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Objective: To identify whether the amplitude of low-frequency fluctuations (ALFF) analysis 

has the potential to serve as a biological marker to detect alcohol-induced spontaneous brain 

activities and distinguish the patients with alcohol dependence from the healthy subjects.

Methods: We utilized the ALFF analysis to report on the alcohol-induced spontaneous brain 

activities in 29 patients with alcohol dependence (9 female, 20 male) relative to 29 status-matched 

healthy subjects (11 female, 18 male). Receiver operating characteristic curve was used to test 

the ability of the ALFF analysis in discriminating the patients with alcohol dependence from the 

healthy subjects. Pearson correlation was used to evaluate the relationships between the signal 

value of those ALFF differences in brain areas and behavioral characteristics.

Results: Alcohol-induced brain differences located in the right inferior parietal lobule and 

right supplementary motor area with significant higher ALFF values, and in the left precuneus 

and bilateral cerebellum posterior lobe with lower ALFF values. The movement-related areas 

were significantly correlated with each other (P,0.05). Receiver operating characteristic curve 

revealed good area under the curve values (mean, 0.86±0.079; 0.774–0.951) of the ALFF differ-

ences in those specific brain areas, as well as high degree of sensitivities (mean, 80.84%±14.01% 

or 80%±14.56%; 62.5%–100%) and specificities (mean, 83.32%±9.31%; 70.8%–95.8% or 

84.16%±8%; 75%–95.8%).

Conclusion: The ALFF analysis may serve as a biological indicator to detect the spontaneous 

brain activities in patients with alcohol dependence. The prefrontal–parietal–cerebellar circuit 

appears to be disturbed by long-term alcoholism in patients with alcohol dependence.

Keywords: alcohol dependence, amplitude of low-frequency fluctuations, receiver operating 

characteristic

Introduction
Alcohol consumption, the most frequent substance addiction with a high morbidity or 

mortality, is a serious public problem. The pernicious effects of extravagant alcohol 

consumption on brain and behavior are well known. It brings numerous adverse health 

consequences such as esophageal/liver cancer, liver cirrhosis, and vehicle accidents.1 

Alcohol consumption would bring perceived relief from the negative emotions, such 

as stress and anxiety, which may thereby increase and/or reinforce the likelihood of 

future drinking behavior.2 Therefore, alcohol dependence is a chronic relapsing dis-

order, characterized by morbid alcohol consumption.

Modern imaging methods promote scholars to investigate the neurobiology 

mechanisms and consequences caused by alcohol addiction. These imaging methods 

are widely accepted for the detection of specific regional brain alterations in diseases. 

Resting-state functional MRI (rs-fMRI) can be used to visualize the brain activities 

associated with oxygenation and blood flow changes, and the responses of regional 
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brain blood flow to drug-related cues. Furthermore, the 

rs-fMRI also can be used to visualize the addictive symp-

toms and cognitive capacity caused by alcohol consumption. 

These changes cannot be identified by traditional fMRI 

analyses. Therefore, the rs-fMRI is suitable to detect the 

alteration of spontaneous neuronal brain activity and can 

be used for pathophysiological mechanism exploration for 

several diseases.3 With the rapid development of these rs-

fMRI technologies, neuroimaging studies have described 

diverse pernicious effects from alcohol dependence, includ-

ing the neurochemical changes and regional functional 

activity in the brain,4 which may yielded insights into the 

neurobiological mechanisms underlying alcohol depen-

dence and may help clinicians assess the disease and aid in 

dynamic monitoring of the response to therapy, as well as 

guide care interventions. Alcohol dependence is associated 

with the changes of regional brain activities in several areas, 

which makes its neurobiological mechanism more com-

plex. Although recent studies of structural and functional 

studies have increased tremendously and have identified 

several brain regions that are relevant to alcoholism,5,6 the 

neurobiological mechanism underlying alcohol dependence 

remains largely unknown.

