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Due to the increasing multidrug resistance and limited antibiotics, polymyxin B revived
as the last resort for the treatment of carbapenemase-producing Klebsiella pneumoniae
(CRKP). Unfortunately, the heteroresistance hampers polymyxin B monotherapy
treatment via the amplification of resistant subpopulation. Reliable polymyxin B based
combinations are demanded. Ceftazidime/avibactam has been regarded as a new
salvage therapy against CRKP. The occurrence of heteroresistance was confirmed
by population analysis profiling (PAP). Our study demonstrated that polymyxin B
and ceftazidime/avibactam combinations improved the in vitro antimicrobial activity
of polymyxin B and delayed or suppressed the regrowth of resistant subpopulation
by time-kill studies. Ceftazidime/avibactam at around MIC values (0.5–1 × MIC)
plus clinically achievable concentrations of polymyxin B (0.5–2 mg/L) resulted in
sustained killing against polymyxin B-heteroresistant isolates. Active PmrAB and PhoPQ
systems and a pmrA mutation (G53R) in resistant subpopulation might associate with
heteroresistance, but further investigation was required. Our findings suggested that the
heteroresistance represented barriers to polymyxin B efficacy, and the combination of
polymyxin B with ceftazidime/avibactam could be potentially valuable for the treatment
of heteroresistant CRKP. Further, in vivo studies need to be performed to evaluate the
efficacy of this combination against heteroresistant strains.

Keywords: ceftazidime/avibactam, polymyxin B, heteroresistance, KPC-2-producing Klebsiella pneumoniae,
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INTRODUCTION

The global spread of carbapenemase-producing Klebsiella
pneumoniae (CRKP) posed a severe challenge to public health,
especially KPC-producing K. pneumoniae (KPC-Kp) (Willyard,
2017; Decraene et al., 2018; Gu et al., 2018). To date, available
options for CRKP were limited. Therefore, polymyxin B (PMB)
revived as one of the last-resort options for CRKP (Falagas and
Michalopoulos, 2006; Landman et al., 2008). However, there are
some challenges when clinicians use polymyxin B, such as its
toxicities, unreliable plasma concentrations, and several issues
with polymyxin B susceptibility testing (Ezadi et al., 2019).
Additionally, bacteria employed several strategies to survive to
polymyxins, including LPS modifications by activation of the
two-component systems (TCSs), particularly modifications of
lipid A, the efflux pumps, and plasmid-mediated resistance (Ma
et al., 2018; Meletis and Skoura, 2018).

Significantly, the heteroresistance raised a diagnostic
and therapeutic dilemma for clinicians, which the resistant
subpopulations in heteroresistant strains were undetectable
and could affect the clinical outcome (El-Halfawy and Valvano,
2015; Band and Weiss, 2019). El-Halfawy and Valvano (2015)
recommended defining heteroresistance as subpopulations
of an isogenic strain exhibit widely various susceptibilities
to a particular antimicrobial agent, i.e., when the lowest
concentration exhibiting maximum inhibition is eightfold
higher than the highest non-inhibitory concentration in terms
of population analysis profiling (PAP). However, this method
is too laborious and complex to apply to clinical detection.
Increasing studies have demonstrated that conventional
susceptibility tests could misclassify heteroresistant strains
as susceptible and might lead to clinical treatment failure
(Band et al., 2018; Turlej-Rogacka et al., 2018; Ezadi et al.,
2019). But little work has been done to evaluate the efficacy
of available antibiotics against heteroresistant strains.
Ceftazidime/avibactam, a β-lactam/β-lactamase inhibitor
combination, has been proposed as a new salvage therapy for
severe KPC-Kp infections (Barber et al., 2018; Manning et al.,
2018; Tumbarello et al., 2019). The objective of this study
was to evaluate the in vitro effect of ceftazidime/avibactam
in combination with polymyxin B against polymyxin B
heteroresistance Klebsiella pneumoniae.

MATERIALS AND METHODS

Bacterial Strains and Characterization
Seventeen non-duplicate clinical isolates were obtained from two
tertiary hospitals in Guangzhou from 2013 to 2014, as shown
in Supplementary Table S1. All isolates were stored at −80◦C
and subcultured onto blood agar plate before each experiment.
All isolates were reconfirmed by matrix-assisted laser desorption
ionization–time of flight mass spectrometry (MALDI-TOF).
Carbapenemase genes, ESBLs genes, outer member protein
genes, and mcr-1 gene were amplified by primers described
previously and then sequenced by Sanger sequencing (Pagani
et al., 2003; Poirel et al., 2011; Liu et al., 2016).

