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Abstract: Histo-blood group antigens, which are present on gut epithelial surfaces, function as recep-
tors or attachment factors and mediate susceptibility to rotavirus infection. The major determinant
for susceptibility is a functional FUT2 enzyme which mediates the presence of α-1,2 fucosylated
blood group antigens in mucosa and secretions, yielding the secretor-positive phenotype. Secretors
are more susceptible to infection with predominant rotavirus genotypes, as well as to the commonly
used live rotavirus vaccines. Difference in susceptibility to the vaccines is one proposed factor for
the varying degree of efficacy observed between countries. Besides infection susceptibility, secretor
status has been found to modulate rotavirus specific antibody levels in adults, as well as composition
of breastmilk in mothers and microbiota of the infant, which are other proposed factors affecting
rotavirus vaccine take. Here, the known and possible effects of secretor status in both infant and
mother on rotavirus vaccine take are reviewed and discussed.
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1. Introduction—Secretor Status and Susceptibility to Rotavirus

Group A rotavirus, hereafter called rotavirus in this review, is the most common
cause of severely dehydrating gastroenteritis in children worldwide [1]. The virus is
highly infectious, and most children have had several rotavirus infections by the age of
five years. Nevertheless, studies have shown that some children are more resistant to
infection and disease for particular rotavirus genotypes [2]. This resistance or susceptibility
is largely mediated through expression of human histo-blood group antigens (HBGAs),
mainly the types controlled by the FUT2 (secretor), FUT3 (Lewis), and ABO genes, in a
rotavirus genotype dependent manner. The protease-activated spike protein VP4, which,
together with glycoprotein VP7 (G genotype), elicits neutralization antibodies, is used to
define protease sensitive (P) serotypes or genotypes. Cellular attachment and entry, as
well as HBGA binding in vitro, is mediated by the VP4 protein (P-genotype), which is
post-translationally cleaved into a glycan binding domain and polypeptides [3]. As such,
the P-genotypes determine the pattern of genetic susceptibility. Globally, three P-genotypes,
namely P[4], P[6], and P[8], are common in humans [2,4], whereas other P-genotypes only
occasionally infect humans. These three predominant rotavirus P-genotypes are thus the
most clinically relevant is terms of susceptibility to natural rotavirus infections.

Both in vitro and observational studies have provided strong evidence that secretor
(FUT2) and Lewis (FUT3) antigens mediate susceptibility to the predominant genotypes in
a P-genotype-dependent manner [2,5]. Positive secretor status has been associated with
increased susceptibility to P[8] and P[4] infections, whereas P[6] infections are strongly
associated with the Lewis-negative phenotype, independent of secretor status [2]. Some
differences exist between studies, mainly in regard to the most common, and most studied,
P[8] genotype. For example, a few studies have reported that Lewis-positivity, independent
of secretor status, was the major susceptibility factor, while others studies observed that
the Lewis b-phenotype present in individuals that are both secretor and Lewis positive
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was a stronger susceptibility marker than only secretor-positive status [2]. Although less
studies for P[4] rotaviruses are available, similar differences between studies have been
reported [2].

Moreover, an in vitro study [6] showed that structural differences of different P[8]
lineages, as well as the Rotarix vaccine, yielded different binding patterns to glycans. For
example, Rotarix was different from other P[8] strains of the same lineage I, showing
a lack of interaction with the α1,2 fucosylated H type 1 antigen present in secretors [6].
These results suggest that different P[8] strains, including the vaccine Rotarix, may differ
in terms of secretor mediated susceptibility, which has also been suggested in epidemio-
logical studies [7,8]. Moreover, a recent study suggested that the strains of the emerging
lineage P[8]-4 more readily infect non-secretors compared to other P[8] strains [8], further
demonstrating that there can be a difference in secretor-specificity between lineages of the
same P-genotype.

To conclude, there is strong evidence that secretor status is important for susceptibility
to rotavirus in a P-genotype-dependent manner, with secretors more susceptible to P[8] and
P[4] infections compared to non-secretors [2]. Infection with the P[6]-genotype is strongly
associated with Lewis negativity, independent of secretor status. However, variations in
secretor-specificity has been observed between studies, as well as between and within
lineages of P[8]-genotypes, including the Rotarix vaccine [2,7,8].

