

OPEN

Association between rs11200014, rs2981579, and rs1219648 polymorphism and breast cancer susceptibility

A meta-analysis

Yafei Zhang, MD, Hongwei Lu, MD, Hong Ji, MD, Le Lu, MD, Pengdi Liu, MD, Ruofeng Hong, MD, Yiming Li, MD^{*}

Abstract

Background: Research on the polymorphism of breast cancer (BC) helps to search the BC susceptibility gene for mass screening, early diagnosis, and gene therapy, which has become a hotspot in BC research field. Previous studies have suggested associations between rs11200014, rs2981579, and rs1219648 polymorphisms and cancer risk. The aim of this study was to evaluate the relationship between rs11200014, rs2981579, and rs1219648 polymorphism and BC risk.

Methods: PubMed, Web of science, and the Cochrane Library databases were searched before October 11, 2015, to identify relevant studies. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to estimate the strength of associations. Sensitivity and subgroup analyses were conducted. All included cases should have been diagnosed by a pathological examination.

Results: Twenty-six studies published from 2007 to 2015 were included in this meta-analysis. The pooled results showed that there was a significant association between all the 3 variants and BC risk in any genetic model. When stratified by Source of controls, the results showed the same association between rs2981579 polymorphism and BC susceptibility in hospital-based (HB) group, although there was not any genetic model attained statistical correlation in population-based (PB) group. Subgroup analysis was performed on rs1219648 by ethnicity and Source of controls, and the effects remained in Asians, Caucasians, HB, and PB groups.

Conclusion: This meta-analysis of case–control studies provides strong evidence that fibroblast growth factor 2 (FGFR2; rs11200014, rs2981579, and rs1219648) polymorphisms are significantly associated with the BC risk. For rs2981579, the association remained in hospital populations, while not in general populations. For rs1219648, the association remained in Asians, Caucasians, hospital populations, and general populations. However, further large-scale multicenter epidemiological studies are warranted to confirm this finding and the molecular mechanism for the associations need to be elucidated in future studies.

Abbreviations: BC = breast cancer, CIs = confidence intervals, FGFR2 = fibroblast growth factor 2, GWAS = genome-wide association study, HB = hospital-based, ORs = odds ratios, PB = population-based.

Keywords: breast cancer, polymorphism, rs11200014, rs1219648, rs2981579

1. Introduction

Breast cancer (BC) has become one of the most common malignant tumors in women, whose incidence accounts for about 23% of all female malignant tumors, and more than 400,000

Editor: Daryle Wane.

http://dx.doi.org/10.1097/MD.000000000009246

people worldwide die from BC each year.^[1] The rising morbidity and mortality should not be ignored.^[2] Exploring the BC susceptible factors, etiology, and pathogenesis, establishing the model of BC risk, so as to guide clinical prevention and treatment better, is still a very challenging subject.

Currently, study on the interaction between BC gene and environment has gradually attracted the attention of researchers. The main methods of this study include candidate gene and genome-wide association study (GWAS).^[3] GWAS has made some achievements in the association between the polymorphism of fibroblast growth factor 2 (FGFR2), TNRC9, MAP3K1, H19, and LSP1 and the significant increase of BC risk.^[4] Research on the polymorphism helps to search the BC susceptibility gene for mass screening, early diagnosis, and gene therapy, which has become a hotspot in BC research field.

Recently, researches have paid more attention to the human FGFR2, whose several SNPs, rs11200014 (G>A), rs2981579 (C>T), rs1219648 (A>G), may associated with BC susceptibility in different crowds and different regions.^[5–30] However, conclusions of related reports are still inconclusive between susceptible^[5,9–13] and protective.^[6–8] These different conclusions may due to differences in ethnic and regional and other factors.

The authors have no funding and conflicts of interest to disclose.

Department of General Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.

^{*} Correspondence: Yiming Li, Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, Shaanxi 710004, China (e-mail: liyimingdoc@163.com).

Copyright © 2017 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Medicine (2017) 96:50(e9246)

Received: 5 August 2017 / Received in final form: 27 October 2017 / Accepted: 21 November 2017

Therefore, a systematic analysis with large samples should be applied to assess the association. To clarify the role of FGFR2 (rs11200014, rs2981579, and rs1219648) polymorphism in BC susceptibility, 5 meta-analyses^[31–35] on the correlation between FGFR2 (rs11200014, rs2981579, and rs1219648) polymorphism and BC susceptibility had been implemented. However, the results remain inconclusive and number of their studies included for each SNP is small, and some just no subgroup. Therefore, we carried out this meta-analysis on all the included case–control studies to make a more accurate assessment of the relationship.

2. Methods

2.1. Literature searching strategy

We searched PubMed, Web of science, and the Cochrane Library for relevant studies published before October 11, 2015. The following keywords were used: (FGFR2) and (variant* or genotype or polymorphism or SNP) and (breast) and (cancer or carcinom* or neoplasm* or tumor), and the combined phrases for all genetic studies on the association between the FGFR2 (rs11200014, rs2981579, and rs1219648) polymorphism and BC risk. The reference lists of all articles were also manually screened for potential studies. Abstracts and citations were screened independently by 2 researchers independently. All the eligible articles need a second screening for full-text. The searching was done without language limitations.

2.2. Selection and exclusion criteria

Inclusion criteria included that a study was included in this metaanalysis if it meets the following criteria: independent casecontrol studies for humans; the study evaluating the association between FGFR2 (rs11200014, rs2981579, and rs1219648) polymorphism and BC risk; the study presenting available genotype frequencies in cancer cases and control subjects for risk estimate; and cases should have been diagnosed by a pathological examination. We excluded comments, editorials, systematic reviews, and studies lacking sufficient data or studies with male cases. If the researches were duplicated or shared in more than one study, the most recent publications were included.

2.3. Data extraction and synthesis

We used endnote bibliographic software to construct an electronic library of citations identified in the literature search. All the PubMed, Web of science, and the Cochrane Library searches were performed using Endnote. Duplicates were found automatically by endnote and deleted manually. All data extraction was checked and calculated twice according to the inclusion criteria listed above by 2 independent investigators. Data extracted from the included studies were as follows: First author, year of publication, country, ethnicity, source of controls, genotyping method, number of cases and controls, and evidence of HWE in controls. A third reviewer would participate if some

Figure 1. Flow chart of studies selection in this meta-analysis.

	-		lin i
_	[]	- 1	

Characteristics of the studies included in the meta-analysis.