Antimicrobials and Antimicrobial
Susceptibility Testing
Polymyxin B (Sigma-Aldrich, United States), ceftazidime
hydrate (Sigma-Aldrich, United States) and avibactam
(MedChem Express, United States) were freshly prepared
for each experiment and filter sterilized using a 0.22 µm
filter. Avibactam was tested at a fixed concentration of
4 mg/L (Clinical and Laboratory Standards Institute [CLSI], 2017).
Mueller-Hinton broth (Oxoid, United Kingdom) supplemented
with calcium and magnesium (25.0 mg/liter Ca2+ and
12.5 mg/liter Mg2+) (CAMHB) and Mueller-Hinton II agar
(Oxoid, United Kingdom) were used for susceptibility testing and
all in vitro models. The breakpoints for polymyxin B, ceftazidime
and ceftazidime/avibactam were defined by CLSI-M100-S26.
Quality control was monitored with Escherichia coli strains
ATCC 25922 and Klebsiella pneumoniae strain ATCC 700603.

Polymyxins Population Analysis Profiles
(PAPs)
Population analysis profilings were performed to investigate the
presence of polymyxin B heteroresistance in duplicate (Nicoloff
et al., 2019). Fifty-microliter of dilutions of an overnight culture
(∼108 CFU/ml) were plated on Mueller-Hinton agar plates
containing polymyxin B at the following concentrations: 0.5, 1,
2, 4, 8, 16, and 32 mg/L. After overnight incubation at 37◦C,
colonies were counted. Agar plate preparation followed CLSI M7-
09 documents for MIC determination by agar dilution assays. The
detection limit of PMB resistant subpopulations was 20 CFU/ml.

To Measure the Stability of Resistant
Subpopulation
After overnight growth of B1, D1, and D4 (without polymyxin
B), fifty-microliter aliquots of the overnight culture were added
into tubes with 16 mg/L polymyxin B. After serially diluted,
suspension was plated on M-H agar plates with and without
16 µg/ml polymyxin B to count CFU of total, and resistant
subpopulation at desired time points (day 1). A subculture
(1:100) was grown overnight in CAMHB without 16 µg/ml
polymyxin B, serially diluted, and plated on M-H agar with or
without 16 µg/ml polymyxin B to count CFU of parental, and
resistant cells (day 2). Repeated this process in CAMHB broth
without antibiotics (day 3 and 4).

Genes Expression Analysis
The polymyxin B-resistant subpopulations were collected from
the last step. Cultures of parental strains and resistant
subpopulations were grown in CAMHB medium without
polymyxin B at 37◦C with shaking to an OD600 of 0.5. The
mRNA of strains was extracted by Trizol method. By the process
of RT-PCR using the PrimeScriptTM RT reagent Kit with gDNA
Eraser (TAKARA, China), the cDNAs were got. Then the phoP,
phoQ, mgrB, pmrA, pmrB, pmrC, and acrB gene expression
were detected through quantitative real-time PCR (qRT-PCR)
using the SYBR

R©

Premix Ex TaqTM II (Tli RNaseH Plus) kit
(TAKARA, China), as previously described (Jayol et al., 2015).
Each experiment was performed in triplicate. The expression of
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target genes was normalized relative to the RNA polymerase beta
subunit gene rpoB. Threshold cycle (Ct) numbers were confirmed
by the qRT-PCR system software, and data was analyzed in
accordance with the 2−11Ct method. The expression levels of the
target genes were compared with those of K. pneumoniae ATCC
700603 (polymyxin B susceptible strain, expression = 1).