2. The Biosynthesis Pathway Determining Secretor Status

HBGAs are synthesized by stepwise addition of monosaccharides to precursors. This
process is catalyzed by glycosyltransferases encoded by secretor (FUT2), Lewis (FUT3), and
ABO genes. The FUT2 enzyme is mostly active in epithelial tissues, and HBGAs under the
control of FUT2 are therefore present mainly in the mucosa of the genitourinary, respiratory,
and digestive tracts, as well as free oligosaccharides in body fluids such as saliva, tears, and
breastmilk. The FUT2 enzyme forms the H type 1 antigen by addition of an α1,2 linked
fucose to the H type 1 precursor. The H type 1 antigen can subsequently act as a substrate
for the A or B enzymes encoded by the ABO gene which add either an acetylgalactosamine
or a galactose, respectively, to the H type 1 antigen. Secretor status is determined by
whether the FUT2 enzyme is functional or not. Individuals with a non-functional FUT2
enzyme lack α1,2-linked fucose HBGAs in the epithelial mucosa and other secretions and
are termed non-secretors. Secretors are individuals with a functional FUT2 enzyme that is
able to express and secrete α1,2-linked fucose HBGAs, such a H-type 1 and blood group
antigens. The Lewis antigens are synthesized with the FUT3 enzyme, which adds a α1,4-
linked fucose residue on the H antigen precursor (non-secretor) or the H type 1 antigen
(secretor), generating Lewis a or Lewis b antigens, respectively. Individuals with inactive
FUT3 enzyme do not express Lewis a and b, and are termed Lewis-negative [2,9,10].

3. Global Distribution of Secretor Status

The distribution of HBGAs, including secretor, Lewis, and ABO pheno/genotypes,
is strongly dependent on ethnicity and thus varies largely between populations and ge-
ographic locations. As secretor and other HBGAs are associated with susceptibility to
many infectious diseases, this is likely a strong evolutionary driver for this observed
diversity [10,11]. In European, North American, Central Asian, and several African pop-
ulations, secretors constitute approximately 75–80% of the population, whereas secretor
prevalence in South American populations is approximately 85–90% [12–14]; and notably,
in Mesoamerican populations, it is as high as 90–95% [13]. In contrast, in other locally
specific populations, for example, in Saudi Arabia and the Philippines, the non-secretor
phenotype can constitute upwards of 50% of the population [15]. It is further important to
consider that secretor status is not binary; there are several missense mutations in the FUT2
gene that result not in inactivation of the FUT2 enzyme, but to reduced fucosyltransferase
activity; and other factors, such as microbiota, can also affect glycosylation in the gut [10,16].
For example, in several East Asian populations, the non-secretor phenotype is rare. Instead,
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the weak-secretor genotype, which renders a low, but not absent, expression of secretor
glycans, has approximately 15–20% prevalence [10,17].

In regard to the Lewis-negative phenotype, resulting from an inactive FUT3 enzyme,
there are also significant differences between populations and geographic regions. The
Lewis-negative phenotype is much more prevalent in several African countries and/or
ethnicities (20–35%) when compared to European, North American, and several Asian
populations (6–11%) [2,10,18].

Relevance for Vaccine Take

These geographical differences, in regard to HBGA expression, coupled with rotavirus
infection susceptibility in a P-genotype dependent manner, can further drive global epi-
demiological patterns of circulating rotavirus genotypes. As secretors predominate in most
populations, these populations would be more susceptible to genotypes more readily infect-
ing secretors such as P[8] and P[4]. A striking example is the global prevalence of the P[6]
genotype, which is common in Sub-Saharan Africa, and to some extent in Southeast Asia,
but is almost completely absent elsewhere [2]. The proportion of this genotype associates
well with the proportion of the Lewis-negative phenotype, the susceptibility marker for
P[6] infection, which is vastly more common in Sub-Saharan African populations [2,19,20].

4. Secretor Status and Susceptibility to the Live Rotavirus Vaccines

The live oral attenuated rotavirus vaccines have successfully reduced the mortality and
morbidity of rotavirus disease worldwide [21]. However, the efficacy varies considerably
between regions, with low-income countries, particularly in Sub-Saharan Africa and Asia,
demonstrating lower vaccine efficacy [21,22]. Several reasons have been proposed for
the difference in efficacy, including early rotavirus infections, transplacental antibodies,
concomitant infections, enteric dysfunction, nutritional status, and gut microbiota [22,23].