Ref.	Year	Country	Ethnicity	Source of controls	Genotyping method	Number (case/control)	HWE
rs11200014 (G > A)							
Raskin et al ^[23]	2008	USA	Caucasian	PB	TaqMan	1481/1477	0.20404
Kawase et al ^[17]	2009	Japan	Asian	HB	TaqMan	453/912	0.643882
Ma et al ^[29]	2011	China	Asian	PB	AS-PCR	200/200	0.919583
Fu et al ^[15]	2012	Chinese	Asian	HB	iPLEX	118/104	0.766128
Chan et al ^[12]	2012	China	Asian	HB	Taqman	1173/1464	0.045705
rs2981579 (C>T)>(G>A)							
Raskin et al ^[23]	2008	USA	Caucasian	PB	TaqMan	1480/1471	0.372365
Kawase et al ^[17]	2009	Japan	Asian	HB	TaqMan	456/912	0.156544
Liu et al ^[21]	2009	China	Asian	PB	PCR-RFLP	106/116	0.719587
Zhou et al ^[26]	2010	China	Asian	HB	PCR-LDR	304/308	0.481568
Hu et al ^[27]	2011	China	Asian	PB	PCR-RFLP	203/200	0.199691
Li et al ^[28]	2011	China	Asian	HB	MassArray	403/461	0.728638
Zhao et al ^[30]	2012	China	Asian	PB	DHPLC	120/120	0.30919
Fu et al ^[15]	2012	China	Asian	HB	iPLEX	118/104	0.541378
Xia et al ^[10]	2015	China	Asian	HB	MassARRAY	181/196	0.403599
Chan et al ^[12]	2012	China	Asian	HB	Taqman	1174/1477	0.202667
Liang et al ^[6]	2015	China	Asian	HB	MassARRAY	608/876	0.207053
Liu et al ^[19]	2013	China	Asian	HB	PCR-RFLP	203/200	0.199691
rs1219648 (A > G)							
Raskin et al ^[23]	2008	USA	Caucasian	PB	TaqMan	1487/1477	0.267724
Kawase et al ^[17]	2009	Japan	Asian	HB	TaqMan	456/912	0.551982
Hu et al ^[27]	2011	China	Asian	PB	PCR-RFLP	203/200	0.740568
Li et al ^[28]	2011	China	Asian	HB	MassArray	403/443	0.516038
Shan et al ^[24]	2012	Tunisian	African	PB	TaqMan	596/360	0.058241
Ma et al ^[20]	2012	British	Caucasian	HB	KASPar	232/461	0.121646
Fu et al ^[15]	2012	Chinese	Asian	HB	iPLEX	117/104	0.597686
Slattery et al ^[25]	2011	American	Caucasian	PB	Taqman	1737/2042	0.963729
Chen et al ^[13]	2011	Chinese	Asian	PB	Taqman	447/406	0.800884
Liang et al ^[18]	2008	Chinese	Asian	HB	Taqman	1028/1062	0.269848
Hunter et al ^[16]	2007	USA	Caucasian	PB	Array, Taqman	2921/3213	0.585653
Liu et al ^[22]	2010	China	Asian	PB	PCR-RFLP	106/116	0.747684
Andersen et al ^[11]	2013	USA	Caucasian	PB	Taqman	869/808	0.143531
Chan et al ^[12]	2012	China	Asian	HB	Taqman	1174/1469	0.066628
Cherdyntseva et al ^[14]	2012	Russian	Caucasian	PB	PCR	344/228	0.010879
Jara et al ^[5]	2013	Chile	Caucasian	PB	TaqMan	351/802	0.124152
Liu et al ^[19]	2013	China	Asian	HB	PCR-RFLP	203/200	0.740568
Ozgoz et al ^[7]	2013	Turkey	Caucasian	PB	PCR-RFLP	31/30	0.070383
Saadatian et al ^[8]	2014	Iran	Asian	PB	PCR-RFLP	100/100	0.666743
Siddiqui et al ^[9]	2014	India	Asian	HB	PCR-RFLP	368/484	0.569268

HB = hospital-based, HWE = Hardy-Weinberg equilibrium, PB = population based.

disagreements were emerged, and a final decision was made by the majority of the votes.

2.4. Statistical analysis

All statistical analyses were performed using STATA version 11.0 software (StataCorp LP, College Station, TX) and Review Manage version 5.2.0 (The Cochrane Collaboration, 2012). Hardy–Weinberg equilibrium (HWE) was assessed by χ^2 test in the control group of each study.^[36] The strength of associations between the FGFR2 (rs11200014, rs2981579, and rs1219648) polymorphism and BC risk was measured by odds ratios (ORs) with 95% confidence interval (95% CIs). Z test was used to assess the significance of the ORs, and I^2 and Q statistics was used to determine the statistical heterogeneity among studies. A random-effect model was used if the P value of heterogeneity tests was no more than .1 ($P \le 0.1$), and otherwise, a fixed-effect model was step stability of the results. We used Begg funnel plot and Egger

test to evaluate the publication bias.^[38,39] The strength of the association was estimated in the allele model, the dominant model, the recessive model, the homozygous genetic model, and the heterozygous genetic model, respectively. P < .05 was considered statistically significant. We performed subgroup according to ethnicity and source of controls.

2.5. Ethical approval

The ethical approval was not necessary for the reason that our study was a meta-analysis belonging to secondary analysis.

3. Results

3.1. Characteristics of included papers

The specific search process is shown in Fig. 1. A total of 563 references were preliminarily identified at first based on our selection strategy. We also identified 4 papers through other sources. Four hundred fifty-six records were left after removing

Table 2

Polymorphisms genotype distribution and allele frequency in cases and controls.

				Allele frequency (N)								
Ref.		Ca	ise			Co	ntrol		Ca	Coi	Control	
rs11200014 (G > A)	Total	AA	AG	GG	Total	AA	AG	GG	А	G	А	G
Raskin et al ^[23]	1481	366	698	417	1477	288	701	488	1430	1532	1277	1677
Kawase et al ^[17]	453	45	191	217	912	79	369	464	281	625	527	1297
Ma et al ^[29]	200	12	177	11	200	18	85	97	201	199	121	279
Fu et al ^[15]	118	17	47	54	104	5	38	61	81	155	48	160
Chan et al ^[12]	1173	109	481	583	1464	118	541	805	699	1647	777	2151
rs2981579 (C>T)	Total	TT	TC	CC	Total	TT	TC	CC	Т	С	Т	С
Raskin et al ^[23]	1480	381	722	377	1471	301	710	460	1484	1476	1312	1630
Kawase et al ^[17]	456	91	233	132	912	141	461	310	415	497	743	1081
Liu et al ^[21]	106	26	48	32	116	28	56	32	100	112	112	120
Zhou et al ^[26]	304	68	149	87	308	69	147	92	285	323	285	331
Hu et al ^[27]	203	52	97	54	200	43	109	48	201	205	195	205
Li et al ^[28]	403	102	201	100	461	93	224	144	405	401	410	512
Zhao et al ^[30]	120	32	61	27	120	43	62	15	125	115	148	92
Fu et al ^[15]	118	30	59	29	104	21	48	35	119	117	90	118
Xia et al ^[10]	181	55	96	30	196	56	92	48	206	156	204	188
Chan et al ^[12]	1174	294	565	315	1477	303	705	469	1153	1195	1311	1643
Liang et al ^[6]	608	158	297	153	876	186	415	275	613	603	787	965
Liu et al ^[19]	203	52	97	54	200	43	109	48	201	205	195	205
rs1219648 (A > G)	Total	GG	GA	AA	Total	GG	GA	AA	G	А	G	А
Raskin et al ^[23]	1487	350	717	420	1477	277	701	499	1417	1557	1255	1699
Kawase et al ^[17]	456	60	227	169	912	100	416	396	347	565	616	1208
Hu et al ^[27]	203	53	81	69	200	36	95	69	187	219	167	233
Li et al ^[28]	403	75	195	133	443	72	205	166	345	461	349	537
Shan et al ^[24]	596	127	296	173	360	61	153	146	550	642	275	445
Ma et al ^[20]	232	49	113	70	461	48	224	189	211	253	320	602
Fu et al ^[15]	117	25	54	38	104	9	47	48	104	130	65	143
Slattery et al ^[25]	1737	328	879	530	2042	333	982	727	1535	1939	1648	2436
Chen et al ^[13]	447	97	211	139	406	72	195	139	405	489	339	473
Liang et al ^[18]	1028	184	517	327	1062	149	520	393	885	1171	818	1306
Hunter et al ^[16]	2921	616	1410	895	3213	495	1551	1167	2642	3200	2541	3885
Liu et al ^[22]	106	53	27	26	116	34	56	26	133	79	124	108
Andersen et al ^[11]	869	142	464	263	808	111	403	294	748	990	625	991
Chan et al ^[12]	1174	217	576	381	1469	232	661	576	1010	1338	1125	1813
Cherdyntseva et al ^[14]	344	63	193	88	228	22	124	82	319	369	168	288
Jara et al ^[5]	351	80	181	90	802	148	368	286	341	361	664	940
Liu et al ^[19]	203	53	81	69	200	36	95	69	187	219	167	233
Ozgoz et al ^[/]	31	9	18	4	30	11	10	9	36	26	32	28
Saadatian et al ^[8]	100	17	49	34	100	9	39	52	83	117	57	143
Siddiqui et al ^[9]	368	66	192	110	484	67	234	183	324	412	368	600