Whole-Genome Sequencing and SNPs
Analysis
The whole genome sequencing of twenty-four carbapenem-
resistant isolates was performed with a NextSeq 500 platform
(Illumina Inc., San Diego, CA, United States). Briefly, the
genomic DNA was extracted using a MiniBEST Bacteria Genomic
DNA Extraction Kit (Takara, Dalian, China). To prepare the
DNA library for sequencing, a QIAseq FX DNA Library Kits
(Qiagen Inc., Valencia, CA, United States) was used following
the manufacturer’s recommendations. The quality and quantity
of the libraries were assessed with LabChip GX (Perkin Elmer;
Waltham, MA, United States) and Qubit dsDNA HS Assay
Kit (Life Technologies, United States). All barcoded libraries
were pooled together in equimolar amounts and each pool was
sequenced on NextSeq 500 in PE-150 bp mode. Later, sequencing
raw reads were processed for library adapter removal and filtering
using FASTQ preprocessor Fastp v0.12.5 (Chen et al., 2018) and
de novo assembly with SPAdes v3.13.0 (Bankevich et al., 2012).
Genomic repeats were removed from the analyses by filtering out
reads that mapped to multiple positions in K. pneumoniae subsp.
pneumoniae HS11286 (NCBI accession number: NC_016845).
Single nucleotide polymorphisms (SNPs) and insertions and
deletions (indels) generated by Snippy.

Synergy Testing Using the Checkerboard
Assay and Time-Kill Assay
Time-kill studies were performed using a 5-ml time kill assay with
an initial inoculum of∼106 CFU/ml suspended in CAMHB. Each
experiment was performed in duplicate. Ceftazidime-avibactam
concentrations of 0.25×, 0.5×, 1×, 2×, 4×, and 8× MIC and
polymyxin B concentrations of 0.5, 1, 2, and 6 mg/L were
evaluated as monotherapy. Meanwhile, avibactam was added
to a final concentration of 4 mg/L. A 3-by-3 concentration
matrix of ceftazidime-avibactam 0.25×, 0.5×, and 1× MIC) in
combination with PMB (0.5, 1, and 2 mg/L) was evaluated.
All concentrations evaluated were clinically achievable, and
supratherapeutic concentrations were also selected to evaluate
potential advantages of intensive dosing (Avedissian et al., 2019;
Tumbarello et al., 2019). Samples were incubated with shaking
(37◦C, 200 rpm), and were obtained at 0, 4, 8, 12, and 24 h
for quantification of bacteria. The change in log10 CFU per
milliliter at time t (CFUt) compared to the baseline value
(0 h) (CFU0) was the index of pharmacodynamic effect. A > 3
log10 CFU/ml reduction from baseline was considered as the
bactericidal activity. Synergy was considered as a >2 log10
CFU/ml reduction and additivity as a >1 to <2 log10 reductions
in CFU/ml caused by the combination of PMB and ceftazidime-
avibactam compared to the most effective single antibiotic
in the combination. Subsequently, the effects of combinations

against heteroresistant strains were evaluated using microbroth
checkerboard method. Given that we could not get clear MIC
results of polymyxin B due to the presence of skip-wells, the
concentrations of polymyxin B in the combinations were selected
as these used in time-kill assay. And ceftazidime-avibactam in
the combinations was two dilutions above and four dilutions
below the MIC. The fractional inhibitory concentration index
(FICI) was calculated using the following equation: FICI = FICA
+ FICB, where FICA = MIC of drug A in a combination/MIC of
drug A alone, and FICB = MIC of drug B in a combination/MIC
of drug B alone. The FICI results were interpreted as synergistic
(≤0.5), additive (>0.5 to ≤1), or indifferent (>1).

Statistical Analysis
Statistical analyses were performed using Prism 7 (GraphPad
Software). The median was used to describe the average fold
increase in heteroresistant strains. The two-tailed student’s t-test
was used to analyze the significance of relative gene expression
level between parental strain and resistant subpopulation.

Accession Number
Sequence data from this study were deposited in NCBI’s
short read archive (SRA) under project accession
number PRJNA504930.

RESULTS

Antimicrobial Susceptibility Testing and
Heteroresistance Identification
In our study, all isolates belonged to ST 11 and harbored KPC-2,
TEM, SHV, and CTX-M (Supplementary Table S1). All isolates
remained sensitive to ceftazidime/avibactam (Supplementary
Table S1). Seven isolates showed sensitive to polymyxin B with
clear wells (range 0.06125–0.125 mg/L), but the presence skip-
wells was observed in the other ten isolates (Supplementary
Table S1). The results of PAPs indicated all isolates exhibited
heteroresistant to polymyxin B. Most of our isolates (except
C10 and A5) harbored minor resistant subpopulations able to
withstand at least 32 mg/L polymyxin B (Figure 1). In contrast,
susceptible strain (ATCC 700603) was entirely killed by 2 mg/L
polymyxin B. Compared with the isolates without skip-wells,
the frequencies of resistant subpopulation among isolates with
skip-wells were higher (above 10−6) and remained constant with
polymyxin B concentrations increasing.

