection, both summer and fall

colonies regulated their protein intake to similar levels through

manipulation of the nutrient content of their food. A strong,

directed protein regulation response is not surprising considering

ants maintain at least some brood throughout the year (authors’

observations, [26,27,28]); there is a constant demand for protein.

Recently Dussutour and Simpson [20] documented the strong role

that larvae play in protein regulation behavior; ant colonies that

lack brood prefer carbohydrate-biased diets, while those with

brood prefer a more balanced protein-carbohydrate intake.

However, Dussutour and Simpson [20] also showed that too

much protein can be toxic for ants, so regulating protein intake to

a fixed level is a mechanism for keeping the entire colony healthy.

With respect to carbohydrate regulation, ants from our experi-

ments always consumed most of the carbohydrate they collected.

Carbohydrates, in contrast to protein, are equally valuable for

both workers and larvae. In workers, carbohydrates fuel foraging

Figure 4. Nutrient collection and consumption for summer and
fall colonies on nutritionally complimentary food pairings. The
mean (6 S.E.) total amounts of protein and carbohydrate collected
(filled symbols) and consumed (open symbols) by summer (A) and fall
(B) colonies on the three food pairings comprising choice treatments
over five weeks. Symbols represent food pairings: Squares (treatment 1)
= food p19:c57 with food p42:c32; Circles (treatment 2) = food p19:c57
with food p54:c18; and Diamonds (treatment 3) = food p33:c43 with
food p54:c18. Small dash, large dash, and solid lines emanating from
the origin represent the protein:carbohydrate ratio of collected food if
foragers collected equally from the two food dishes comprising
treatment one, two, and three, respectively. Different capital and
lower-case letters in the figure legend indicates significant differences
in protein and carbohydrate collection and consumption, respectively
between the diets (for each season).
doi:10.1371/journal.pone.0025407.g004
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activities, and can be used to build lipid reserves, and in larvae

they enhance development when matched with dietary protein

[29]. That ants should efficiently use the carbohydrates they

collect makes sense given its broad value to members of a colony,

but the extent to which ants are willing to process excess protein-

biased foods to increase their carbohydrate intake is likely limited

by the toxic effects associated with eating too much protein [20].

In the choice experiments, similar patterns in nutrient collection

and consumption are also evident for summer and fall colonies.

Summer colonies collected excess protein, but both summer and

fall colonies both regulated protein consumption to similar levels.

In contrast, summer colonies, but not fall colonies, increased their

carbohydrate consumption when more carbohydrate-rich foods

were available in the environment (e.g., pairing food p19:c57 with

p42:c32). Previous studies suggest that some mammals (reviewed

in [30]) and birds [31] naturally exhibit seasonal differences in

food collection behavior, and also under ad libitum food availability

[30]. For example, North American ungulate species reduce food

intake during winter months, and Parker et al. [30] suggests that

this behavior is a strategy to avoid physiological costs (i.e., due to

reduced metabolic functions) associated with consuming excess

food. However, one advantage social insects may have over many

solitary animals is that not all collected food is immediately

consumed; excess nutrients can be stored for later use. Hoarding

food by ants is thought to be a common phenomenon, and is even

referred to in ancient writings (Proverbs 6: 6–8, and Aesop’s fable,

The Ant and the Grasshopper). However, other than anecdotal

evidence, little is actually known about hoarding behavior in ants.

Some ants hoard liquid carbohydrate (e.g., remarkable storage

capacity for liquids of replete castes of ‘honey pot’ ants

(Myrmecocystus spp. [32]), but only recently has experimental

evidence shown that excess collected protein is stored inside

colonies for possible later use [33]. Colonies may utilize hoarded

protein to rear a winter batch of larvae, particularly larvae of

reproductive castes [33]. Not unlike other animals that collect and

hoard excess foods (e.g., squirrels and pika), ants may be collecting

excess protein when abundant for use when this nutrient is scarce

(or for development of larger batches of brood that are normally

found in summer colonies in the field [26]), but a cue other than

current food abundance and demand appear to direct collection of

excess protein in ants. We suggest this latter point reflects a

programmed priority of summer colonies to collect protein in

amounts above that funding colony growth. Seasonal shifts in

hoarding behavior also occurs in other animals, and this behavior

has been linked to photoperiod; increasing day-length decreases

hoarding behavior in hamsters, deermice, and chickadees

[34,35,36].