The amplitude of low-frequency fluctuations (ALFF) 

analysis does not require prior hypothesis and/or knowl-

edge, and has good test–retest reliability, which makes it 

useful for location of altered brain regions with abnormal 

spontaneous neuronal brain activity.3,7–10 Therefore, the 

reliable characterization and simple calculation make the 

ALFF analysis a potential useful tool to study the alcohol 

dependence-induced intrinsic brain activities.4 Recently, the 

use of the ALFF analysis has been successfully applied in 

several disorders.3,11–13 However, to our knowledge, it has 

not been used in alcohol dependence. In the current study, 

we hypothesized that the alcohol dependence is associated 

with distinct intrinsic neuronal spontaneous activity in several 

brain areas with ALFF changes. To test the hypothesis, the 

current study utilized the ALFF analysis to identify altered 

functional brain areas in 29 patients with alcohol dependence 

relative to 29 status-matched healthy subjects. Next, we used 

Pearson correlations to evaluate the relationships between 

those brain areas with ALFF differences and behavioral char-

acteristics. We also utilized receiver operating characteristic 

(ROC) curve to investigate whether the regional brain areas 

with ALFF differences have the ability to distinguish the 

patients with alcohol dependence from the status-matched 

healthy subjects.

Materials and methods
Subjects
A total of 29 patients with alcohol dependence (9 female, 

20 male; education, 9.52±2.87 years; age, 48.62±6.81 years; 

mean ± SD) and 29 status-matched healthy subjects 

(11 female, 18 male; education, 8.48±3.1 years; age, 

48.48±7.05 years) participated in the present study. The life 

history of psychiatric disorders, daily alcohol consumption, 

Severity of Alcohol Dependence Questionnaire (SADQ), 

mean years of alcohol consumption, and Alcohol Use Disor-

ders Identification Test (AUDIT) were recorded by an experi-

enced psychiatrist who had worked for more than 10 years.

Patients with alcohol dependence met the diagnostic criteria 

as defined by The Diagnostic and Statistical Manual of Mental 

Disorders, version IV (DSM-IV). All recruited volunteers met 

the following inclusion criteria as in previous studies,14,15 first-

time visitors who had not taken any medications treatment 

before, had no history of other substance dependence or abuse, 

had no sleep disorders and major psychiatric disorders, had no 

foreign implants, and had no pathological brain MRI findings. 

The present study was approved by the Medical Research 

Ethical Committee of The Affiliated Huai’an No. 1 People’s 

Hospital of Nanjing Medical University in accordance with 

the Declaration of Helsinki. The written informed consent 

from all volunteers was collected.

MRI parameters
We performed the MRI scan on a 3.0 Tesla MR scanner 

(Siemens, Munich, Germany). First, 176 high-resolution 3D 

T1-weighted anatomical images of in sagittal orientation (rep-

etition time/echo time =1,950/2.3 ms, gap/thickness =0/1 mm, 

field of view =244×252 mm2, acquisition matrix =248×256, 

flip angle =9°) were collected. Next, we collected 240 

functional images (repetition time/echo time =3,000/25 ms, 

gap/thickness =0.5/5.0 mm, flip angle =90°, acquisition 

matrix =32×32, field of view =210×210 mm2) covering the 

whole brain.

Data analysis
First, we deleted the first 10 time points of the functional 

images. The remaining data were dealt with standards for form 

transformation. The data preprocessing of the remaining data 

was made up of the following steps: including the slice timing, 

head motion correction, spatial normalization to the Montreal 

Neurological Institute space, and smoothing with Gaussian 

kernel of 6×6×6 mm3. The data of volunteers with .1.5 mm 

maximum translation or/and .1.5 degree of rotation in any 
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direction were discarded. After this, the remaining images 

were resampled at a resolution of 3×3×3 mm3 during the 

step of spatial normalization. Linear regression was applied 

to remove the effects of spurious covariates, including the 

Friston 24 head motion parameters, white matter signal, and 

cerebrospinal fluid signal. Next, the functional images were 

entered into temporal bandpass filter (0.01–0.1 Hz) and lin-

early detrended. The calculation details of the ALFF analysis 

have been presented in previous studies.3,10,16

ROC curve and brain-behavior 
correlation analysis
Recently, ROC curve has been increasingly applied to iden-

tify whether one image analysis may serve as a biological 

indicator to distinguish one group from another group.4,11,14 

The mean β values of the ALFF differences were extracted 

for ROC curve to identify whether the ALFF analysis may 

server as a biological indicator to distinguish the patients 

with alcohol dependence from healthy subjects. Pearson 

correlation analysis was used to evaluate the relationships 

between the ALFF differences in brain areas and behavioral 

characteristics. The statistical threshold was set at P,0.05.

Statistical analysis
Data are presented as mean ± SD. The demographic characteris-

tics (age, AUDIT score, and years of education) were analyzed 

with independent sample unpaired t-tests. The categorical data 

(sex distribution) were compared using Chi-squared (χ2) test. 

