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The neural dynamics of the nematode Caenorhabditis elegans are experimentally

low-dimensional and may be understood as long-timescale transitions between multiple

low-dimensional attractors. Previous modeling work has found that dynamic models

of the worm’s full neuronal network are capable of generating reasonable dynamic

responses to certain inputs, even when all neurons are treated as identical save for their

connectivity. This study investigates such a model of C. elegans neuronal dynamics,

finding that a wide variety of multistable responses are generated in response to varied

inputs. Specifically, we generate bifurcation diagrams for all possible single-neuron

inputs, showing the existence of fixed points and limit cycles for different input regimes.

The nature of the dynamical response is seen to vary according to the type of neuron

receiving input; for example, input into sensory neurons is more likely to drive a bifurcation

in the system than input into motor neurons. As a specific example we consider

compound input into the neuron pairs PLM and ASK, discovering bistability of a limit

cycle and a fixed point. The transient timescales in approaching each of these states are

much longer than any intrinsic timescales of the system. This suggests consistency of

our model with the characterization of dynamics in neural systems as long-timescale

transitions between discrete, low-dimensional attractors corresponding to behavioral

states.

Keywords: multistability, transient dynamics, nonlinear networks, C. elegans, bifurcations

1. INTRODUCTION

The complex structure of neuronal networks must be designed to balance a variety of competing
factors. Such networks must robustly respond to a wide range of inputs with a broad variety of
output behaviors, while also approximately minimizing constraints, such as their overall wiring
cost (Chen et al., 2006; Bullmore and Sporns, 2012). It is no surprise, then, that the connectivities
of such networks are typically far from random (Sporns, 2011). Despite their inherent complexity,
the dynamical patterns of activity generated by neuronal networks are often fundamentally low-
dimensional. That is, the robust functional responses and behavioral assays are characterized
by low-dimensional attractors or transient trajectories between them (Gold and Shadlen, 1999;
Laurent et al., 2001; Rabinovich et al., 2001, 2008; Jones et al., 2007; Rabinovich and Varona, 2011;
Stephens et al., 2011; Kunert et al., 2014; Shlizerman et al., 2014).
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Computational modeling can serve to establish the role which
network connectivity may play in encoding dynamic responses,
as opposed to the intrinsic dynamics of individual nodes
or additional biochemical factors. This can be accomplished
through modeling efforts which approximate all neurons in
a complex network as identical, distinguished only by their
connectivity. For example, Gollo et al. (2015) analyzed a
model of the macaque cortex which assigned all neurons the
same characteristic timescales, and showed that a hierarchy of
timescales could arise through the network structure alone.

The nematode Caenorhabditis elegans is an important model
system for these computational modeling efforts (Izquierdo and
Beer, 2016), partly due to the fact that the connectivity between
its 302 neurons (its “connectome”) has been resolved (White
et al., 1986; Varshney et al., 2011). While the exact role of
the connectome in neuronal computation remains unresolved
and controversial, it has been shown that simple computational
models of C. elegans neural dynamics (combining specific
connectivity data with simple unfit parameter estimates and
dynamics, while approximating all neurons as identical) are
capable of generating non-trivial, qualitatively correct responses
to given stimuli. For example, Kunert et al. (2014) found a neural
proxy for behavior consisting simply of a single limit cycle within
the system, similar to the low-dimensional behavioral dynamics
observed in Stephens et al. (2008).

In this paper, we explore the input space of model for the
neuronal network dynamics of C. elegans developed in Kunert
et al. (2014), and find that various multistabilities can arise
in response to inputs. Specifically, we survey all inputs
corresponding to single-neuron current injections and generate
bifurcation diagrams showing the existence limit cycles or fixed
points at a given input level. When an input drives the system
into a multistable regime, simulated transient dynamics are
seen to be much slower (on the order of seconds to tens of
seconds) than any intrinsic neuronal timescales (which in our
model do not exceed a few 100 ms). This helps to support
recent biophysical conjectures that the transients themselves
are critical in understanding behavioral assays (Rabinovich and
Varona, 2011). The transient trajectories themselves are low-
dimensional and could potentially be associated with network-
produced functionalities, such as neural proxies for movement.

