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Background: As one of the key criteria to differentiate benign vs. malignant

tumors in ovarian and other solid cancers, tumor-stroma reaction (TSR) is

long observed by pathologists and has been found correlated with patient

prognosis. However, paucity of study aims to overcome subjective bias or

automate TSR evaluation for enabling association analysis to a large cohort.

Materials and methods: Serving as positive and negative sets of TSR studies,

H&E slides of primary tumors of high-grade serous ovarian carcinoma

(HGSOC) (n = 291) and serous borderline ovarian tumor (SBOT) (n = 15) were

digitally scanned. Three pathologist-defined quantification criteria were used

to characterize the extents of TSR. Scores for each criterion were annotated

(0/1/2 as none-low/intermediate/high) in the training set consisting of 18,265

H&E patches. Serial of deep learning (DL) models were trained to identify

tumor vs. stroma regions and predict TSR scores. After cross-validation and

independent validations, the trained models were generalized to the entire

HGSOC cohort and correlated with clinical characteristics. In a subset of cases

tumor transcriptomes were available, gene- and pathway-level association

studies were conducted with TSR scores.

Results: The trained models accurately identified the tumor stroma tissue

regions and predicted TSR scores. Within tumor stroma interface region,

TSR fibrosis scores were strongly associated with patient prognosis. Cancer

signaling aberrations associated 14 KEGG pathways were also found positively

correlated with TSR-fibrosis score.
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Conclusion: With the aid of DL, TSR evaluation could be generalized to large

cohort to enable prognostic association analysis and facilitate discovering

novel gene and pathways associated with disease progress.

KEYWORDS

tumor-stroma reaction, high-grade serous ovarian carcinoma, digital pathology,
prognostic fibrosis, molecular signature

Introduction

Ovarian cancer (OC) is one of the leading causes of
mortality among cancers in women. Pathologically, ovarian
cancer is divided into high-grade and low-grade carcinomas,
and the high-grade carcinomas can be further classified
into various histological subtypes, most commonly serous,
endometrioid and clear cell. Among them, high-grade serous
ovarian carcinoma (HGSOC) is the prevalent histotype and
accounts for vast majority of ovarian cancer associated mortality
(1). These patients often present with rapid clinical progression,
disseminated peritoneal metastasis, distant metastasis, and
resistance to treatments. On the other hand, low-grade ovarian
carcinomas usually present with slow-progressing diseases and
are associated with much lower mortality but protracted clinical
courses. Diagnostically, low-grade ovarian carcinomas can be
difficult to distinguish from ovarian borderline tumors with
much more indolent clinical behavior, while sometimes may
share overlapping histological features with aggressive high-
grade carcinomas. While all malignant OCs regardless histology
types are treated similarly using platinum-based front-line
chemotherapies, different surgical resections and chemotherapy
treatments options could be applied to different histologic
subtypes. In clinical diagnosis, recognizable histological features
play a critical role in differentiating these subtypes.

Although histological diagnosis of HGSOC has been well-
established, many studies have shown highly heterogenous
clinical courses in these patients (2–4). Interestingly,
pathologists have long observed the high variability of
tumor associated stroma reaction in HGSOCs in daily practice
(4, 5). Similar to a process of normal wound healing, the
tumor-stroma reaction (TSR) in cancer has been associated
with increased extracellular matrix and production of growth
factors to facilitate recovery growth of injured tissues (6).
In ovarian tumors, histopathological examination of tumor-
stroma reaction is critical to differentiate low-grade serous
carcinoma from serous borderline serous tumor (SBOT),
with the latter lacking tumor triggered stroma reaction.
More importantly, tumor-stroma reaction has been reported
to facilitate tumorigenesis and associated with prognostic
differences in many solid cancers such as cholangiocarcinoma,
pancreatic cancer, melanoma, and OC (7–10). Though

numerous studies have demonstrated that the interactions
between tumor cells and stroma play a critical role in cancer
progression and metastasis across multiple cancer types (11–
13), the association of histological feature of stromal reaction
with molecular mechanism is still underexplored. One of major
reasons responsible for this gap is the lack of quantitative
evaluation of TSR in solid tumors. In daily pathology practice
and many research studies, TSR were examined by manually
reviewing H&E-stained slides by individual pathologist, which
is highly subjective and labor-intensive. Interobserver variability
remains a main challenge thus limiting large-scale investigation
of TSR. More importantly, evaluation of TSR by pathologist
relies on personal experience, while an unbiased quantification
becomes unrealistic which may cause heterogenous quality of
the TSR scoring data with poorly reproducibility.