The statistical threshold was set at P,0.05.

Before comparing the ALFF differences between groups, 

we used one-sample t-tests to construct within-group statisti-

cal maps of ALFF analysis to identify the network distribu-

tions of each group (P,0.001, false discovery rate (FDR) 

corrected). Then, independent sample unpaired t-tests were 

utilized to study the ALFF differences in regional brain 

areas between patients with alcohol dependence and healthy 

controls with nuisance covariates (age, sex, and years of 

education) of no interest. AlphaSim correction (threshold 

of individual voxel of P,0.01, cluster level of P,0.05 

with contiguous voxel volume $1,620 mm3) was used to 

determine the statistical differences.

Results
Sample characteristics
The behavioral characteristics of the alcohol dependence 

and the healthy subjects are presented in Table 1. Patients 

with alcohol dependence did not significantly differ from 

healthy subjects in mean age (t=0.076, P=0.94), sex distri-

bution (χ2=0.305, P=0.581), and mean education (t=1.318, 

P=0.193). The mean AUDIT score was higher in patients 

with alcohol dependence than healthy controls (t=20.353, 

P,0.001). In the alcohol dependence group, the mean 

duration of drink history was (27.93±10.28 years, range: 

7–45 years), the mean SADQ score was (20.34±6.89), 

and the mean daily alcohol consumption was (mean ± SD, 

239.66±107.22 mL).

ALFF differences
Before comparing the ALFF differences between patients 

with alcohol dependence and healthy controls, one-sample 

t-test were used to construct within-group statistical maps 

for alcohol dependence group (Figure 1A) and healthy 

subjects (Figure 1B) separately (P,0.001, FDR corrected). 

We found that the locations of the ALFF differences in 

brain areas of patients with alcohol dependence differ from 

healthy subjects in several areas (Figure 1A and B). Next, 

we performed t-test to investigate the ALFF differences 

between groups. Patients with alcohol dependence relative 

to healthy subjects demonstrated differences in brain areas in 

the right inferior parietal lobule (Brodmann’s area [BA] 40) 

Table 1 Characteristics of alcohol dependents and healthy subjects

Demographics Alcohol dependents Healthy subjects t/χ2 value P-value

Mean age, years 48.62±6.81 48.48±7.05 0.076 0.94
Sex (male, female) 29 (20, 9) 29 (18, 11) 0.305a 0.581
Education, years 9.52±2.87 8.48±3.1 1.318 0.193
Years of alcohol consumption 27.93±10.28 N/A N/A N/A
SADQ score 20.34±6.89 N/A N/A N/A
AUDIT score 23.83±5.55 2.55±0.95 20.353 ,0.001
Daily alcohol consumption, mL 239.66±107.22 N/A N/A N/A

Notes: aχ2 test; data are mean ± SD.
Abbreviations: AUDIT, Alcohol Use Disorders Identification Test; N/A, not applicable; SADQ, Severity of Alcohol Dependence Questionnaire.
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and right supplementary motor area (BA 6) with higher 

ALFF values, and the left precuneus (BA 7) and bilateral 

cerebellum posterior lobe with lower ALFF values (Table 2, 

Figure 1C and D).

ROC curve
The mean β value of those altered ALFF values in brain areas 

was extracted (Figure 2) for ROC curve analysis. The area 

under the curve (AUC) value is considered as good to excel-

lent if it is .0.8, fair if between 0.7 and 0.8, and poor to failed 

if lower than 0.7.17 Our findings demonstrated that the ROC 

curve revealed good AUC values (mean ± SD, 0.86±0.079; 

range: 0.774–0.951) of those specific brain areas with ALFF 

differences. Further diagnostic analysis exhibited that those 

specific areas with ALFF differences alone discriminated 

the alcohol dependents from the healthy subjects with 

high degree of sensitivities (mean ± SD, 80.84%±14.01% 

or 80%±14.56%; range: 62.5%–100%) and specificities 

(mean ± SD, 83.32%±9.31%; range: 70.8%–95.8% or 

84.16%±8%; range: 75%–95.8%) (Table 3 and Figure 3).

Figure 1 Altered ALFF areas in patient with alcohol dependence relative to healthy subject.
Notes: Results of one-sample t-test (A, B) and two-sample t-test (C, D). Red color, increased ALFF areas; blue color, decreased ALFF areas.
Abbreviations: ALFF, amplitude of low-frequency fluctuation; L, left; R, right.