As a first particular example, we investigate input into the
PLM neuron pair, which is known experimentally to excite
forward motion (Chalfie et al., 1985) and within our model
creates a two-dimensional limit cycle response (Kunert et al.,
2014). We then use the low-dimensional PLM response plane
to consider the dynamics of a compound input vector PLM +

ASK, where ASK stimulation is known to facilitate transitions
(i.e., turns Gray et al., 2005). Our bifurcation analysis reveals
that this induces bi-stability, in which the system goes either
into a fixed point or a limit cycle. Transient timescales are
shown to be considerably longer in this bistable case than the
intrinsic timescales of the system. This allows for long timescales
in the system in the presence of discrete, low-dimensional
attractors corresponding to behavioral states, consistent with
the experimentally-based framework of Stephens et al. (2011).
This further supports the perspective of Gollo et al. (2015) that

connectivity structure alone is capable of generating a hierarchy
of slow timescales. This input scenario demonstrates how our
bifurcation analysis methodology prescribes a generic approach
for identifying multi-stable states and their transient timescales
in response to arbitrary inputs. Since we model neurons as
identical save for their connectivity, it further indicates that their
connectivity alone can encode the creation and destruction of
multiple behavioral attractors.

2. MATERIALS AND METHODS

2.1. Model for Coupled Neural Dynamics
The dynamic model used is constructed to represent the graded
responses of the neurons of C. elegans. Experiments show that
many neurons in the organism are nearly isopotential, such that
it is a reasonable approximation to model neurons as single
compartments with membrane voltage as a state variable for
the neurons (Goodman et al., 1998; Lockery and Goodman,
2009). Wicks et al. (1996) used this to construct a single-
compartment membrane model for neuron dynamics. Building
on this, Kunert et al. (2014), constructed a full connectomic
dynamics model which was shown to yield reasonable low-
dimensional neural proxies for known behavioral responses
(specifically, it was shown that simulating excitation of the tail-
touch mechanosensory pair PLM creates a two-mode oscillatory
limit cycle in the body-wall motorneurons). As in Kunert et al.
(2014), neural membrane voltage dynamics are governed by:

CV̇i = −Gc(Vi − Ecell)− I
Gap
i (EV)− I

Syn
i (EV)+ IExti (1)

C is the whole-cell membrane capacitance, Gc is the membrane
leakage conductance and Ecell is the leakage potential. The
external input current (which we change to specify the external
stimulus) is given by IExti , while neural interaction via gap

junctions and synapses is modeled by input currents I
Gap
i (EV)

(gap) and I
Syn
i (EV) (synaptic). Their equations are:

I
Gap
i =

∑

j

G
g
ij(Vi − Vj) (2)

I
Syn
i =

∑

j

Gs
ijsj(Vi − Ej) (3)

Gap junctions are taken as ohmic resistances connecting each
neuron where G

g
ij is the total conductivity of the gap junctions

between i and j. Synaptic current is proportional to the
displacement from reversal potentials Ej. G

s
ij is the maximum

total conductivity of synapses to i from j, modulated by the
synaptic activity variable si, which is governed by:

ṡi = arφ(β(Vi − V th
i )) · (1− si)− adsi, (4)

where ar and ad correspond to the synaptic activity’s rise and
decay time, and φ is the sigmoid function φ(x) = 1/(1 +

exp(−x)), set here with width β and center V th
i . Solving

Equation 4 for its equilibrium value at ṡi = 0 yields:

ṡi = 0 H⇒ si =
φ(β(Vi − V th

i )+ ln(1+ ar/ad))

(1+ ad/ar)
. (5)
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Thus the equilibrium value of si depends sigmoidally upon the

membrane voltage Vi. As in equation 3, the synaptic current I
Syn
i

into neuron i depends upon the values of sj for all presynaptic

neurons j, and sj depends directly upon Vj. Thus, I
Syn
i depends

directly upon the membrane voltages of presynaptic neurons.