repeated studies. We refer to titles or abstracts of all the included literatures, and then removed obviously irrelevant papers. In the end, the whole of the rest of the papers were checked based on the inclusion and exclusion criteria. Finally, 26 studies on FGFR2 (rs11200014, rs2981579, and rs1219648) polymorphism and the occurrence of BC were eventually included in our study. Characteristics of eligible analysis are summarized in Table 1. The 26 case–control papers were published between 2007 and 2015; among them, 1 study was performed in African, 17 in Asians, and 8 in Caucasians. All studies were case-controlled and all included cases had been diagnosed by a pathological examination.

3.2. Meta-analysis results

Table 2 summarizes the FGFR2 (rs11200014, rs2981579, and rs1219648) polymorphisms genotype distribution and allele frequencies in case groups and control groups. Main results of our study are summarized in Table 3. There were 26 studies with

3425 cases and 4157 controls for FGFR2 rs11200014 variants. As shown in Table 3 and Fig. 2, the pooled results indicated that the correlation between FGFR2 rs11200014 polymorphism and the occurrence of BC was significant in any genetic model: Allele model (OR: 1.37; 95% CI: 1.14–1.66; P=.001), Dominant model (OR: 1.88; 95% CI: 1.23–2.85; P=.003), Recessive model (OR: 1.28; 95% CI: 1.12–1.46; P=.0003), Homozygous genetic model (OR: 1.66; 95% CI: 1.18–2.33; P=.003), Heterozygote comparison (OR: 1.85; 95% CI: 1.16–2.93; P=.009).

For rs2981579, 12 studies with 5356 cases and 6441 controls were included to assess the association. As shown in Table 3 and Fig. 3, the pooled ORs suggested that rs2981579 was significantly associated with BC susceptibility in all the 5 genetic models: Allele model 1.19 (95% CI: 1.13–1.25; P <.00001), Dominant model 1.25 (95% CI: 1.15–1.35; P <.00001), Recessive model 1.26 (95% CI: 1.16–1.38; P <.00001), Homozygous genetic model 1.40 (95% CI: 1.27–1.56; P <.00001), Heterozygote comparison 1.18 (95% CI:

Table 3 Meta-analysis results.

						Heterogeneity		
Outcome or subgroup	Studies	Participants	Statistical method	Effect estimate	Р	l ²	Р	
Allele model								
rs11200014 (G > A)	5	15.164	OR (M-H. Random, 95% Cl)	1.37 [1.14-1.66]	.001	83%	.0001	
rs2981579 ($C > T$)	12	23.594	OR (M-H, Fixed, 95% Cl)	1.19 [1.13–1.25]	<.00001	34%	.12	
HB	8	15,962	OR (M-H, Fixed, 95% Cl)	1.20 [1.13–1.28]	<.00001	0%	.79	
PB	4	7632	OR (M-H, Random, 95% Cl)	0.99 [0.76–1.29]	.94	76%	.007	
rs1219648 (A > G)	20	56 180	OR (M-H, Fixed 95% CI)	1 25 [1 20-1 29]	< 00001	0%	48	
Asian	11	20,202	OB (M-H, Fixed, 95% Cl)	1 23 [1 16-1 30]	< 00001	0%	59	
Caucasian	8	34,066	OB (M-H, Fixed, 95% Cl)	1 25 [1 20–1 30]	< 00001	20%	.00	
HR	8	18 232	OB (M-H, Fixed, 95% CI)	1.20 [1.20 1.00]	< 00001	16%	.27	
PR	12	37 9/8	OR (M-H, Fixed, 95% CI)	1.24 [1.17 1.32]	< 00001	0%	.5	
Dominant model	١٢	57,540		1.20 [1.20 1.00]	<.00001	070	.0	
re11200014 (G \ A)	5	7582	OR (M-H Bandom 95% CI)	1 88 [1 23_2 85]	003	03%	< 00001	
rc2081570 (C > T)	12	11 707	OP (M H Eixed 05% CI)	1.00 [1.23-2.03]	.003	32.%	< .00001	
182901079 (0 > 1)	12	7001	OR (IVI-R, FIXed, 95% CI)		< 00001	30%	.1	
	0	7901	OR (IVI-FI, FIXEU, 95% CI)		<.00001	0%	.37	
PB	4	3816	OR (M-H, Randoni, 95% CI)		.00.01	73%	.01	
rs1219648 (A > G)	20	28,090	OR (M-H, Fixed, 95% CI)	1.32 [1.26-1.39]	<.00001	2%	.43	
Asian	11	10,101	OR (M-H, Fixed, 95% CI)	1.28 [1.18–1.39]	<.00001	0%	.49	
Caucasian	8	17,033	OR (M-H, Fixed, 95% CI)	1.33 [1.24–1.42]	<.00001	0%	.47	
HB	8	9116	OR (M-H, Fixed, 95% CI)	1.32 [1.21–1.44]	<.00001	0%	.68	
PB	12	18,974	OR (M-H, Fixed, 95% Cl)	1.32 [1.24–1.40]	<.00001	24%	.21	
Recessive model								
rs11200014 (G>A)	5	7582	OR (M-H, Fixed, 95% Cl)	1.28 [1.12–1.46]	.0003	47%	.11	
rs2981579 (C>T)	12	11,797	OR (M-H, Fixed, 95% Cl)	1.26 [1.16–1.38]	<.00001	0%	.62	
HB	8	7981	OR (M-H, Fixed, 95% Cl)	1.27 [1.14–1.41]	<.0001	0%	.93	
PB	4	3816	OR (M-H, Random, 95% Cl)	1.10 [0.81–1.50]	.53	54%	.09	
rs1219648 (A > G)	20	28,090	OR (M-H, Fixed, 95% Cl)	1.36 [1.28-1.45]	<.00001	26%	.14	
Asian	11	10,101	OR (M-H, Fixed, 95% Cl)	1.35 [1.22-1.50]	<.00001	14%	.31	
Caucasian	8	17,033	OR (M-H, Random, 95% Cl)	1.39 [1.22-1.58]	<.00001	50%	.05	
HB	8	9116	OR (M-H, Fixed, 95% Cl)	1.35 [1.21-1.51]	<.00001	40%	.11	
PB	12	18,974	OR (M-H, Fixed, 95% Cl)	1.37 [1.27-1.47]	<.00001	22%	.23	
Homozvaous genetic model								
rs11200014 (G > A)	5	4254	OR (M-H. Random, 95% Cl)	1.66 [1.18-2.33]	.003	69%	.01	
$r_{s}2981579 (C > T)$	12	6034	OB (M-H. Fixed, 95% Cl)	1.40 [1.27-1.56]	< .00001	33%	13	
HB	.2	4083	OR (M-H, Fixed, 95% Cl)	1.44 [1.27-1.63]	<.00001	0%	.8	
PB	4	1951	OB (M-H Bandom 95% Cl)	0.97 [0.57–1.65]	92	75%	007	
rs1219648 (A > G)	20	14.530	OR (M-H Fixed 95% Cl)	1.54 [1.44–1.66]	< 00001	5%	.39	
Asian	11	5328	OR (M-H, Fixed, 95% Cl)	1 48 [1 32–1 67]	< 00001	0%	.00	
Caucasian	8	8695	OR (M-H, Fixed, 95% CI)	1.57 [1.02 1.07]	< 00001	12%	.70	
HB	8	4750	OR (M-H Fixed 95% CI)	1.57 [1.44 1.72]	< 00001	31%	15	
	12	0771	OP (M H Eixed $05%$ CI)	1.54 [1.55-1.74]	< 00001	0%	.15	
FD Hotorozvaoto comparicon	12	9771		1.55 [1.42-1.00]	<.00001	0 /0	.59	
	Б	6505	OR (M H Bandom 05% CI)	1 05 [1 16 0 02]	000	0.40/	< 00001	
1511200014 (G > A)	10	0020	On (IVI-H, hallouth, 95% Of)		.009	94%	<.00001	
152901079 (0 > 1)	12	9129	OR (IVI-H, Fixed, 95% CI)	1.10 [1.00-1.20]	.0002	23%	.22	
HB	8	6219	UR (IVI-H, FIXEd, 95% CI)	1.21 [1.09–1.34]	.0005	0%	.57	
PB	4	2910	OR (M-H, Random, 95% CI)	0.90 [0.62–1.31]	.59	62%	.05	
rs1219648 (A > G)	20	23,104	UK (M-H, Fixed, 95% CI)	1.24 [1.18–1.31]	<.00001	28%	.12	
Asian	11	8385	UR (M-H, Hixed, 95% CI)	1.21 [1.11–1.32]	<.0001	38%	.1	
Caucasian	8	13,951	UR (M-H, Hixed, 95% Cl)	1.25 [1.16–1.34]	<.00001	0%	.45	
HB	8	7674	UR (M-H, Fixed, 95% Cl)	1.26 [1.14–1.38]	<.00001	0%	.74	
PB	12	15,430	OR (M-H, Random, 95% Cl)	1.26 [1.13–1.41]	<.0001	50%	.02	