Based on the temporal feeding patterns in both the no-choice

experiments, and the consistency of our experimental regime for

both summer- and fall-collected ants, we suggest that photoperiod

is also a potential cue directing contrasting seasonal foraging

strategies of ants. In the first week of feeding, summer colonies

across all diets consistently collected more food than did fall

colonies. However, food collection in the summer colonies

consistently declined over the course of the experiment, and at

the last week of the experiment collection amounts for summer

and fall colonies were similar on all diets except the strongly

carbohydrate-biased one (p19:c57); for this food, collection

remained relatively high). In our experiments the natural

photoperiod experienced by summer source colonies was (light:-

dark) 14hr:10hr, while that experienced by fall source colonies was

(11.5hr:12.5hr). However, the experimental photoperiod we used

(12hr:12hr) more closely matched the natural photoperiod

experienced by fall colonies. Thus, summer colonies, in contrast

to fall colonies, experienced a decrease in day-length. Changing

photoperiod has been shown previously to affect several aspects of

animal food collection behavior. For example, increased experi-

mental photoperiod prolonged the length of nocturnal foraging in

the polychaete Nereis virens [37], prolonged foraging bouts in

Siberian hamsters [16], and dampened nocturnal foraging

intensity in a grain beetle [38]. Temperature is another

environmental factor that might affect foraging behavior, and

our summer and fall colonies did experience different natural

temperature regimes, in terms of absolute temperatures. The

periodicity of certain animal behaviors can become entrained to a

thermal cue (see [39]), and the current metabolic status of some

animals can be influenced by an experienced thermal history [40].

However, the degree to which either temperature or photoperiod

affects nutrient regulation strategies, or whether they interact to

produce the striking differences we observed in our study, has yet

to be explored experimentally.

Seasonal shifts in food collection behavior, as they relate to

seasonal adaptations in animals, have received surprisingly little

attention in the literature [41,42]. Our study demonstrates, for the

first time, a link between seasonal food collection behavior and

nutrient regulation strategies. Employing season-specific nutrient

regulation strategies may be an adaptation of many animals to

meet current and long-term nutrient demands when nutrient-rich

foods are abundant, to conserve energy when such foods are less

abundant, and to avoid instances of food stress associated with

ingestion of nutrients beyond current physiological constraints

[43]. Understanding seasonal shifts in animal food collection

behavior based on contrasting nutrient regulatory strategies may

have far-reaching ecological importance, including providing a

predictive model of seasonal patterns in animal food collection

behavior based on the relative nutrient content of available foods.

Materials and Methods

Experimental ant colonies and laboratory conditions
Polygynous colonies were collected between July 15 and July 25,

2009 and between October 20 and October 31, 2009, from the

Riverside campus of Texas A&M University, USA. Monogynous

experimental colonies were formed from each of the source

colonies. Each experimental colony consisted of a single wingless

queen, 1000 mg workers (haphazardly chosen from both nesting

and foraging areas), 200 mg larvae and 100 mg pupae (the latter

forms not of future reproductive castes). Eight experimental

colonies were formed from each source colony and allocated to

each of the treatments (see below). In cases when less than eight

experimental colonies were formed from a single source colony,

experimental colonies were randomly assigned to an experimental

treatment. Six replicate colonies were assigned to each of the

treatments. Experimental colonies were each housed in a

24.6 cm619.2 cm69.5 cm plastic box, and provided as a nest

chamber a 15 cm diameter lidded and covered Petri dish, filled

approximately half-full with hardened CastoneH dental stone.