The two most widely used rotavirus vaccines, Rotarix and RotaTeq, are oral live
attenuated vaccines containing the predominant P[8] VP4 genotype. Thus, as for natural
infections, it was hypothesized that non-secretor infants would have a suboptimal immune
response with Rotarix or RotaTeq due to resistance to the live virus to infect and replicate.

Indeed, several studies have tested this hypothesis by measuring IgA seroconversion
and/or vaccine strain shedding in association with secretor status and other HBGAs
(Table 1). Most studies have investigated Rotarix, whereas limited studies exist for other
vaccines, such as RotaTeq and the neonatal vaccine candidate RV3-BB. Most studies for
Rotarix have reported a significantly lower proportion of both seroconversion and vaccine
shedding in non-secretors as compared to secretors (Table 1). For RotaTeq, studies from
Nicaragua reported that secretor-negative and Lewis-positive (Lewis a-phenotype) had less
vaccine shedding, as well as seroconversion, but more studies from other populations are
needed (Table 1). A study from New Zealand reported that the neonatal vaccine candidate
RV3-BB (P[6] genotype) had a good vaccine take in infants independently of secretor and
Lewis status [24]. Cumulative vaccine take was measured, defined as seroconversion
and/or vaccine strain shedding after any of the three doses given, which might influence
interpretation of the results (Table 1); and more studies, including measuring after one
dose to limit the influence of natural early infections, are needed. Moreover, studies on
secretor status and susceptibility to other globally or locally licensed vaccines and vaccine
candidates, several of other P-genotypes, such as Rotavac (G9P[11]), Rotavin-M1 (G1P[8]),
Lanzhou (G10P[12]) RV3-BB (G3P[6]), and Rotasiil (a combination of human G genotypes
and a bovine strain of P-genotype P[5]), are lacking [25,26].
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Table 1. Summary of different studies investigating the association between rotavirus vaccine take and secretor and Lewis
status. Updated and modified from Reference [2].

Vaccine Country Secretor Status Lewis Phenotype Measurement Reference

Seroconversion

Rotarix Nicaragua Non-secretors less seroconversion Lewis A no seroconversion After 1 dose [27]
Pakistan Non-secretors less seroconversion No association After 3 doses [28]
Ghana Non-secretors less seroconversion No association After 2–3 doses [29]
Malawi Non-secretors less seroconversion No association After 2 doses [30]

RotaTeq Nicaragua No association Lewis A no seroconversion After 1 dose [27]
RV3-BB New Zealand No association No association Cumulative [24]

Vaccine shedding

Rotarix Nicaragua Non-secretors no shedding No shedding in Lewis A After 1 dose [31]
Malawi Non-secretors less shedding No association After 1 dose [30]
Malawi No association No association After 2 doses [30]

South Africa Non-secretors less shedding Lower shedding in Lewis A After 1 dose [32]
Brazil Non-secretors less shedding Lower shedding in Lewis A After 1 dose [7]

RotaTeq Nicaragua No association No shedding in Lewis A After 1 dose [31]
RV3-BB New Zealand No association No association Cumulative [24]

Relevance for Protection to Rotavirus Disease

Studies thus strongly suggest that secretor status affects vaccine take to the Rotarix
vaccine, with non-secretor children having less immunological response after vaccination.
Important to consider is whether this also translates to vaccine failures, as children resistant
to the live vaccines would also be resistant to naturally circulating rotavirus genotypes
of the same secretor specificity. The degree of vaccine failures likely depends on the
HBGA-phenotype proportions in the population and degree of circulation of rotavirus
strains able to infect non-secretors. For example, P[6] strains have been observed to infect
independently of secretors status. However, these strains predominately infect Lewis-
negative children, a phenotype uncommon outside of Sub-Saharan Africa and some parts
of Asia. A recent study also suggested that the emerging P[8]-4 strain more readily infects
non-secretors compared to other P[8] lineages [8].

A few previous studies in highly vaccinated populations have shown that non-
secretors had reduced the risk of rotavirus gastroenteritis, due to natural resistance to
naturally occurring genotypes [30,33,34], thus suggesting that, even if non-secretors have
lower vaccine take, their natural resistance to wild-type infections counterbalances this.