No isolates harbored the mcr gene. The differences in
expression of polymyxin B resistant genes between hetero-
resistant strains and reference strain (polymyxin B-susceptible
K. pneumoniae ATCC 700603) were observed (Figure 2). The
median fold changes in the expression of phoP and phoQ genes
were 4.18 and 11.47, respectively (Figure 2). The increasing fold
changes were also observed in pmrA and pmrB genes (5.78-
fold and 2.31, respectively, Figure 2). As the negative regulator
of PhoPQ, the fold change of mgrB decreased (0.12-fold) in
all polymyxin B-heteroresistant strains. There is no significant
overexpression of pmrC (0.79-fold) and acrB (0.90-fold) among
polymyxin B-heteroresistant strains (Figure 2).
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FIGURE 1 | Population analysis profiles (PAPs) of all isolates were performed in duplicate. (A) The PAP curves of isolates with skip-wells. (B) The PAP curves of
isolates without skip-wells.

FIGURE 2 | Relative gene expression, expressed as fold change, of the phoP, phoQ, mgrB, pmrA, pmrB, pmrC, and acrB genes in 17 clinical Klebsiella pneumoniae
isolates. Expression levels were detected by qRT-PCR, with polymyxin B-susceptible K. pneumoniae ATCC 700603 used as the reference strain (expression = 1),
which is indicated by black dashed horizontal lines.

The Resistant Subpopulation Can
Survive Under Polymyxin B Pressure and
Exist Stably Without Antibiotic
The stability of resistant subpopulations from three strains
(B1, D1, and D4) was tested. As shown in Figures 3A–C, the
resistant subpopulation could withstand and expand robustly
under polymyxin B pressure, while most susceptible cells were
killed over the first 2 h. After withdrawing polymyxin B, the
resistant subpopulation still maintained a high level of polymyxin
B resistance for 24 and 72 h, which suggested the resistant

subpopulations can exist stably. Therefore, we speculated that
this phenotypic change might be constant and correlated with
genetic changes.

Overexpressed PhoPQ or PmrAB System
and Genetic Alternations in the Resistant
Subpopulation
To determine the genetic alterations behind the stable
heteroresistance phenotype, whole-genome sequencing (WGS)
and quantitative PCR (qPCR) were performed on the paired
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FIGURE 3 | (A–C) Polymyxin B -resistant subpopulation CFU and total CFU of B1, D1, and D4 during 24 h treatment with 16 mg/L polymyxin B in liquid culture and
subculture without polymyxin B for further 24 and 72 h (n = 3). (D–F) qRT-PCR analysis of the phoP, phoQ, mgrB, pmrA, pmrB, pmrC, and acrB gene expression in
resistant and susceptible subpopulations of B1, D1, and D4. Relative abundance was calculated by normalizing the expression of each gene to the average
expression of the housekeeping gene, rpoB (n = 4). Statistically significant: ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001. n.s., not significantly different (unpaired t-test).

parental strain and its resistant population. Differences in the
transcript levels of pmrCAB operon between parental strain and
a resistant population of B1 were observed (Figure 3D). The
expression of phoP and phoQ increased in resistant populations
compared to their expression in parental cells (Figures 3E,F).
As the negative regulator of PhoPQ signaling, the expression of
mgrB was lower in resistant populations (Figures 3E,F). There
was no difference in the expression of acrB between parental
strains and resistant subpopulations. We identified a mutation
in pmrA that led to a missense variant (G53R) in polymyxin
B-resistant cells of B1. There were some mutations in other genes
(Supplementary Table S2), but it is unclear whether they might
contribute to polymyxin B heteroresistance.