Table 2 The ALFF differences between patients with alcohol dependence and healthy subjects

Brain regions of peak coordinates R/L BA Voxel volume 
(mm3)

t-score of  
peak voxel

MNI coordinates

X, Y, Z

Supplementary motor area R 6 4,509 6.2634 51, 0, 51
Inferior parietal lobule R 40 3,753 3.0616 48, -30, 30
Precuneus L 7 2,133 -3.2966 -3, -66, 30
Cerebellum posterior lobe L N/A 2,376 -4.6716 -24, -81, -36
Cerebellum posterior lobe R N/A 4,671 -3.7225 54, -51, -36

Note: The statistical threshold was set at corrected significance level of individual two-tailed voxel-wise P,0.05 using an AlphaSim corrected threshold of cluster P,0.05.
Abbreviations: BA, Brodmann’s area; L, left; MNI, Montreal Neurological Institute; N/A, not applicable; R, right.
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Pearson correlation analysis
In the alcohol dependence group, the mean years of alcohol 

consumption displayed a positive correlation with the β 

value of left precuneus (r=0.481, P=0.008; Figure 4A); other 

significant correlations between the β value of brain areas 

with ALFF differences and the clinical features were not 

found (P.0.05). However, several correlations among the β 

value of ALFF differences in brain areas were found (Figure 

4B–F). The β value of the right supplementary motor area 

showed a positive correlation with that of the right inferior 

parietal lobule (r=0.497, P=0.006; Figure 4B), and a nega-

tive correlation with that of the left cerebellum posterior lobe 

(r=−0.468, P=0.011; Figure 4C). The β value of the left and 

right cerebellum posterior lobes, respectively, displayed a 

negative correlation with that of the right inferior parietal 

lobule (left, r=−0.649, P,0.001, Figure 4D; right, r=−0.56, 

P=0.002, Figure 4E). The β value of the left and right cerebel-

lum posterior lobe also showed a positive correlation with 

each other (r=0.373, P=0.046; Figure 4F).

Discussion
The current study is the first to utilize the ALFF analysis 

to identify altered functional brain areas in 29 patients with 

alcohol dependence relative to 29 status-matched healthy 

subjects. ROC curve was applied to identify the ability of 

those ALFF differences in distinguishing the two groups. 

The present study revealed the following main results: 

1) alcohol dependence was associated with right supple-

mentary motor area and right inferior parietal lobule with 

significant higher ALFF differences, and left precuneus 

and bilateral cerebellum posterior lobe with lower ALFF 

differences; 2) ROC curve revealed good AUC values of 

those specific brain areas, and further diagnostic analysis 

demonstrated that those specific brain areas alone discrimi-

nated the patients with alcohol dependence from the healthy 

subjects with high degree of sensitivities and specificities; 3) 

in the alcohol dependence group, the mean years of alcohol 

consumption displayed a positive correlation with the β value 

of the left precuneus, and several correlations among those 

specific brain areas were found.

Morphological–anatomical studies have found decreased 

gray matter volumes in the frontal lobe18–21 and cerebellum20,22 

in patients with alcohol dependence. These changes have 

been shown to be predictive of relapse risk, suggesting a 

significant role of decreased gray matter volumes in the 

frontal lobe and cerebellum in clinical outcomes in alcohol 

dependence.21 Similarly, resting-state functional connectiv-

ity studies also showed consistent findings. Distinct areas of 

the cerebellum posterior lobe have shown altered functional 

brain connectivity with the prefrontal and parietal lobes.23,24 

Herting et al25 found differences of contralateral functional 

connectivity between the prefrontal cortex and the lateral 

cerebellum in healthy adolescents, but this brain connectiv-

ity is atypical in high risk alcohol-naïve youth subjects with 

a history of family alcoholism. These disturbed functional 

connectivities also have been shown in the contralateral 

frontocerebellar regions,23,24 suggesting that white matter 

fibers decussate and cross over to the contralateral hemi-

sphere between the cerebellum and the cerebral cortex.26 The 

frontocerebellar connectivity was shown to be associated 

with fractional anisotropy value in the superior longitudinal 

fasciculus and anterior limb of the internal capsule. Notably, 

the superior longitudinal fasciculus has projections into the 

β

Figure 2 Mean β value of ALFF differences in regional brain areas.
Abbreviations: ALFF, amplitude of low-frequency fluctuation; CPL, cerebellum 
posterior lobe; IPL, inferior parietal lobule; L, left; PG, precentral gyrus; Prc, 
precuneus; R, right.