To conclude, more studies from different geographic setups are needed to address
whether, and to what extent, proportion of non-secretor children will translate to vaccine
failures. Moreover, most studies have addressed the Rotarix vaccine, and studies with other
orally administered live vaccines are for their efficacy in association to secretor phenotype
are currently lacking.

Important factors that possibly can determine the extent, if any, that secretor status
affects rotavirus disease in vaccinated populations are likely both the proportion of non-
secretors and Lewis-negative individuals, as well as the prevalence of secretor independent
rotavirus genotypes such as P[6] and putatively the P[8]-4 lineage.

5. Secretor Status and Levels of Maternal Rotavirus Immunoglobulins

Several studies have investigated rotavirus-specific antibody titers in adults in as-
sociation with secretor status [9,35–38]. All of these studies have shown that secretors
have higher serum rotavirus IgG titers, as well as higher neutralization antibody titers
against the predominant strains in the study population (mostly P[8]). Other studies have
also observed higher salivary rotavirus IgA titers [24] in secretors, as compared to non-
secretors. This higher rotavirus antibody titer in secretors likely reflects a larger number of
previous infections driven by a larger greater genetic susceptibility. The available body of
evidence thus clearly demonstrates an impact of secretor status on the levels of different
rotavirus-specific immunoglobulins in adults.
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Relevance for Vaccine Take

A proposed factor for the reduced rotavirus vaccine efficacy observed in some settings
is through interference of maternal antibodies. The efficacy of the currently orally admin-
istered live-attenuated vaccines may be impacted both due to the placentally transferred
IgG immunoglobulins and the mucosal IgA through breastmilk [39,40]. Several studies,
mostly in low- and middle-income (LMIC) countries, have addressed these questions
and observed a correlation between higher maternal antibody titers both in serum and
breastmilk, and reduced rotavirus vaccine response [40–42]. In addition, an earlier study
investigating rotavirus specific neutralization titers in mothers and children less than
2 years of age reported that low serotype-specific neutralizing antibody titers in the mother
predispose the child for infection to the same serotype [43]. Moreover, higher levels of
neutralizing antibodies in breastmilk in LMIC were shown to correlate with lower rotavirus
seroconversion rates in their children undergoing vaccination [39].

Thus, as secretor status has been shown to influence rotavirus antibody titers, the
maternal secretor status might influence the likelihood of vaccine interference through
maternal antibodies. However, few studies have addressed this question directly. One such
study from Bangladesh observed that breastfed children whose mothers were secretors had
less IgA seroconversion rates after vaccination, compared to children whose mothers were
non-secretors [44], with the infant serum rotavirus IgG titers being higher in the children
of secretor mothers. More studies are thus needed to assess to which degree maternal
secretor status and, thus, maternal antibody levels affect the rotavirus vaccine response
in infants. An alternative to avoid suboptimal immune response due to interference by
transplacental antibodies during vaccination could be using a higher vaccine dose, as
reported previously [45].

6. Secretor Status, Breastmilk Composition, and Infant Microbiota

The gut microbiota have been indicated to be important for susceptibility to enteric
viruses in several studies through several mechanisms, such as enhancing viral attachment,
promoting immune evasion, and affecting epithelial glycosylation [16,36,46]. Microbiota
depletion has further been observed to reduce rotavirus infection in a mice model [47].
Blood-group antigen expression has been associated with differences in gut microbiota
composition of adults [48–50]. Studies on secretor status and microbiota composition,
however, demonstrate conflicting results. Although some studies have found secretor
status to influence microbiota composition, often leading to a difference in diversity of
bacterial population [16,36,51,52], other studies have found no or weak associations [53–56].

More relevant for vaccine take, however, is the infant microbiota. The intestinal micro-
biota of infants is very different from adults and shows important individual variability [57].
The mother is an important external factor for the development of the infant microbiota,
due to contacts during birth, nursing, and early feeding [57]. While factors such as skin
contact are important, a large influence on infant microbiota is breastmilk [58]. In addition
to other nutrients, breastmilk contains a mixture of complex human milk oligosaccharides
(HMOs), which can function as a growth substrate [58]. In addition to this prebiotic nature
of HMOs, breastmilk has probiotic properties that help to shape the infant gut microbiota.
During the first months of life, when breastmilk is typically the sole source of nutrition, the
gut bacteria present vary significantly depending on the mother [58].