CastoneH substrate was moistened regularly to maintain a high

humidity inside nest chambers [44]. Colonies were provided an ad

libitum water source. Colonies were housed in an insectary and

exposed to a 12h:12h L:D diel cycle under fluorescent lighting,

and maintained at 26uC temperature and at ambient humidity

(45–60%). For East Texas, in June the natural photoperiod is

14h:10h L:D, and in October the photoperiod is 11h:13h L:D. For

this study, experimental summer colonies were exposed to a

photoperiod having a significantly shortened period of light than

summer field colonies. In contrast, experimental fall colonies were

exposed to a more natural photoperiod.

Seasonality Affects Foraging Behavior of Ants
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Experimental Foods
Experimental diets consisted of five agar-based synthetic foods

created by combining methods of Cook et al., [21], Dussutour &

Simpon [45], and Stratka & Feldhaar [46] and ranged in total

protein (p) and carbohydrate (c) content from 79–83% (see Table

S1). The five diets, expressed as the percentage of diet total dry

mass, were: (1) p54:c18, (2) p42:c32, (3) p37:c37, (4) p33:c43, and

(5) p19:c57. The dietary protein component consisted mainly of an

approximate 1:1 mixture of whey protein concentrate and calcium

caseinate. There was an additional protein source from whole-egg

powder, the amount and proportion of which remained constant

across diets. Nearly half of the whole egg powder consisted of lipids

(fats and sterols). The dietary carbohydrate used was sucrose.

Experimental protocol
Both no-choice and choice experiments were run concurrently

for each season. No-choice experiments consisted of five dietary

treatments having a protein-to-carbohydrate ratio ranging from

0.3 to 3.0: Treatment 1 (p19:c57), Treatment 2 (p33:c43),

Treatment 3 (p37:c37), Treatment 4 (p42:c32), and Treatment 5

(p54:c18). Choice experiments consisted of three dietary treat-

ments each composed of a pairing of nutritionally complimentary

experimental foods: Treatment 1 (p42:c32 and p19:c57), Treat-

ment 2 (p54:c18 and p19:c57), and Treatment 3 (p33:c43 and

p54:c18). Colonies were provided with fresh food every day for five

weeks. One cm3 piece of each of the experimental foods was

placed in a small, pre-weighed plastic weighing boat, weighed to

0.01 mg, and then placed in each of the experimental colonies.

Three replicate, preweighed weighing boats containing each of the

five foods was placed in different areas of the insectary, and acted

as controls for evaporative water loss. After 24 hours, all food

dishes, including controls, were collected and placed in a 35uC
drying oven for ,48 hours. Once thoroughly dried, pre-weighed

weighing dishes containing remaining food, were each re-weighed

to obtain the dry weight. The amount of food collected (as dry

weight) by colonies was obtained by first, generating regression

plots of wet- and dry-weights of control foods, then using the

equation of the linear function corresponding to the best fit to

these data, computing the evaporative weight lost for each

experimental food. The difference between this value and final

dry weights of experimental foods gave the amount of each food

that was collected by colonies each day. The majority of both

summer and fall colonies did not consume all the food collected;

many cached and/or discarded unconsumed foods. The degree to

which colonies manipulated the protein and carbohydrate content

of collected foods was determined by using the Bradford and

phenol-sulfuric acid assays, respectively, to determine the protein

and carbohydrate content of unconsumed foods (see Supporting

Methods and Results).

Statistical analyses
Parametric statistics were used to conduct all analyses. Prior to

analysis, data were checked for normality and for equal variances,

using the Shapiro-Wilk test and O’Brien test, respectively. If data

did not meet these criteria, data were log-transformed (signified in

text). Analyses of total food (and protein and carbohydrate)

collection in no-choice experiments were conducted using

ANOVA. Analyses of total food collection in choice experiments

were conducted using MANOVA; foragers could independently

collect either of the two paired nutritionally complimentary foods.