2.2. Model Parameters
We keep the parameters values of Kunert et al. (2014), as
summarized inTable 1. In particular, the connectivity parameters
G
g
ij andG

s
ij are prescribed by the full connectome (Varshney et al.,

2011). The relative significance of these specific connectivity
values is maintained by not fitting any of the other global
parameters. Instead, these parameters are estimated to a
reasonable order of magnitude from the literature and assumed
equal for each neuron. Specific parameter values are as follows,
as taken from Kunert et al. (2014): gap junctions and synapses
are both given individual conductances of g = 100 pS; the
synaptic sigmoid width parameter is set to β = 0.25 mV−1; cell
membranes are set to a conductance of Gc = 10 pS and given a
leakage potential of Ecell = −35 mV; andmembrane capacitances
are set to 1pF. All neurons are modeled as identical except
for their connectivity and the assignment of them as excitatory
or inhibitory (where Ej is set as 0 mV for excitatory neurons
and −45 mV for inhibitory neurons). Note, however, that this
necessarily means that any functionality which depends upon the
precise electrophysiological properties of individual neurons and
connections will not be captured by this model.

Sigmoid centers V th
i are set as in Kunert et al. (2014) and

similar to Wicks et al. (1996): Neurons are assumed to have
φ(β(V

eq
i − V th

i )) = 1/2 at equilibrium voltages V
eq
i . Using this

condition with Equations 1 and 4 allows us to solve for both the
values of V th

i and V
eq
i , which we call the "standard" equilibrium.

Note that this equilibrium always exists, though is not necessarily
the only fixed point within the system, nor is it always stable.

2.3. Modeling Neurons as Identical Units
The model does not include various extra-synaptic features
known to drive or regulate responses. For example, there is
evidence that self-sustained forward locomotion in C. elegans
is regulated by proprioception within motor neurons (Wen
et al., 2012) (compare how our model, lacking this, does not

TABLE 1 | Parameter values assigned within the model.

Parameters (from Kunert et al., 2014) Value

Membrane conductance Gc 10 pS

Membrane capacitance CH 1 pF

Leakage potential Ec −35 mV

Gap junction conductivity g 100 pS

Synaptic conductivity g 100 pS

Reversal potential Ej (Excitatory) 0 mV

Reversal potential Ej (Inhibitory) −45 mV

Sigmoidal width β 0.125 mV−1

Synaptic rise constant ar 1 s−1

Synaptic decay constant ad 5 s−1

sustain oscillation in the absence of explicit external input).
Computational modeling which includes stretch-receptive
proprioception shows that such feedback loops can control
behavioral features, such as gait modulation between differing
environments (Bryden and Cohen, 2008; Boyle et al., 2012).
The lack of such feedback mechanisms and other signaling
mechanisms (such as various neuromodulators, monoamines,
and peptides, Vidal-Gadea et al., 2011; Qi et al., 2013), in
combination with the simple neuron model and parameter
assumptions, mean that specific responses to given inputs seen
within the model can be encoded only within the network’s
connectivity. However, it should also be noted that these and
other effects are highly important, and any functionality which
depends on such effects will not be captured by this model.
However, this reductive approach yields information as to how
behavioral responses could be encoded within the structure of
the connectome.

2.4. Model Timescales
Of particular relevance to this paper are the timescales within
the system. From the first term in Equation (1), we see that the
exponential free decay constant of an unconnected neuron (i.e.,

decay through the membrane leakage term alone, with I
Gap
i =

I
Syn
i = Iexti = 0) would be τfree = C/Gc = 100 ms. Similarly,
the time constant value given by gap junctions would be τgap =

C/g = 10 ms.
There are also timescales intrinsic to the synaptic dynamics.

We approximate these by considering the dynamics when
voltages are held constant, and thus φ(β(Vi − V th

i )) ≡ φi is
constant. Then Equation ( 4) becomes:

ṡi = arφi − (arφi + ad)si (6)

and thus the synapses will exponentially approach equilibrium
with a time constant of τsyn = 1/(arφi + ad). Since ar = 1 s−1,
ad = 5 s−1, and φi ∈ (0, 1), synapses must have exponential time
constants in the range τsyn ∈ (166, 200)ms.