CI = confidence interval.

1.08–1.28; P=.0002). When stratified by Source of controls, the results showed the same association between FGFR2 rs2981579 polymorphism and BC susceptibility in HB (Allele model: OR = 1.20, 95% CI=1.13–1.28, P<.00001; Dominant model: OR = 1.27, 95% CI=1.15–1.41, P<.00001; Recessive model: OR = 1.27, 95% CI=1.14–1.41, P<.0001; Homozygous genetic model: OR = 1.44, 95% CI=1.27–1.63, P<.00001; Heterozygote comparison: OR=1.21, 95% CI=1.09–1.34, P=.0005),

although there not any genetic models attained statistical correlation in PB.

Twenty papers with 13,173 cases and 14,917 controls were adopted to evaluate the association between the rs1219648 polymorphism and the BC risk. As shown in Table 3, Figs. 4 and 5, the association between rs1219648 variant and BC susceptibility was significant in any genetic model (Allele model: OR=1.25, 95% CI=1.20-1.29, P < .00001; Dominant

	Cas	е	Contr	lo		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
6.6.1 HB							
Chan 2012	109	1173	118	1464	25.0%	1.17 [0.89, 1.53]	+
Fu 2012	17	118	5	104	1.2%	3.33 [1.18, 9.38]	
Kawase 2009	45	453	79	912	12.4%	1.16 [0.79, 1.71]	
Ma 2011	12	200	18	200	4.4%	0.65 [0.30, 1.38]	
Raskin 2008	366	1481	288	1477	57.0%	1.36 [1.14, 1.61]	
Subtotal (95% CI)		3425		4157	100.0%	1.28 [1.12, 1.46]	•
Total events	549		508				
Heterogeneity: Chi ² =	7.49, df=	4 (P=	0.11); 12:	= 47%			
Test for overall effect	Z = 3.59	(P = 0.0	0003)				
Total (95% CI)		3425		4157	100.0%	1.28 [1.12, 1.46]	•
Total events	549		508				
Heterogeneity: Chi ^z =	7.49, df=	4 (P=	0.11); F:	= 47%			box o' 1 10 100
Test for overall effect	Z= 3.59	(P = 0.0)	0003)				0.01 0.1 1 10 100
Test for subaroup dif	ferences:	Not ap	plicable				avous levhenmental - avous (comoil
Figure 2. For	est plots o	of rs112	00014 (G	>A) po	lymorphisi	m and breast cancer	risk (Recessive model AA vs GG + AG).

model: OR = 1.32, 95% CI = 1.26-1.39, P < .00001; Recessive model: OR=1.36, 95% CI=1.28-1.45, P<.00001; Homozygous genetic model: OR = 1.54, 95% CI = 1.44–1.66, P < .00001; Heterozygote comparison: OR = 1.24, 95% CI = 1.18 - 1.31, P < .00001). The subgroup study stratified by Ethnicity showed an increased BC risk both in Asians (Allele model: OR = 1.23, 95% CI=1.16-1.30, P<.00001; Dominant model: OR= 1.28, 95% CI=1.18-1.39, P<.00001; Recessive model: OR= 1.35, 95% CI=1.22-1.50, P<.00001; Homozygous genetic model: OR = 1.48, 95% CI = 1.32-1.67, P < .00001; Heterozygote comparison: OR=1.21, 95% CI=1.11-1.32, P<.0001) and Caucasians (Allele model: OR=1.25, 95% CI=1.20-1.30, P<.00001; Dominant model: OR=1.33, 95% CI=1.24-1.42, P<.00001; Recessive model: OR=1.39, 95% CI=1.22-1.58, P < .00001; Homozygous genetic model: OR = 1.57, 95% CI=1.44-1.72, P<.00001; Heterozygote comparison: OR= 1.25, 95% CI=1.16–1.34, P < .00001). We did not discuss the African subgroup for just 1 study from Africa. When stratified by Source of controls, the results showed the same association between FGFR2 rs1219648 polymorphism and BC susceptibility in HB (Allele model: OR=1.24, 95% CI=1.17-1.32, P <.00001; Dominant model: OR=1.32, 95% CI=1.21-1.44, P < .00001; Recessive model: OR = 1.35, 95% CI = 1.21-1.51, P < .00001; Homozygous genetic model: OR = 1.54, 95% CI = 1.35-1.74, P < .00001; Heterozygote comparison: OR = 1.26, 95% CI=1.14-1.38, P<.00001) and PB (Allele model: OR= 1.25, 95% CI=1.20-1.30, P<.00001; Dominant model: OR= 1.32, 95% CI=1.24–1.40, P < .00001; Recessive model: OR= 1.37, 95% CI=1.27-1.47, P<.00001; Homozygous genetic model: OR = 1.55, 95% CI = 1.42-1.68, P < .00001; Heterozygote comparison: OR = 1.26, 95% CI = 1.13–1.41, P < .0001).