Ceftazidime/avibactam Combinations
Achieved Sustained Killing and
Resistance Suppression
Polymyxin B displayed a stronger and more sustained initial
killing (≥3 log10 by 12 h) (Figure 4A and Supplementary
Table S3) against susceptible isolate ATCC 700603, while all
polymyxin B treatments only led to a ≥2 log10 reduction
against heteroresistant isolates by 4 h and followed with bacterial
re-growth (Figures 4E,I,M and Supplementary Table S3). This
similar regrowth was observed even using supratherapeutic
concentration against heteroresistant strains (6 mg/L)
(Figure 5 and Supplementary Table S3). Ceftazidime/avibactam
monotherapy showed concentration dependence. The higher
concentrations (2×, 4×, and 8× MIC) displayed sustained
bactericidal activity against all isolates over 24 h (Figure 5). In
contrast, the bactericidal activity of ceftazidime/avibactam at

lower concentrations (0.25×, 0.5×, and 1× MIC) varied and
displayed a weaker effect.

The addition of ceftazidime/avibactam improved the effi-
cacy of polymyxin B. Combining ceftazidime/avibactam at
0.25 × MIC with polymyxin B at 2 mg/L increased initial
killing compared to that of monotherapy, but following regrowth
was observed in B1 and D4 (Figures 4B,F,J,N). The addition
of ceftazidime/avibactam at 0.25 × MIC with polymyxin B
(1 mg/L) did not hamper the regrowth of heteroresistant
isolates (Figures 4F,J,N). The killing effect of combination
sustained for 24 h when combining ceftazidime/avibactam
at 0.5 × MIC with polymyxin B (1 and 2 mg/L)
(Figures 4C,G,K,O and Table 1). Colonies were undetectable
over 24 h in all isolates when polymyxin B at all concentrations
in combination with ceftazidime/avibactam at 1×MIC, showing
a rapid and durable bactericidal activity (Figures 4D,H,L,P),
and synergy was observed (Table 1). To confirm the effect of
combination, microbroth checkerboard assay was performed.
The FICI values against heteroresistant strains can be seen
in Table 1. Similarly, the synergistic effect of combination
(FICI ≤ 0.5) was observed in B1 and D4, and the additive
effect (FICI > 0.5 to ≤1) was observed in D1. Obviously,
ceftazidime/avibactam strengthened the effect of polymyxin
B and prevented the regrowth of polymyxin B-resistant cells.
Additionally, combinations decreased the dose of each drug.

DISCUSSION

Recently, many researchers pointed out that the clinically
undetected heteroresistance might have a profound impact on
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FIGURE 4 | Time-kill curves for polymyxin B (PMB) and ceftazidime/avibactam (CZA) monotherapy and combination therapy against polymyxin B-susceptible
K. pneumoniae ATCC 700603, and polymyxin B-heteroresistant K. pneumoniae (B1, D1, and D4). (A,E,I,M) PMB (0.5, 1, and 2 mg/L) as monotherapy; (B,F,J,N)
PMB (0.5, 1 and 2 mg/L) in combination with CZA (0.25 × MIC); (C,G,K,O) PMB (0.5, 1 and 2 mg/L) in combination with CZA (0.5 × MIC); (D,H,L,P) PMB (0.5, 1
and 2 mg/L) in combination with CZA (1 × MIC). The limit of quantification is indicated by black dashed horizontal lines.

treatment efficacy (Band et al., 2016, 2018; Band and Weiss,
2019). Polymyxin B has been widely used as a conventional
lifesaver against superbugs for a long time, but the emergence
of polymyxin heteroresistant will threaten the clinical use of
polymyxins (Meletis et al., 2011; El-Halfawy and Valvano, 2015;
Bardet et al., 2017; Wozniak et al., 2019). Therefore, it is critical to
explore novel combination therapies which can delay or prevent
the regrowth of polymyxin resistant subpopulations.

Here we evaluated the in vitro effect of the combination
of polymyxin B with ceftazidime/avibactam against three
polymyxin B-heteroresistant KPC-Kp (B1, D1, and D4).
For polymyxin B-heteroresistant isolates, polymyxin B
monotherapy resulted in a prompt killing effect, but followed
by regrowth associated with the amplification of polymyxin