This collection of timescales is summarized in Table 2. It will
be shown that, when the system is in a bistable regime, the
timescales of transient dynamics within the system can be orders
of magnitude above any of these intrinsic time constants within
the system (on the order of 10 s, for example).

2.5. Response to PLM Stimulation:
Defining the Low-Dimensional Projection
Kunert et al. (2014) found that stimulating the tail-touch
mechanosensory neuron pair PLM within this model, gives

TABLE 2 | Orders of magnitude for various timescales within the system for the

parameters chosen.

Interaction Timescale

Single-neuron membrane leakage 100 ms

Gap junctions 10 ms

Synaptic connections 200 ms
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rise via a bifurcation to a limit cycle within the forward-
motion motorneurons. Experimentally, stimulation of PLM
drives forward motion (Leifer et al., 2011; Stirman et al., 2011).
This limit cycle consists of only two modes, which together
account for 99.3% of the variance in motorneuron activity.
This is in agreement with the behavioral observation that the
worm’s body shape during forward motion is well-described
by a similar two-mode oscillation (Stephens et al., 2008). The
non-triviality of this agreement was established by showing that
simulated ablation studies affected this response in agreement
with experimental ablation studies (e.g., ablation of the AVB
interneurons destroys the response both experimentally and in
the model, Chalfie et al., 1985).

Figure 1 shows the response of forwardmotionmotorneurons
to various inputs as a function of time. Figure 1A of the figure
shows a raster plot of motorneuron voltages in response to PLM
input [through the IExt term in Equation (1)], for which the

FIGURE 1 | Voltage dynamics of forward-motion motorneurons (neurons of

classes DB, DD, VB, and VD) in response to the following sensory inputs: in

(A), an input of 2× 104 (Arb. Units) into the PLM sensory neuron pair (known

experimentally to drive forward motion Chalfie et al., 1985); in (B), an input of

2× 104 into the PLM pair with an additional input of 2.4× 104 into the ASK

sensory neuron pair (known experimentally to promote turning Gray et al.,

2005). Simultaneous PLM + ASK stimulation causes bistability, with relatively

long transient times τ . To the right of each raster plot is the trajectory within

the Forward-Motion 2D Plane (defined by the trajectory in (A), and used for all

subsequent projections).

two-mode oscillatory response can be observed (Kunert et al.,
2014). The trajectory of these two leading modes are plotted as a
function of time on the right. We use this same low-dimensional
space (defined as the two forward-motion motorneuron modes
which oscillate during PLM activation) throughout the paper. In
other words, we use the same projection for the low-dimensional
trajectories in Figure 1B and in all further figures.

Specifically, we calculate this plane (as in Kunert et al.,
2014) by taking time snapshots of forward-motion motorneuron
membrane voltages EVM(t), collecting them into a matrix V (the
matrix plotted in the raster plot of Figure 1A, and taking that
matrix’s singular value decomposition. That is:

V = [ EVM(t0), EVM(t1)...] = P · 6 · QT , (7)

where P and Q are unitary and 6 is diagonal. The columns
of P are the principal orthogonal modes. As in Kunert et al.
(2014), the first two of these modes (the first two columns of
P) almost entirely capture the dynamics of the system within
this subspace under constant PLM stimulation. Projection of the
full-system dynamics onto this plane consists of projecting the
system’s motorneuron dynamics onto these modes.

Importantly, all of the neuron membrane voltages which
have a nonzero projection onto this plane are forward-motion
motorneurons (that is, motorneurons of class DB, DD, VB, and
VD). All neurons outside of these classes (and thus all sensory
and interneurons) belong to the null space of this projection;
that is, only motorneuron dynamics project onto this plane. All
low-dimensional trajectories within this study can therefore be
understood as corresponding to motorneuron dynamics, aiding
in their potential biological interpretability (in the sense that
motorneuron dynamics should map onto muscular dynamics).