3.3. Sensitivity analyses

As summarized in Table 1, all the studies conformed to the balance of HWE in controls except the studies by Chan et al^[12] in rs11200014 group and Cherdyntseva et al^[14] in rs1219648 group; however, after performing the sensitivity analyses, the overall outcomes were no statistically significant change when removing any of the articles, indicating that our study has good stability and reliability.

3.4. Detection for heterogeneity

Heterogeneity among studies was obtained by Q statistic. Random-effect models were applied if P value of heterogeneity tests was less than 0.1 ($P \le .1$); otherwise, fixed-effect models were selected (Table 3).

3.5. Publication bias

As Fig. 6 indicated, the symmetrical funnel plot indicated that there is no significant publication bias in the total population. We used Begg funnel plot and Egger test to evaluate the published bias, and no significant publication bias was found in the Begg test and Egger test (P > .05).

4. Discussion

Human FGFR2 gene is located in 10q26, containing 22 exons and including 2 subtypes (FGFR2b and FGFR2c). FGFR2b is mainly expressed in epithelial cells, while FGF2c is mostly expressed in stromal cells.^[40] Studies indicated that FGFR2 may inhibit the occurrence and development of cancer. In a variety of epithelial tumor cell lines and tumor tissues, the expression of FGFR2b was significantly lower than that of normal epithelial cells, speculating that it might be related to the carcinostasis.^[41] But the mutations in FGFR2 gene can induce tumor occurrence, and the missense mutations in FGFR2 gene exist in the BC, gastric cancer, lung cancer, ovarian cancer, and endometrial cancer.^[42–46] As early as 1992, it was found that the expression of FGFR2 in human was significantly higher in ER-positive BC.^[47] Subsequently, a large number of studies on the relationship between the polymorphism of FGFR2 gene and BC have been implemented in different countries and regions around the world.^[33]

Recently, researches have paid more attention to the human FGFR2, whose several SNPs, rs11200014 (G>A), rs2981579 (C>T), rs1219648 (A>G), may be associated with BC susceptibility in different crowds and different regions.^[5–30] The 3 SNPs are located in intron 2 of FGFR2, encoded by *FGFR2* gene. Through interacting with the mitogenic ligand fibroblast growth factors (FGFs), a cascade of downstream signals will be activated, thus influencing on angiogenesis, wound healing, cell

	Cas	e	Cont	rol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
7.6.1 Overall			A Print Print				the state and the second
Chan 2012	565	880	705	1174	22.8%	1.19 (1.00, 1.43)	-
Fu 2012	59	88	48	83	1.7%	1.48 [0.80, 2.76]	
Hu 2011	97	151	109	157	4.0%	0.79 [0.49, 1.27]	-+
Kawase 2009	233	365	461	771	11.3%	1.19 [0.92, 1.54]	+
Li 2011	201	301	224	368	7.1%	1.29 [0.94, 1.78]	+-
Liang 2015	297	450	415	690	11.8%	1.29 [1.00, 1.65]	+
Liu 2009	48	80	56	88	2.3%	0.86 [0.46, 1.60]	
Liu 2013	97	151	109	157	4.0%	0.79 [0.49, 1.27]	
Raskin 2008	722	1099	710	1170	24.9%	1.24 [1.05, 1.47]	-
Xia 2015	96	126	92	140	2.2%	1.67 [0.97, 2.86]	
Zhao 2012	61	88	62	77	2.1%	0.55 [0.27, 1.13]	
Zhou 2010	149	236	147	239	5.7%	1.07 [0.74, 1.55]	+
Subtotal (95% CI)		4015		5114	100.0%	1.18 [1.08, 1.28]	•
Total events	2625		3138				
Heterogeneity: Chi ² = Test for overall effect	: 14.29, df Z = 3.69	= 11 (F (P = 0.0	^o = 0.22); 0002)	² = 23	%		
Total (95% CI)		4015		5114	100.0%	1.18 [1.08, 1.28]	•
Total events	2625		3138	1			
Heterogeneity: Chi ² =	14.29, df	= 11 (F	P = 0.22);	² = 23	%		0.01 0.1 1 10 100
Test for overall effect	Z = 3.69	(P = 0.0)	0002)			F	avours [experimental] Favours [control]
Test for subaroup dif	ferences:	Not ap	plicable				
A	Cas	e	Cont	rol	1000000	Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
7.7.1 HB	6.00				10000	100000000000000000000000000000000000000	
Chan 2012	565	880	705	1174	34.3%	1.19 [1.00, 1.43]	
Fu 2012	59	88	48	83	2.6%	1.48 [0.80, 2.76]	
Kawase 2009	233	365	461	771	17.0%	1.19 [0.92, 1.54]	T
Li 2011	201	301	224	368	10.6%	1.29 [0.94, 1.78]	
Liang 2015	297	450	415	690	17.7%	1.29 [1.00, 1.65]	
Liu 2013	97	151	109	157	6.1%	0.79 [0.49, 1.27]	
Xia 2015	96	126	92	140	3.3%	1.67 [0.97, 2.86]	
Zhou 2010	149	236	147	239	8.5%	1.07 [0.74, 1.55]	
Subtotal (95% CI)	1007	2597	0004	3022	100.0%	1.21[1.09, 1.34]	•
Lotaregeneity Chille	5 71 46-	7 /0 -	2201	- 0%			
Test for overall effect	Z= 3.50	(P = 0.0)	0.57), 19	= 0 %			
Total (95% CI)		2597		3622	100.0%	1.21 [1.09, 1.34]	•
Total events	1697		2201				
Heterogeneity: Chi ² =	: 5.71, df=	: 7 (P =	0.57); 1*	= 0%			0.01 0.1 1 10 100
Test for overall effect	Z = 3.50	(P = 0.0)	0005)			F	avours [experimental] Favours [control]
Test for subaroup dif	ferences:	Not ap	plicable			0.11. 0.11.	0.11 P.F.
B Study or Subaroun	Case	Total	Contro	Total	Maight	Udds Ratio	M H Bandom OF# Cl
7.8.2 DR	Events	Total	Events	Total	weight	M-H, Kandom, 95% C	M-H, Random, 95% CI
Hu 2011	07	151	100	157	25 1 %	0 70 10 40 1 27	
1 in 2009	49	90	56	90	10.4%	0.96 (0.45, 1.27	
Raskin 2008	722	1099	710	1170	39.2%	1.24 11 05 1 47	-
Zhao 2012	61	88	62	77	16.3%	0.55 (0.27, 1.13)	
Subtotal (95% CI)		1418		1492	100.0%	0.90 [0.62, 1.31]	•
Total events	928		937				51 - ST
Heterogeneity: Tau ² =	0.08; Chi	= 7.92	2, df = 3 (f	P = 0.05	5); I ² = 629	X	
Test for overall effect	Z= 0.54 (P = 0.5	9)				
Total (95% CI)		1418		1492	100.0%	0.90 [0.62, 1.31]	•
Total events	928		937				10 M
Heterogeneity: Tau ² =	0.08; Chi	= 7.92	, df = 3 (F	P = 0.05	5); l² = 629	*	has at the real
Test for overall effect:	Z= 0.54 (P = 0.5	9)		16.7 × 16		Eavours levnerimentall Eavours Isoatroll
Test for subaroup diff	erences: I	Not app	licable				arous tespennental raious teornoil