For choice experiments, separate t-tests were conducted to

determine whether workers foraged selectively between the two

foods of each food pairing. These tests compared the p:c ratios

(total protein and carbohydrate content) of each food pairing to

the p:c ratio of the foods actually collected (total protein and

carbohydrate content). Analyses of protein and carbohydrate

collection were conducted using ANOVA; experimental foods

contained both protein and carbohydrate, and thus collection of

protein and carbohydrate was not independent. Analyses of food

consumption in both no-choice and choice experiments were

conducted using MANOVA; ants can selectively extract protein or

carbohydrate from collected foods [20]. Weekly total food

collection was analyzed using repeated measure two-factor

ANOVA. Following analyses, and where applicable, least-square

means Student’s post hoc tests were conducted from results

generated from univariate ANOVA. All analyses were conducted

using the software package Jump 7.02 (SAS Institute, Inc.).

Supporting Information

Figure S1 Amounts of unconsumed food for summer
and fall colonies on foods with different protein-
carbohydrate ratios. Mean (6 S.E.) total amount of

unconsumed foods from summer (open columns) and fall (filled

columns) colonies caching excess food on the five no-choice

treatments (A), and the mean (6 S.E.) proportion of total collected

food that remained unconsumed (B). Different upper case letters

above columns represent significant within-season and across

treatment differences from Student’s post hoc tests (P,0.05) for

summer and fall colonies.

(TIF)

Figure S2 Food collection for summer and fall colonies
on nutritionally complimentary food pairings. Mean

(+S.E.) total amount of food collected from each of the two foods

comprising the three dietary choice treatments (A–C) over five

weeks by summer and fall colonies. Bars are shaded to correspond

with each of the four experimental foods expressed as the percent

protein and carbohydrate content: white bars = food p19:c57,

light grey bars = food p33:c43, dark grey bars = food p42:c32,

and black bars = food p54:c18. Different capital letters above

columns represent significant differences from Student’s post-hoc

tests (P,0.05) comparing collection of foods one and two,

respectively.

(TIF)

Figure S3 Five-week food collection patterns for sum-
mer and fall colonies on nutritionally complimentary
food pairings. Mean (6 S.E.) weekly total amount of food

collected by summer (open columns) and fall (filled columns)

colonies feeding on food pairings comprising choice experiments.

(TIF)

Figure S4 Environmental conditions at source colony
collection site. Summer (A) and fall (B) in Brazos County,

Texas, USA, near location where source colonies of Solenopsis

invicta were collected.

(TIF)

Table S1 Dietary components of experimental foods
used in both choice and no-choice treatments. Amounts

are based on 60 g total dry weight. The amounts of both proteins

and sucrose used are after subtracting product impurities based on

product nutritional labels (see [21] for details).

(DOC)

Table S2 Results from one-tailed t-tests examining the
manipulation of collected foods by summer and fall
colonies on no-choice treatments. The mean p:c ratio of

unconsumed foods is compared to that of each experimental food.

We assumed a priori that colonies would selectively extract
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carbohydrate over protein from collected foods [20,21]. Analysis

was conducted on log-transformed data for fall colonies feeding on

food p19:c57.

(DOC)

Table S3 Results of two-tailed t-tests analyzing worker
selectivity between the two foods comprising the three
choice treatments. The mean p:c ratio of total food collected

by summer and fall colonies on choice treatments was compared

to the mean p:c ratio of foods comprising choice treatments.

Significant P-value (a= 0.05) indicates selective foraging (i.e., non-

random collection) between the two foods.

(DOC)

Table S4 Results from one-tailed t-tests examining the
manipulation of collected foods by summer and fall
colonies on dietary choice treatments. The mean p:c ratio

(6 s.e.m) of unconsumed foods is compared to that of total

combined collected foods. We assumed a priori that colonies would

selectively extract carbohydrate over protein from collected foods

[20,21]. Analysis was conducted on log-transformed data for

summer colonies feeding on food pairing p54:c18 & p33:c43.

(DOC)

Supporting Methods and Results Methods determining
the nutrient content of unconsumed foods, and results of
analyses revealing the degree to which ants manipulated
the nutrient content of collected foods.

(DOC)
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