This specific two-dimensional plane represents the dominant
motorneuron neural response modes for PLM stimulation.
Each stable fixed point within this plane corresponds to a
static neural response, whereas a limit cycle corresponds to
an oscillatory trajectory. The exact mapping of these neural
modes onto muscular activities remains ambiguous, but it is
plausible that a fixed point in body-wall motorneuron activity
could correspond to fixed muscular postures, whereas oscillatory
body-wall motorneuron activity could drive periodic body-shape
motion (via an undefined mapping). Inter- and motorneurons
do, indeed, display low-dimensional dynamical trajectories;
however, there is generally insufficient biophysiological evidence
for interpreting any behavioral implications of such dynamics.
States which we identify in our projection plane, on the other
hand, indicate possible neural proxies for low-dimensional body
movements in C. elegans.

3. RESULTS

3.1. Existence of Multistable Dynamics
The response to PLM stimulation alone consists of a single
possible state (i.e., a limit cycle trajectory), but if the model is
capable of describing the dynamics in terms of long-timescale
transitions between states under the same input, then we wish to
find inputs which allowmultiple states and transitional dynamics.
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We find that such inputs indeed exist. As an example, we
consider the response to simultaneous stimulation of the PLM
neuron pair along with the ASK neuron pair. We choose this
stimulation since excitation of ASK neurons have been shown
experimentally to promote turning (Gray et al., 2005) and their
ablation greatly increases the duration of periods of forward
motion (Wakabayashi et al., 2004).

As we show in Figure 1B, for this combined input there
coexist two different attractors, i.e., the system is bistable. The
two trajectories plotted are in response to the same constant
input amplitudes into PLM and ASK, and differ only by their
initial conditions. Note that the transients before convergence
into the eventual fixed point or limit cycle have long timescales
(relative to the intrinsic timescales of the system as discussed in
Section 2.4). The model therefore does exhibit multistability for
this given input, but given the large dimensionality of the input
space, the discovery, identification and interpretation of these
multistable regimes is not trivial. Since we wish to understand the
neural dynamics as consisting of long-timescale transients in the
presence of multiple discrete attractors, we develop a method for
(1) identifying the existence and nature of attractors in response
to arbitrary inputs, (2) characterizing transient timescales, and
(3) providing interpretable biophysical meaning to calculated
trajectories via projection onto a meaningful low-dimensional
space.

3.2. Bifurcation Diagrams for State
Identifications
Motivated by observational studies which describe C. elegans
behavioral dynamics in terms of low-dimensional attractor
dynamics (Stephens et al., 2011), we wish to understand our
simulated neural dynamics in the presence of multiple discrete
attractors. Numerical bifurcation analysis can be useful in
revealing the states existing within high-dimensional neural
models (see e.g., Laing, 2014). We therefore propose to construct
bifurcation diagrams, which show the attractors which exist
within the system under arbitrary inputs. By fixing the direction
of the input vector IExt in Equation (1) and using its amplitude
as our bifurcation parameter, such diagrams will show us at
a glance the set of states created in response to a given
input, and provide us with a method of identifying induced
multistability.

Figures 3, 4 show examples of such bifurcation diagrams, in
which we plot the furthest L2 distance from standard equilibrium
(within the 2D Forward-Motion Plane) of attractors which are
present as a function of input amplitude. Full detail on the
algorithm used to generate such diagrams can be found in the
Supplementary Materials. Our exploratory method has a few
implications for the interpretation of these diagrams: first, we
search only for fixed point or limit cycle attractors (and not,
e.g., chaotic attractors); second, there is no theoretical guarantee
that we find all possible states of the system, such that others
could exist; third, the fixed point/limit cycle convergence criteria
are defined for the full set of neurons, such that when the
motorneurons are in a fixed point (or limit cycle), this is also true
of the sensory and interneurons.

We generated these diagrams for all 279 of the single-
neuron inputs into the system. Note that the figures from these
simulations, as shown in the Supplementary Materials, are done
over a much coarser range than those in Figures 3, 4. The
purpose of these coarse figures is to quickly give an indication of
the likely number of states for each range of inputs. Thus, these
diagrams give a means of identifying what attractors will exist
within the system for a broad range of arbitrary inputs, and of
easily identifying regions of multistability in the input space. This
set of diagrams is included within the Supplementary Materials.