Figure 3. Forest plots of rs2981579 (C>T) polymorphism and breast cancer risk (Heterozygote comparison TC vs CC). (A) Overall. (B) HB. (C) PB.

migration neural outgrowth, and embryonic development.^[41] However, the association between rs11200014, rs2981579, and rs1219648 polymorphism and BC susceptibility in related reports is still inconclusive between susceptible^[5,9–13] and protective.^[6–8] Thus, we conducted the meta-analysis to evaluate

the relationship between FGFR2 (rs11200014, rs2981579, and rs1219648) polymorphism and BC risk.

Main results of our study are summarized in Table 3. There were 26 studies with 3425 cases and 4157 controls for rs11200014 variants. In the total population, the pooled results

	Cas	е	Cont	lo		Odds Ratio	Odds	Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fix	ed, 95% Cl
8.2.1 Asian								
Chan 2012	793	1174	893	1469	9.7%	1.34 [1.14, 1.58]		+
Chen 2011	308	447	267	406	3.3%	1.15 [0.87, 1.54]		+
Fu 2012	79	117	56	104	0.7%	1.78 [1.03, 3.08]		
Hu 2011	134	203	131	200	1.7%	1.02 [0.68, 1.54]	-	+
Kawase 2009	287	456	516	912	4.8%	1.30 [1.03, 1.64]		-
Li 2011	270	403	277	443	3.3%	1.22 [0.92, 1.61]		+-
Liang 2008	701	1028	669	1062	7.9%	1.26 [1.05, 1.51]		-
Liu 2010	80	106	90	116	0.8%	0.89 [0.48, 1.65]		
Liu 2013	134	203	131	200	1.7%	1.02 [0.68, 1.54]	-	+
Saadatian 2014	66	100	48	100	0.6%	2.10 [1.19. 3.72]		
Siddiqui 2014	258	368	301	484	2.9%	1.43 [1.07, 1.90]		
Subtotal (95% CI)		4605		5496	37.3%	1.28 [1.18, 1.39]		•
Total events	3110		3379					
Heterogeneity Chi ² =	9 48 df=	10 (P =	0 49) 12=	0%				
Test for overall effect	7 = 5 87 (P < 0.00	001)	0.10				
restion overall enect	2-0.01 (- 0.00	0017					
8.2.2 Caucasian								
Andersen 2013	606	869	514	808	6.1%	1.32 [1.08, 1.62]		+
Cherdyntseva 2012	256	344	146	228	1.7%	1.63 [1.14, 2.35]		
Hunter 2007	2026	2921	2046	3213	22.5%	1.29 [1.16, 1.44]		•
Jara 2013	261	351	516	802	3.0%	1.61 [1.22, 2.13]		-
Ma 2012	162	232	272	461	2.1%	1.61 [1.15, 2.25]		-
Ozgoz 2013	27	31	21	30	0.1%	2.89 [0.78, 10.71]		<u>+</u>
Raskin 2008	1067	1487	978	1477	10.4%	1.30 [1.11, 1.52]		•
Slattery 2011	1207	1737	1315	2042	13.9%	1.26 [1.10, 1.44]		•
Subtotal (95% CI)		7972		9061	59.7%	1.33 [1.24, 1.42]		•
Total events	5612		5808					
Heterogeneity: Chi ² =	6.60, df =	7(P = 0	.47); 2 = 1	0%				
Test for overall effect:	Z= 8.53 (P < 0.00	001)					
9.2.3 African								
Chan 2012	400	500	24.4	200	2.00	1 07 11 07 0 001		-
Subtotal (05% CD	423	596	214	360	2.9%	1.67 [1.27, 2.20]		•
Total events	422	230	214	300	2.9%	1.07 [1.27, 2.20]		•
Heterogeneity Not on	nlicable		214					
Test for overall effect:	Z = 3.65 (P = 0.00	03)					
Total (95% CI)		13173		14917	100.0%	1.32 [1.26, 1.39]		•
Total events	9145		9401					
Heterogeneity: Chi2 =	19.38, df :	= 19 (P =	= 0.43); I ²	= 2%			0.01 0.1	1 10 100
Test for overall effect:	Z=10.82	(P < 0.0	0001)				avoure levnerimental	Eavours Icontrol
Test for subaroup diff	erences: (Chi ² = 3.	30. df = 2	(P = 0.1	9), I ² = 39	9.5%	avours lexhenmentail	r avours [control]
Figure 4. Forest plots	of rs12196	48 (A>	G) polymc	orphism a	and breast	t cancer risk stratified	by ethnicity (Dominant	model GA + GG vs AA).

indicated that the correlation between rs11200014 polymorphism and the occurrence of BC was significant in any genetic model. The meta-analysis by Zhou et al^[31] indicated the same remarkable associations in Caucasians, but not in Asians and Africans. However, in Asian and African subgroups, there are only a few literatures and cases, and even only 1 paper in African subgroups. Such meta-analysis may not be particularly appropriate. For rs2981579, 12 studies with 5356 cases and 6441 controls were included to assess the association. Overall, the pooled ORs suggested that rs2981579 was significantly associated with BC susceptibility in all the 5 genetic models. The results were consistent with studies by Zhou et al^[31] and Peng et al^[34] studies, but they did not carry out further subgroup analysis. When stratified by source of controls, the results showed the same association between rs2981579 polymorphism and BC susceptibility in hospital populations, while there was not any genetic models attained statistical correlation in general populations, indicating that there was a difference in the association between rs2981579 polymorphism and BC risk among different groups. For the first time, this study conducted a subgroup analysis for rs2981579 stratified by source of controls, and for the first time came to this conclusion. However, further largescale, multicenter, epidemiological studies are warranted to confirm this finding. Twenty papers with 13,173 cases and 14,917 controls were adopted to evaluate the association between the rs1219648 polymorphism and the BC risk. In the total population, the association between rs1219648 variant and BC risk was significant in any genetic model. The results were consistent with the studies by Zhang et al^[32] and Jia et al.^[35] The subgroup study stratified by Ethnicity showed an increased BC risk both in Asians and Caucasians. We did not discuss the African subgroup for just 1 study from African meet our inclusion criteria. In the study by Zhang et al,^[32] significantly increased risks were also found among Asian and Caucasian populations in