B resistant subpopulations. The same situation had been
reported in polymyxin B or colistin monotherapy against other
Gram-negative bacteria (Ly et al., 2015; Lenhard et al., 2017;
Zhao et al., 2017; Nicoloff et al., 2019). Therefore, many
researchers concerned that resistant subpopulations
might affect treament outcome (Band and Weiss, 2019).
Ceftazidime/avibactam monotherapy at high concentrations
(above 2 × MIC) prevented the regrowth of resistant
subpopulations successfully. While ceftazidime/avibactam at low
concentrations (<2 × MIC) showed relatively poorer effect and
only delayed the regrowth of resistant subpopulations. Previous
studies have tested polymyxins (polymyxin B or colistin) in
combination with ceftazidime/avibactam against KPC-Kp
with positive results (Nath et al., 2018; Mikhail et al., 2019).
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FIGURE 5 | Time-kill curves for polymyxin B (PMB at 6 mg/L) and ceftazidime/avibactam (CZA at 2×, 4×, and 8× MIC) monotherapy with increased concentrations
and against polymyxin B-susceptible K. pneumoniae ATCC 700603 (A), and polymyxin B-heteroresistant K. pneumoniae B1 (B), D1 (C), and D4 (D). The limit of
quantification is indicated by black dashed horizontal lines.

The similar killing effect against polymyxin B heteroresistant
KPC-Kp was observed in our study. Nath et al. suggested that
the addition of another antibiotic could be considered when
ceftazidime/avibactam MIC values of isolates were close to the
MIC breakpoint (Nath et al., 2018). Moreover, the addition of
ceftazidime/avibactam improved the efficacy of polymyxin B
and allowed for containment of all resistant subpopulations.
Some animal models have demonstrated that heteroresistance
might contribute to monotherapy treatment failure (Band et al.,
2016, 2018). Our findings provided a potential polymyxin-based
combination therapy, which held the promise to hamper the
emergence of resistant subpopulations, and improved clinical
outcomes in difficult to treat infections. The combination can
also reduce the dose of both drugs. However, there might be some
concerns about this combination therapy. Firstly, challenges in
detection of polymyxin heteroresistance might set a barrier for
clinicians to determine an appropriate time to start combination
therapy. It is uncertain whether the combination therapy will
still remain effective against heteroresistant strains after the

failure of polymyxin B monotherapy. Secondly, a suitable dose
of polymyxin B in combination need to be reevaluated due to
its unreliably plasma concentrations in monotherapy (Bergen
et al., 2015). Lastly, it is important to keep a balance between
the theoretical benefits of combination therapy and worries that
antibiotic combination will increase the financial burden and
potentially more toxic than monotherapy.

Our study also showed that the microdilution broth method
might misclassify heteroresistant strains as susceptible, which
was consistent with other reports (Band et al., 2018; Turlej-
Rogacka et al., 2018; Ezadi et al., 2019). There is a possibility
that the resistant subpopulation is at a low frequency so that
the growth cannot be detected by conventional tests. Different
from persistency, which confer antibiotic tolerance at the cost
of growth (Brauner et al., 2016), the resistant subpopulation
can rapidly replicate in the presence of antibiotic (El-Halfawy
and Valvano, 2015; Band et al., 2016, 2018; Anderson et al.,
2018). Therefore, expanding the time of incubation may be
helpful to detect the heteroresistance. Interestingly, some reports
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TABLE 1 | The change in log10 CFU/ml at 4, 8, 12, and 48 h during time-kill experiments in combination with PMB and ceftazidime/avibactama.

Strains MICs (mg/L) FICI Time Change in log10 CFU/ml

(n = 3) (h)
Ceftazidime/avibactam Ceftazidime/avibactam Ceftazidime/avibactam

PMB CZA Control at 0.25 × MIC plus at 0.5 × MIC plus at 1 × MIC plus

PMB at (mg/L) PMB at (mg/L) PMB at (mg/L)