Note that some caremust be taken in interpreting these figures
as they give only the response to stimulation of a single neuron.
Notably, compound inputs may lead to qualitative differences
between the corresponding single-input diagrams. Compare, for
instance, the bifurcation diagrams for PLML + PLMR (as in
Figure 3) and for PLML + PLMR + ASKL + ASKR (as in
Figure 4) with the diagrams of the constituent neurons (as within
the Supplementary Materials). However, it is no more difficult
to generate the diagram of any compound input than it is
for a single input. Any combination of constant-in-time inputs
defines a different constant vector, the magnitude of which is our
bifurcation parameter; however, sparsity of this vector is not a
factor in any of our calculations. Thus, our algorithm prescribes
amethod for exploratory bifurcation diagram generation even for
complex, many-neuron inputs.

Generating these diagrams for all possible single inputs
allows for the qualitative comparison of features within each
neuron’s bifurcation diagram. Similar features in the bifurcation
diagrams of neurons may suggest similar functionalities. As a
simple example, in Figure 2, we compare the input amplitude
at which the standard equilibrium first becomes unstable for
sensory neurons, interneurons and motorneurons. The majority
of sensory neurons are seen to drive bifurcations in the system
at lower input levels than for most interneurons, which in turn
require lower inputs than most motorneurons. Intuitively, this
suggests that the system is typically more sensitive to input
into sensory neurons than it is to interneuron or motorneuron
inputs. Furthermore, for each group of neurons we compute
the percentage of single neuron inputs which promote limit
cycle attractors. We find that within our input range, 32.6%
of sensory neurons and 26.7% of interneurons give rise to
oscillatory dynamics, whereas only 8.4% of motorneurons result
in oscillation when stimulated. This points to the sensitivity and
particular ability of sensory neurons to drive complex dynamics
within the network.

3.3. A Defining Example: Response to PLM
Input
Figure 3 shows a low-dimensional bifurcation diagram for
constant PLM input. The figure shows the creation of a stable
limit cycle in response to input into the neurons PLML/R. By
evaluating this bifurcation diagram we can identify the regions of
interest which have qualitatively distinct responses (in this case,
the region with a lone attractor which is a stable fixed point and
the second region with a lone stable attractor which is a limit cycle
after the fixed point attractor becomes unstable). For each region
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FIGURE 2 | (A) shows a selection of bifurcation diagrams for inputs into

different neurons, showcasing the variety of multistable behaviors within the

system. Similar diagrams for all neurons are included in the Supplementary

Materials. (B) shows the input amplitude of the first bifurcation, by neuron

type. The vertical axis shows the percentage sensory neurons, interneurons,

and motorneurons for which the standard equilibrium is unstable at the

corresponding input amplitude. On average, sensory neurons drive

bifurcations at a lower input amplitudes than inter- or motorneurons.

Motorneurons are much less likely to drive limit cycles within the system.

we can perform simulations which are then projected onto the
low-dimensional plane (the PLM limit cycle being what defines
this plane). Given the putative correspondence of this limit cycle
to forward motion in Kunert et al. (2014), these low-dimensional
neuronal trajectories may (via some unknown mapping) map
onto bodily dynamics. It is plausible that the fixed point in
neuronal dynamics could lead to static bodily movement, or that
to oscillatory dynamics of the body-wall motorneurons could
map onto oscillatory dynamics of the body of the worm.

3.4. Characterizing Bistable Dynamics
Of greater interest are responses to compound activations; that is,
more complicated inputs leading to more complicated responses.
We consider as an example the dual input into the PLM and
ASK neuron pairs as discussed in Section 3.1. We keep a constant
input of 2 × 104 into the PLM pair and use as our bifurcation
parameter the input into the ASK pair. Figure 4 shows the
resulting bifurcation diagram. At inputs below 1.5×104, the limit
cycle remains relatively undisturbed. At greater inputs, however,
a series of bifurcations occur such that there is a sudden jump in

FIGURE 3 | Bifurcation diagram for constant PLM stimulation of varying

amplitude. Below an input of 1.2× 104 the system goes to a stable fixed point

very close to the standard equilibrium, but beyond that input level the system

goes to a stable limit cycle (where the plotted point gives the furthest distance

from standard equilibrium on the limit cycle). The diagram shows the two

qualitatively distinct regions of interest for PLM inputs: the low input level in

which the system remains at a fixed point, and the higher input level beyond

which the system enters into a limit cycle (which in this case can be

considered to serve as a proxy for forward motion Kunert et al., 2014).

the distance of the limit cycle, and at about 1.7 × 104 the system
becomes bistable with the addition of a new fixed point. Thus,
we are able to immediately identify from this figure multistability
within the system, which we may then go on to investigate
further. Specifically, we are interested in the further investigation
of transient timescales of the system.