	Cas	е	Cont	rol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
9.2.1 HB							
Chan 2012	793	1174	893	1469	9.7%	1.34 [1.14, 1.58]	+
Fu 2012	79	117	56	104	0.7%	1.78 [1.03, 3.08]	
Kawase 2009	287	456	516	912	4.8%	1.30 [1.03, 1.64]	+-
Li 2011	270	403	277	443	3.3%	1.22 [0.92, 1.61]	+-
Liang 2008	701	1028	669	1062	7.9%	1.26 [1.05, 1.51]	+
Liu 2013	134	203	131	200	1.7%	1.02 [0.68, 1.54]	+
Ma 2012	162	232	272	461	2.1%	1.61 [1.15, 2.25]	
Siddiqui 2014	258	368	301	484	2.9%	1.43 [1.07, 1.90]	-
Subtotal (95% CI)		3981		5135	33.0%	1.32 [1.21, 1.44]	•
Total events	2684		3115				
Heterogeneity: Chi2 =	4.87, df =	7(P = 0	.68); 12=1	0%			
Test for overall effect	Z= 6.25 (P < 0.00	0001)				
9.2.2 PB							
Andersen 2013	606	869	514	808	6.1%	1.32 [1.08, 1.62]	+
Chen 2011	308	447	267	406	3.3%	1.15 (0.87, 1.54)	+
Cherdyntseva 2012	256	344	146	228	1.7%	1.63 [1.14, 2.35]	
Hu 2011	134	203	131	200	1.7%	1.02 [0.68, 1.54]	+
Hunter 2007	2026	2921	2046	3213	22.5%	1.29 [1.16, 1.44]	-
Jara 2013	261	351	516	802	3.0%	1.61 [1.22, 2.13]	-
Liu 2010	80	106	90	116	0.8%	0.89 [0.48, 1.65]	
Ozgoz 2013	27	31	21	30	0.1%	2.89 (0.78, 10.71)	
Raskin 2008	1067	1487	978	1477	10.4%	1.30 [1.11, 1.52]	*
Saadatian 2014	66	100	48	100	0.6%	2.10 [1.19, 3.72]	
Shan 2012	423	596	214	360	2.9%	1.67 [1.27, 2.20]	-
Slattery 2011	1207	1737	1315	2042	13.9%	1.26 [1.10, 1.44]	•
Subtotal (95% CI)		9192		9782	67.0%	1.32 [1.24, 1.40]	•
Total events	6461		6286			and the second state of the	
Heterogeneity: Chi* =	14.52, df	= 11 (P =	= 0.21); 1	= 24%			
Test for overall effect	Z= 8.83 (P < 0.00	0001)				
Total (95% CI)		13173		14917	100.0%	1.32 [1.26, 1.39]	
Total events	9145		9401				
Heterogeneity: Chi ² =	19.38, df	= 19 (P =	= 0.43); 12	= 2%		L	
Test for overall effect	Z= 10.82	(P < 0.0	00001)			0.01	0.1 1 10 100
Test for subgroup dif	ferences:	$chi^2 = 0$	00 df = 1	(P = 0.0)	7) 12 = 00	Favou	rs [experimental] Favours [control]

Figure 5. Forest plots of rs1219648 (A > G) polymorphism and breast cancer risk stratified by Source of controls (Dominant model GA + GG vs AA).

all genetic models. However, these similar significant associations were not observed for African population, indicating that these associations vary in different ethnic populations. When stratified by Source of controls, the results showed the same association between rs1219648 polymorphism and BC susceptibility in HB and PB.

Overall, all the results for the 3 variants (rs11200014, rs2981579, and rs1219648) were partially consistent with the consequences of previous 5 meta-analyses,^[31–35] while they did not conduct analysis in different source of controls. And our sample size was several times than theirs, making our results more convincing. Furthermore, they did not use all the 5 genetic models (allele model, dominant model, recessive model, homozygous model, and heterozygous model) to assess the strength of association.

Our meta-analysis has several limitations. First, only published papers were included in our meta-analysis, and there may still be some unpublished studies in line with the conditions. Therefore, publication bias may exist; even no statistical evidence suggest publication bias in the meta-analysis. Second, for rs11200014 and rs2981579 variants, almost all of the included studies are from Asia. Therefore, we could not assess the association stratified by Ethnicity. Moreover, our study is a summary of the data. For lack of all individual raw data, we could not assess the cancer risk stratified by other covariates, including age, sex, environment, hormone level, menopause age, and other risk factors. We also need verify it from the level of molecular mechanism. Data from large-scale, multicenter, epidemiological studies are still needed to confirm the relationship between FGFR2 (rs11200014, rs2981579, and rs1219648) polymorphisms and BC risk, and the molecular mechanism for the associations need to be elucidated in future studies.

5. Conclusion

Our meta-analysis of case–control studies provides strong evidence that FGFR2 (rs11200014, rs2981579, and rs1219648) polymorphisms are significantly associated with the BC risk. For rs2981579, the association remained in hospital populations, while not in general populations. For rs1219648, the association remained in Asians, Caucasians, hospital populations, and general populations. However, further largescale, multicenter, epidemiological studies are warranted to

Figure 6. Funnel plot assessing evidence of publication bias. A. rs11200014 (G > A) (Recessive model AA vs GG + AG). B. rs2981579 (C > T) (Heterozygote comparison TC vs CC). C. rs1219648 (A > G) (Dominant model GA + GG vs AA). OR=odds ratio, SE=standard error.

confirm this finding, and the molecular mechanism for the associations need to be elucidated in future studies.

References

- Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin 2015;65:87–108.
- [2] Merabishvili VM. [Breast cancer: morbidity, mortality, survival (population study)]. Vopr Onkol 2011;57:609–15.
- [3] Fachal L, Dunning AM. From candidate gene studies to GWAS and post-GWAS analyses in breast cancer. Curr Opin Genet Dev 2015;30:32–41.
- [4] Huang Y, Song F, Chen K. [Current status of genome-wide association studies (GWAS) on breast cancer and application values of single

nucleotide polymorphisms identified from GWAS]. Zhonghua Liu Xing Bing Xue Za Zhi 2015;36:1058–61.