Table 3 ROC curve for ALFF differences in brain areas between alcohol dependent and healthy subjects

Brain area AUC Sensitivity, % Specificity, % Cutoff pointa

R_Supplementary motor area 0.9510 100% 79.2% -0.3178
R_Inferior parietal lobule 0.9080 87.5% 87.5% -0.1132
L_Precuneus# 0.7800 75% 70.8% 1.5582
L_Precuneus# 0.7800 70.8% 75% 1.6676
L_Cerebellum posterior lobe 0.7740 62.5% 83.3% 0.1731
R_Cerebellum posterior lobe 0.8870 79.2% 95.8% -0.0153

Notes: #The two sets values of L_Precuneus showed the same discriminative abilities. aCutoff point of mean ALFF signal value.
Abbreviations: ALFF, amplitude of low-frequency fluctuation; AUC, area under the curve; L, left; R, right; ROC, receiver operating characteristic.
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Figure 3 ROC curve analysis of ALFF differences in regional brain areas.
Note: ROC curve of higher (A) and lower (B) ALFF in brain areas.
Abbreviations: ALFF, amplitude of low-frequency fluctuation; L, left; R, right; ROC, receiver operating characteristic.

β β

β

β

β

β

β

β

β

β

β

Figure 4 Pearson correlation among characteristics of alcohol dependent and β value of ALFF differences in brain areas.
Note: Correlation between years of alcohol consumption and left precuneus (A), and among ALFF differences in brain areas (B–F).
Abbreviation: ALFF, amplitude of low-frequency fluctuation.

frontal cortex, while the anterior limb of the internal capsule 

carries the fibers that project from the frontal lobe to the cer-

ebellum.27 These findings showed functional and structural 

connectivity abnormalities in the prefrontal, parietal, and 

cerebellar cortex in patients with alcohol dependence. Our 

results of altered ALFF areas in the prefrontal lobe, inferior 

parietal lobule, and cerebellum posterior lobe support these 

findings.
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Patients with alcohol dependence had impaired coordina-

tion while moving and impaired balance.28 Poor regulation of 

coordinating movement and emotional changes are core charac-

teristics of alcohol dependence.14 The cerebellum posterior lobe 

is associated with regulation of nerve function and coordinating 

movement, emotion, and cognition, and is particularly vulner-

able to alcoholism-related damage.10,28,29 The frontal–temporal–

basal ganglia and cerebellar circuits have been shown to overlap 

motor control function and are associated with motor behavior, 

which is disrupted by alcohol intoxication.15,30 The disturbed 

functional activities in these brain areas may be the main reasons 

for impaired driving behavior in alcoholics. Our results revealed 

that the alcohol dependence was associated with altered regional 

brain activities in the movement-related areas, including the 

supplementary motor area, cerebellum posterior lobe, and infe-

rior parietal lobule. Furthermore, these movement-related areas 

were significantly correlated with each other. These areas have 

been shown to have altered functional connectivity in several 

studies in patients with alcohol dependence,11,14,30,31 and may 

therefore support our results.

The precuneus is thought to be engaged in visuospatial 

imagery, collection and evaluation of information, and 

self-processing operations,32–34 suggesting a key role in 

the advanced cognitive function. Disturbed regional brain 

activity or functional connectivity in the precuneus was not 

only found in primate brain suffer acute exposure to cue of 

alcohol,35 but also in subjects with alcohol use disorder and/

or after heavy drinking.15,36,37 The increased brain connectivity 

between the precuneus and the cerebellum was also found in 

chronic alcohol consumption.38 The metabolic activity in the 

precuneus was higher, and may require about 35% glucose, 

which is more than that needed in other areas.39–41 Our data 

showed that the β value of the precuneus with lower ALFF 

value displayed a positive correlation with mean years of 

alcohol consumption. The functional brain activity decrease 

in the precuneus may be interpreted as functional impairment 

caused by long-term alcoholism.

Conclusion
In summary, the ALFF analysis may serve as a biological 

indicator in the detection of regional spontaneous brain 

activities in patients with alcohol dependence with high 

degree of sensitivities and specificities. The prefrontal–

parietal–cerebellar circuit appears to be disturbed by long-

term alcoholism in patients with alcohol dependence. The 

findings of the present study could expand our understand-

ing of the neurobiological mechanisms underlying alcohol 

dependence, and may help us develop targeted intervention 

and prevention strategies.
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