The composition of breastmilk HMO is significantly influenced by secretor status [59,60],
where HMOs of secretor positive mothers contain α1–2 fucosylated HMOs—predominantly
2′fucosyllactose (2′FL), and, to a lesser extent, lactodifucotetraose, lacto-N-difucohexaose
I, and lacto-N-fucopentaose I. Non-secretor mothers lack or have only traces of these in
breastmilk, as well as a lower total amount of HMOs [61,62]. These differences in HMO
composition influence the infant’s microbiota [63]. As an example, several studies have
shown that positive secretor status in the mother is associated with a higher abundance of
bifidobacteria in infant microbiota [63,64]. These associations are, however, not universal,
and a negative correlation between 2′FL in breastmilk and relative abundance of bifidobac-
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teria in infant feces was observed in another study [65]. Besides maternal secretor status,
environment and geographic location could also affect varied HMO compositions between
women [66]. This suggests that the effect of fucosylated HMOs on infant microbiota is
different between groups, depending on other factors, such as environment and geographic
location [61,66].

6.1. Relevance for Vaccine Take
6.1.1. Microbiota

The interactions between virus, host, glycans, and microbiota are complex [16]. Secre-
tor status of the mother is important for determining infant microbiota composition at time
of vaccination. While studies have indicated a link between microbiota and vaccine take for
other oral vaccines [67], and probiotic supplementation has been associated with a modest
increase of Rotarix immunogenicity in a randomized control trial [68], a clear link between
microbiota and rotavirus vaccine response remains elusive. Studies from Ghana and Pak-
istan with the Rotarix vaccine observed a difference in microbiota composition between
responders and non-responders [69,70]. However, studies from Nicaragua with RotaTeq
vaccine and from India with the Rotarix vaccine did not observe any association [71,72].
Moreover, as secretor status influences both microbiota composition and factors that can be
important for rotavirus vaccine take (Figure 1), it can be difficult to rule out confounding
factors and ascertain the specific role of microbiota in these studies.

6.1.2. Non-Antibody Components of Breastmilk

Apart from rotavirus IgA titers in breastmilk, non-antibody components of breastmilk
may also directly affect vaccine take in a secretor-dependent manner, both by facilitating
or restricting vaccine strain infection, depending on type of rotavirus vaccine or admin-
istration schedule [44,73,74]. Fucosylated glycans in milk of secretor mothers have been
reported to provide protection to diarrhea in breastfed infants [75]. It has been further
observed that both the breastmilk profile and the inhibitory effect on rotavirus vaccines
due to non-antibody components in the breastmilk vary among developed and developing
countries [76,77]. Dose-dependent increase in infectivity of a neonatal RV vaccine candidate
(I321, G10P[11]) with specific HMOs [73] leads to speculation that this might be also true
for the other licensed G9P[11] vaccine (Rotavac) or for the RV3-BB vaccine, which has also
shown a good vaccine take when given to children at day 0 or birth.

Moreover, fucosylated HMOs in breastmilk of secretor mothers have been shown
to inhibit the in vitro infectivity of P[8] and P[4] rotaviruses, the most prevalent global
rotavirus strains [74]. This is suggestive that similar processes may be occurring in vivo
after oral vaccination with Rotarix. These findings may be attributable to fucosylated
glycans acting as decoy receptors for vaccine [44], restricting vaccine take (Figure 1).

Breastfed children in Bangladesh whose mothers were secretors had less IgA sero-
conversion rates after Rotarix vaccination, compared to children whose mothers were
non-secretors, controlling for infant’s secretor status [44]. The breastmilk further contained
similar levels of rotavirus IgA, thus suggesting a secretor-dependent non-antibody effect of
the breastmilk on rotavirus vaccine take. However, several studies involving restriction of
breastfeeding at time of vaccination have not observed enhancement of the IgA immune
response to oral rotavirus vaccines in children [40,48,78].