- [5] Jara L, Gonzalez-Hormazabal P, Cerceno K, et al. Genetic variants in FGFR2 and MAP3K1 are associated with the risk of familial and earlyonset breast cancer in a South-American population. Breast Cancer Res Treat 2013;137:559–69.
- [6] Liang H, Yang X, Chen L, et al. Heterogeneity of breast cancer associations with common genetic variants in FGFR2 according to the intrinsic subtypes in Southern Han Chinese women. Biomed Res Int 2015;2015:626948.
- [7] Ozgoz A, Samli H, Ozturk KH, et al. An investigation of the effects of FGFR2 and B7-H4 polymorphisms in breast cancer. J Cancer Res Ther 2013;9:370–5.
- [8] Saadatian Z, Gharesouran J, Ghojazadeh M, et al. Association of rs1219648 in FGFR2 and rs1042522 in TP53 with premenopausal breast cancer in an Iranian Azeri population. Asian Pac J Cancer Prev 2014;15:7955–8.
- [9] Siddiqui S, Chattopadhyay S, Akhtar MS, et al. A study on genetic variants of Fibroblast growth factor receptor 2 (FGFR2) and the risk of breast cancer from North India. PLoS One 2014;9:e110426.
- [10] Xia P, Li B, Geng T, et al. FGFR2 gene polymorphisms are associated with breast cancer risk in the Han Chinese population. Am J Cancer Res 2015;5:1854–61.
- [11] Andersen SW, Trentham-Dietz A, Figueroa JD, et al. Breast cancer susceptibility associated with rs1219648 (fibroblast growth factor receptor 2) and postmenopausal hormone therapy use in a population-based United States study. Menopause 2013;20:354–8.
- [12] Chan M, Ji SM, Liaw CS, et al. Association of common genetic variants with breast cancer risk and clinicopathological characteristics in a Chinese population. Breast Cancer Res Treat 2012;136:209–20.
- [13] Chen XH, Li XQ, Chen Y, et al. Risk of aggressive breast cancer in women of Han nationality carrying TGFB1 rs1982073 C allele and FGFR2 rs1219648 G allele in North China. Breast Cancer Res Treat 2011;125:575–82.
- [14] Cherdyntseva NV, Denisov EV, Litviakov NV, et al. Crosstalk between the FGFR2 and TP53 genes in breast cancer: data from an association study and epistatic interaction analysis. DNA Cell Biol 2012;31:305–15.
- [15] Fu F, Wang C, Huang M, et al. Polymorphisms in second intron of the FGFR2 gene are associated with the risk of early-onset breast cancer in Chinese Han women. Tohoku J Exp Med 2012;226:221–9.
- [16] Hunter DJ, Kraft P, Jacobs KB, et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 2007;39:870–4.
- [17] Kawase T, Matsuo K, Suzuki T, et al. FGFR2 intronic polymorphisms interact with reproductive risk factors of breast cancer: results of a case control study in Japan. Int J Cancer 2009;125:1946–52.
- [18] Liang J, Chen P, Hu Z, et al. Genetic variants in fibroblast growth factor receptor 2 (FGFR2) contribute to susceptibility of breast cancer in Chinese women. Carcinogenesis 2008;29:2341–6.
- [19] Liu C-L, Hu X-P, Guo W-D, et al. Case-control study on the fibroblast growth factor receptor 2 gene polymorphisms associated with breast cancer in Chinese Han women. J Breast Cancer 2013;16:366–71.
- [20] Ma YP, van Leeuwen FE, Cooke R, et al. FGFR2 genotype and risk of radiation-associated breast cancer in Hodgkin lymphoma. Blood 2012;119:1029–31.
- [21] Mei LIU, Keren S, Yan HE, et al. The relationship between two FGFR2 polymorphisms and breast cancer. Chin J Clin Oncol 2009;36:413–6.
- [22] Mei LIU, Keren S, Yan HE, et al. The association of FGFR2 rs1219648 polymorphism with susceptibility of breast cancer in Han population in Guizhou province. Chin J Clin Oncol 2010;37:29–31.
- [23] Raskin L, Pinchev M, Arad C, et al. FGFR2 is a breast cancer susceptibility gene in Jewish and Arab Israeli populations. Cancer Epidemiol Biomarkers Prev 2008;17:1060–5.
- [24] Shan J, Mahfoudh W, Dsouza SP, et al. Genome-Wide Association Studies (GWAS) breast cancer susceptibility loci in Arabs: susceptibility and prognostic implications in Tunisians. Breast Cancer Res Treat 2012;135:715–24.
- [25] Slattery ML, Baumgartner KB, Giuliano AR, et al. Replication of five GWAS-identified loci and breast cancer risk among Hispanic and non-Hispanic white women living in the Southwestern United States. Breast Cancer Res Treat 2011;129:531–9.
- [26] Zhou X, Hua D, Guo Z, et al. Implication of the FGFR2 rs2981579 polymorphisms in breast cancer in Chinese han women. Suzhou Univ J Med Sci 2010;30:528–31.
- [27] Hu X. Association of FGFR2 Polymorphisms with the Risk of Breast Cancer in Chinese Women of Ningxia Han Population [Thesis for application of master degree]. 2011;Ningxia Medical University,

- [28] Li X. The Breast CancerSusceptive Locus Screening in Han Chinese Women and Meta-analysis on Common Breast Cancer Risk Factors [Thesis for application of master degree]. Baiyun, Guangzhou, Guangdong, China: Southern Medical University; 2011.
- [29] Ma J, Cao M, Ge Y, et al. Relative research of FGFR2 gene single nucleotide polymorphism and breast neoplasm. Chin J Curr Adv Gen Surg 2011;14:111–5.
- [30] Zhao J, Shen G, Geng P, et al. The relationship between rs2981579 FGFR2 gene polymorphism and breast cancer in Han and Tibetan women in Qinghai. Chin J Clin Lab Sci 2012;30:43–4.
- [31] Zhou L, Yao F, Luan H, et al. Three novel functional polymorphisms in the promoter of FGFR2 gene and breast cancer risk: a HuGE review and meta-analysis. Breast Cancer Res Treat 2012;136:885–97.
- [32] Zhang J, Qiu L-X, Wang Z-H, et al. Current evidence on the relationship between three polymorphisms in the FGFR2 gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 2010; 124:419–24.
- [33] Wang H, Yang Z, Zhang H. Assessing interactions between the associations of fibroblast growth factor receptor 2 common genetic variants and hormone receptor status with breast cancer risk. Breast Cancer Res Treat 2013;137:511–22.
- [34] Peng S, Lue B, Ruan W, et al. Genetic polymorphisms and breast cancer risk: evidence from meta-analyses, pooled analyses, and genome-wide association studies. Breast Cancer Res Treat 2011;127:309–24.
- [35] Jia C, Cai Y, Ma Y, et al. Quantitative assessment of the effect of FGFR2 gene polymorphism on the risk of breast cancer. Breast Cancer Res Treat 2010;124:521–8.
- [36] Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959;22: 719–48.

- [37] DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177–88.
- [38] Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994;50:1088–101.
- [39] Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629–34.
- [40] Zhang X, Ibrahimi OA, Olsen SK, et al. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem 2006;281:15694–700.
- [41] Katoh M. Cancer genomics and genetics of FGFR2 (Review). Int J Oncol 2008;33:233–7.
- [42] Salehi Z, Afzali S, Shabanipour S, et al. Evaluation of FGFR2 gene polymorphism in women with breast cancer. Cell Mol Biol (Noisy-le-Grand, France) 2015;61:94–7.
- [43] Park YS, Na YS, Ryu MH, et al. FGFR2 assessment in gastric cancer using quantitative real-time polymerase chain reaction, fluorescent in situ hybridization, and immunohistochemistry. Am J Clin Pathol 2015;143: 865–72.
- [44] Timsah Z, Berrout J, Suraokar M, et al. Expression pattern of FGFR2, Grb2 and Plcgamma1 acts as a novel prognostic marker of recurrence recurrence-free survival in lung adenocarcinoma. Am J Cancer Res 2015;5:3135–48.
- [45] Cole C, Lau S, Backen A, et al. Inhibition of FGFR2 and FGFR1 increases cisplatin sensitivity in ovarian cancer. Cancer Biol Ther 2010;10:495–504.
- [46] Gatius S, Velasco A, Azueta A, et al. FGFR2 alterations in endometrial carcinoma. Mod Pathol 2011;24:1500–10.
- [47] Luqmani YA, Graham M, Coombes RC. Expression of basic fibroblast growth factor, FGFR1 and FGFR2 in normal and malignant human breast, and comparison with other normal tissues. Br J Cancer 1992;66:273–80.