3.5. Long Transient Timescales
In Figure 5 we investigate spatial and temporal aspects of the
convergence into one of the two bistable states. An ensemble
of 200 simulations (with random initial conditions in the
neighborhood of the standard equilibrium) were performed for
each ASK input level. From those, the trials converging to the
fixed point solution were taken and the convergence time τ was
calculated by calculating, for each fixed point trial, the time after
which all points of the trajectory are within a distance ǫ of the
final value (using here ǫ = 0.004). The average and standard
deviation of these convergence times are shown in the top right
of Figure 5. Convergence times for the limit cycle solutions are
qualitatively similar when comparing trajectories, such as those
in the upper-left of the figure. Note that these convergence times
are considerably longer than other timescales within the system
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FIGURE 4 | Bifurcation Diagram for varying amplitude of input into the ASK

pair. Input into PLM is fixed at 2× 104. Note that as input into ASK increases,

the forward-motion limit cycle remains relatively undisturbed until it reaches

about 1.5× 104, after which the distance jumps and a fixed point becomes

stable, giving rise to a bistability within the system.

(comparing, for example, the model’s free neuron decay constant
of 10 ms, Varshney et al., 2011, or other trajectory timescales,
such as the limit cycle period, which remains approximately 2 s
regardless of ASK input).

Shown also are the basins of attraction for trajectories starting
on the low-dimensional plane, on a grid of initial conditions
centered at the standard equilibrium point (which we choose as
our origin). The size of the grid is chosen to be within a small
neighborhood of zero [within the range (−4, 4) × 10−6] since
we find that trajectories initiated farther away are first attracted
toward the zero point before being rerouted to the fixed point or
limit cycle attractors.

Note that the basins of attraction in Figure 5 only display
this structure when initializing on the plane itself (that is, when
displaced from the standard equilibrium point only along the
two modes). Displacing the system in the full-dimensional space
then projecting the higher-dimensional basins of attraction onto
this plane fails to show any clear structure, indicating that
the separation of the basins has higher-dimensional structure.
Therefore these basin of attraction plots indicate distinct regions
in which initial conditions starting on this plane will, under
compound PLM + ASK input, go toward either solution (i.e.,
initializing in the most of the upper-right portion of the plane
leads to the fixed point solution, whereas initializing the the
lower-left portion of the plane leads to the limit cycle solution).

FIGURE 5 | Spatial and temporal properties of convergence for PLM + ASK

input (i.e., the bistable region of Figure 4). The upper-right plot shows fixed

point convergence times as a function of input amplitude (from 200 trials at

each point). Note the relatively long transient timescale. The second row

shows the spatial basins of attraction for different inputs. Each grid covers a

small region around the standard equilibrium, plotting on (−4, 4)× 10−6 for

both modes. At an ASK input of 1.6× 104 all initial conditions converge to a

limit cycle, but initial conditions on the plane are split between the limit cycle

and fixed points at higher inputs, such as 2.4× 104.

Since this is the plane on which the PLM response limit cycle
proceeds, these figures show which portions of this cycle (which
goes through both of these regions) are more prone to ASK-
driven transitions into a fixed point.

The existence of bistability between a limit cycle and fixed
point within our model given simultaneous PLM stimulation
(which promotes forward motion) and ASK stimulation (which
promotes turning) is thus suggestive of an interpretation in which
the worm’s motorneuron activity will either, depending on the
neural state upon the onset of this stimulus, oscillate, or approach
a fixed state.