6.1.3. Conclusions

To conclude, breastmilk composition is affected by secretor status of the mother, lead-
ing to higher presence of fucosylated glycans, which in turn affect microbiota composition
in the infant gut (Figure 1). Although both microbiota composition and the presence or
absence of fucosylated glycans in breastmilk have been postulated to affect the rotavirus
vaccine take, more studies are needed to clearly ascertain a link to vaccine take of different
rotavirus vaccines.
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Figure 1. A simplistic overview on how secretor status in both mother and infant affects several factors that, in turn, may
restrict rotavirus vaccine take. (A) Both mother and infant are secretors. In such a scenario, the positive secretor status of the
child favors susceptibility to live oral rotavirus vaccines with a P[8] component such as Rotarix and RotaTeq, while higher
levels of rotavirus-specific maternal antibodies (IgG, IgA) and anti-rotavirus effect by IgA and/or fucosylated glycans in
breastmilk might limit vaccine take. (B) Mother is non-secretor, and infant is a secretor. Here, the secretor-positive infant
will be more susceptible to live oral rotavirus vaccines (Rotarix and RotaTeq), while lower rotavirus-specific maternal
antibodies and lower of levels of IgA and/or fucosylated glycans in breastmilk may also increase vaccine take. (C) Mother
is a secretor and infant is a non-secretor. The infant will be less susceptible to live oral rotavirus vaccines due to negative
secretor status. Higher levels of maternal rotavirus antibodies and anti-rotavirus effect of breastmilk might further restrict
vaccine take. (D) Both mother and infant are non-secretors. Infant will be less susceptible to live oral rotavirus vaccine,
while lower levels of maternal rotavirus antibodies and lower anti-rotavirus effect of breastmilk might benefit vaccine take.
The different scenarios will also influence infant microbiota composition, but specific effects on rotavirus vaccine take are
unclear. Following this model, it is proposed that scenario B will be most beneficial in terms of vaccine take, while scenario
C will be the least beneficial. It is important to note that the same factors restricting vaccine take also provide protection of
the infant to natural rotavirus infections. Note: (+) and (–) indicate higher and lower vaccine take, respectively, while (?)
represents unknown effect.

7. Concluding Remarks and Perspectives

The available literature shows that secretor status affects several factors that might
be important for an optimal rotavirus vaccine take in infants. Firstly, secretor status of
the infant is associated with innate susceptibility to infection of some of the live rotavirus
vaccines, important for subsequent immune response (Figure 1). Most studies have been
performed in regard to Rotarix, and less is known of the effect on secretor status and
susceptibility to other live oral rotavirus vaccines; however, there are indications that
secretor status does not affect the vaccine take of the neonatal RV3-BB vaccine of P[6]
genotype. Secretor status also affects the rotavirus antibody specific titers in adults which
can restrict vaccine take in the infant at time of vaccination through interference of maternal
antibodies. Secretor status further influences maternal breastmilk composition, which in
turn can affect gut microbiota composition in the infant. However, clear evidence between
infant microbiota composition and rotavirus vaccine take is lacking and warrants more
studies. The fucosylated non-antibody components in breastmilk of secretors may also
have a stronger antiviral effect on common rotavirus strains, including the predominant
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vaccines, which could thus also restrict vaccine take (Figure 1). However, studies on
restriction of breastfeeding at time of vaccination have not yielded any clear differences in
terms of rotavirus vaccine response.

Moreover, several of the recently available oral rotavirus vaccines have been limited
or not investigated in regard to the association between secretor status and vaccine take.
As these vaccines can consist of other P-genotypes, and/or are neonatally administrated,
the impact of secretor status on vaccine take will likely differ.

The interaction between secretor status in both mother and infant in association with
these and other factors is complex and warrants further investigation. Importantly, there is
a paucity in studies accounting for the secretor status of both the infant and the mother,
considering all factors that are affected by secretor status. Moreover, several of these
factors, while restricting rotavirus vaccine take, will also provide protection of the infant
to naturally circulating rotavirus and thus symptomatic disease. Non-secretor infants
can be protected against natural circulating strains, and higher levels of transplacental
antibodies and anti-rotavirus effect of breastmilk in secretor–secretor mothers will also
provide protection of the infant to rotavirus infection.

Thus, it is of importance to assess not only the secretor-status-mediated effects on vac-
cine response, but also on protection towards symptomatic rotavirus disease in longitudinal
studies in vaccinated populations.
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