0.5 1 2 0.5 1 2 0.5 1 2

ATCC700603 0.5 0.5 0.46 ± 0.12 4 2.06 −6.13 −6.13 −6.13 −6.13 −6.13 −6.13 −6.13 −6.13 −6.13

8 2.16 −4.16 −6.13 −6.13 −6.13 −6.13 −6.13 −6.13 −6.13 −6.13

12 2.06 −3.03 −6.13 −6.13 −5.13 −6.13 −6.13 −6.13 −6.13 −6.13

24 2.18 2.05 −6.13 −6.13 2.00 −6.13 −6.13 −6.13 −6.13 −6.13

B1 HR 8 0.38 ± 0.10 4 2.59 −3.03 −4.09 −3.93 −4.26 −5.74 −5.74 −3.34 −5.74 −5.74

8 2.66 −1.88 −2.43 −2.69 −2.30 −5.74 −5.74 −5.74 −5.74 −5.74

12 2.37 2.06 0.96 −2.23 −1.06 −5.74 −5.74 −5.74 −5.74 −5.74

24 2.44 2.84 2.73 2.75 2.50 −5.74 −5.74 −5.74 −5.74 −5.74

D1 HR 4 0.79 ± 0.16 4 2.34 −2.55 −4.49 −6.04 −4.85 −6.04 −6.04 −6.04 −6.04 −6.04

8 1.92 −1.84 −6.04 −4.56 −6.04 −6.04 −6.04 −6.04 −6.04 −6.04

12 1.95 2.15 −3.39 −6.04 −3.20 −6.04 −6.04 −6.04 −6.04 −6.04

24 2.15 2.07 2.18 −6.04 1.80 −6.04 −6.04 −6.04 −6.04 −6.04

D4 HR 2 0.35 ± 0.13 4 2.21 −2.71 −4.13 −4.44 −3.59 −6.18 −6.18 −6.18 −6.18 −4.88

8 2.03 −1.93 −2.88 −4.18 −2.55 −6.18 −6.18 −6.18 −6.18 −6.18

12 2.07 2.23 −2.27 −3.93 1.84 −6.18 −6.18 −6.18 −6.18 −6.18

24 2.14 2.46 2.33 1.52 2.39 −6.18 −6.18 −6.18 −6.18 −6.18

aPMB, polymyxin B; CZA, ceftazidime/avibactam, ceftazidime/avibactam; HR, heteroresistance. Bactericidal activity (≥3 log10 CFU/ml reduction compared to the initial
inoculum) is shown in bold. Additivity is defined as a reduction of between 1 and 2 log10 CFU/ml and synergy is defined as a reduction of ≥2 log10 CFU/ml caused
by the combination compared to the results seen with the most active single agent in the combination. Additivity is highlighted with light gray shading and synergy with
dark gray shading.

showed this increased resistance phenotype could revert from
being entirely resistance to susceptible after removing antibiotic
pressure (Band et al., 2016; Anderson et al., 2018). To our
surprise, the resistant subpopulation in our study still dominated
without selective pressure, even when the subculture time
expanded. Later analysis demonstrated that several genetic
changes might be responsible for it, involving the upregulation of
PmrAB system and PhoPQ system and mutations. The changes
in PmrAB system and PhoPQ system have been reported by
other researches in different species (Jayol et al., 2015; Halaby
et al., 2016; Charretier et al., 2018). Furthermore, pmrA G53R
was detected in resistant cells of B1. The same mutation in
pmrA have been described in colistin resistant Enterobacter
aerogenesc, S. enterica and K. pneumoniae (Sun et al., 2009;
Diene et al., 2013; Olaitan et al., 2014). Charretier et al. (2018)
revealed that the mutations in the PmrAB regulatory pathway in
Acinetobacter baumannii, which resulted in the overexpression
of PmrAB system, led to colistin heteroresistance. Alterations in
the PhoPQ turned out to be related with colistin heteroresistance
in K. pneumoniae (Jayol et al., 2015). Except for the PmrAB
and PhoPQ systems, mutations in the lpxM and yciM genes also
played roles in the emergence of colistin-resistant K. pneumoniae
(Halaby et al., 2016). In our study, no mutations in above genes
were detected, but there were several genetic variations in other
genes were detected in the resistant subpopulations of both D1
and D4. The roles of these mutations remained unclear and also
need further experiments to confirm.

Nevertheless, this study had limitations. The sample size
is small and may not be suitable for other KPC-producing
strains. Antibiotic concentrations are constant and may not
accurately reflect the real pharmacokinetics of antibiotics in a
clinical dose. Therefore, pharmacodynamic activity need to be
evaluated. The investigation of molecular mechanisms related to
heteroresistance in K. pneumoniae were preliminary and need
further exploration.

CONCLUSION

In conclusion, our study provides evidence that the combination
of ceftazidime/avibactam improved the antibacterial efficacy
of polymyxin B against heteroresistant KPC-Kp and hindered
the emergence of polymyxin resistant subpopulations. On top
of that, an operational definition and uniform criteria for
assessment of heteroresistant bacteria should be established to
counteract heteroresistance.
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