4. DISCUSSION

We explored the input space of a C. elegans neural dynamic
model which incorporates its fully-resolved connectome and
demonstrated that various multistabilities arise in response to
inputs. Using a low-dimensional projection space based upon
forward motion, we are able to systematically explore responses
to complex inputs and understand them in a framework of low-
dimensional attractor dynamics. In our study, the bifurcation
diagram is constructed by using the constant-in-time input as our
bifurcation parameter. We show that such diagrams are capable
of revealing and mapping multiple attractors within the system

Frontiers in Computational Neuroscience | www.frontiersin.org 7 June 2017 | Volume 11 | Article 53

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kunert-Graf et al. Multistability in C. elegans Modeling

by using a low-dimensional projection space which guides the
search for attractors, identifying their stability and their effect
upon forward movement. Furthermore, the low-dimensional
projection helps in the interpretation of the dynamics upon the
discovered attractors, especially the dynamics associated with
multistability.We characterize suchmultistable dynamics, noting
specifically that when the system enters into a multistable regime,
transient timescales within the system can be very long relative
to intrinsic neural timescales (comparing, for example, the three
orders of magnitude between the ∼100 ms neural timescales in
Section 2.4 to the∼10 s transient lengths in Figure 4).

These long transient timescales generated by the multistability
of the system have critical implications. These longer timescales,
on the order of many seconds, are on a similar order
to many behavioral timescales, such as forward crawling
survival time (Stephens et al., 2011). This suggests that
various behavioral responses could be associated not with
the attractor itself, but rather with the transient leading to
that attractor. This is consistent with theoretical constructions
and experimental observations of transient orbits between
attractors (Rabinovich et al., 2001, 2008; Rabinovich and Varona,
2011). Importantly, this viewpoint is supported independently
and in a completely different theoretical framework by direct
connectomic simulations from biophysically appropriate neuron
dynamics within the worm, i.e., the multistability of attractors
and long-time transients are not engineered in the model to
fit the data and observations, rather they naturally arise from
the dynamics associated with the connectome. Future work may
analyze the structure of perturbations which drive transitions
between different states, to predict inputs which result in said
behavioral transients.

This study suggests that neural computations can consist of
both dynamics on attractors (as in our PLM-driven limit cycle)
and of long-timescale transients towardmultiple attractors which
may arise in the system (as we show in the long-timescale
transients approaching the multistable states from PLM + ASK
input). We have demonstrated that both dynamical features can
arise by applying simple, identical neuron models onto the C.
elegans connectome data, suggesting that these responses are
encoded within the connectome itself. This lends support to the
viewpoint of Gollo et al. (2015) that hierarchies of slow neural
timescales can emerge from complex network structure alone.

Future work will explore the broader range of dynamics
which may be present in the system. It is possible that certain
inputs could evoke dynamics in the system besides simple fixed
points or limit cycles, such as chaotic dynamics. The discovery
of such dynamical regimes in a neuronal dynamics model could
yield testable predictions for the types of dynamics evoked in
response to given inputs. However, this is closely coupled to
another important avenue for future work: the development

of more realistic and more directly interpretable models for
neuronal dynamics and corresponding behavior. The precise
electrophysiological properties as well as neuronal input/output
functions have not been fully characterized in C. elegans, making
the construction of such models difficult, but “in silica” modeling
efforts, such as OpenWorm are working to overcome these
challenges (Szigeti et al., 2014). The approach within this paper
could be applied to such models, the dynamics of which would
be both more biophysiologically realistic and more readily
interpretable.

More broadly, many networked dynamical systems across
the engineering, physical, and biological sciences may also be
dominated by patterns of activity and long-time transients
induced by the structure of the network architecture.
Understanding the basic principles of such behaviors is
critical for optimizing performance and controlling deleterious
effects. The analysis above may be able to help understand
how the network architecture encodes deleterious patterns of
activity when combined with relevant dynamics. In contrast,
one might desire to generate a network architecture to
induce a transient that is beneficial for some purpose relative
to an application (for instance, a crawling motion in the
case of the C. elegans). Understanding how the network
connectivity graph drives such activity would be critical for
inducing such beneficial patterns of activity, perhaps even
suggesting network control protocols for achieving desired
results. The theoretical framework presented here highlights
the rich and complex dynamics that emerge with networked
architectures.
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