With the advancement of digital pathology, there has
been substantial interest in exploring the role of quantitative
attributes computationally extracted from H&E-stained whole
slide images (WSI). Li et al. (14) introduced a digital pathology-
based pipeline to early-stage estrogen receptor-positive invasive
breast cancers for association analysis. Their results suggested
that the orientation disorder of collagen fiber is prognostic
for early-stage breast cancer (14). Geessink et al. (15) trained
a deep learning model to segment relevant tissue types in
rectal cancer histology and subsequently calculate tumor-stroma
ratio for intra-tumoral stroma. Their results showed that
tumor-stroma ratio is an independent prognosticator in rectal
cancer when assessed automatically in user-provided stroma
hot-spots (15). Failmezger et al. (16) introduced topological
features extraction method to quantify stromal recruitment
for immunosuppression in melanoma histology using graph
based spatial model. This research revealed that tumors with
high stromal clustering and barrier had reduced expression of
pathways involved in naïve CD4 signaling, MAPK, and PI3K
signaling, and indicated that computational histology-based
stromal phenotypes within the tumor microenvironment are
significantly associated with prognosis and immune exclusion
in melanoma (16).

In this paper, we present a digital pathology-based pipeline
that is able to prognosticate patient survival by estimating
degree of TSR directly from multiple aspects of digitized H&E
images. Specifically, the automated pipeline consists of image
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FIGURE 1

Overview of our research workflow. (A) Slide scanning and annotation. (B) Tumor-stroma segmentation and TSR score estimation. (C) Tumor
stroma interface area identification. (D) Tissue-level feature summarization. (E) Association analysis.

processing techniques combined with several machine learning
models trained from pathologists’ annotations. Serving as the
cores of the pipeline, the trained models were used to identify
tumor-associated stroma regions, from which we subsequently
predicted TSR scores with H&E images as inputs. As shown in
Figure 1, the developed pipeline was applied to our research
cohort to establish associations between tissue-level features,
prognosis, and molecular pathways of HGSOC.

Materials and methods

Cohort summary

Our research cohort consists of 291 HGSOC and 15 serous
borderline ovarian tumor (SBOT) cases ascertained at the Mayo
Clinic between 1994 and 2009. The SBOT cases should not have
significant TSR by definition, therefore served as the negative
control in both TSR score prediction and evaluation. As the
cohort selection criteria, all the cases had retrievable clinical,
molecular, and tissue blocks. Survival data were obtained from
the Mayo Clinic Tumor Registry, electronic medical records.
Gene expression profiles and histological information, including
tissue sites (primary or metastasis) and tumor stage, were
collected from the EHR system in Mayo Clinic. The cohort
characteristics were summarized in Table 1. All the slides
were scanned in Pathology Research Core at Mayo Clinic
with a digital whole-slide scanner (Aperio Scanscope XT). To

preserve cell and tissue details, the slides were scanned with 40×
resolution (pixel size: 0.25 um). Imaging quality was manually
checked by histology technicians when the slides were scanned.
All patients provided informed consent for use of their tissues
and data in research; all protocols were approved by the Mayo
Clinic Institutional Review Board.

Pathologist-guided image annotation

According to the consensus of three pathologists, three
types of histopathological evaluation metrics (sub-scores) were
defined as criteria to characterize the extent of TSR: (i) increased
fibrosis, characterized by collagen deposition, (ii) increased
stromal cellularity due to fibroblastic and/or myofibroblastic
proliferation, and (iii) orientation of stromal cells (14). Based
on histopathologic examination of H&E-stained slide areas, the
sub-TSR scores were assessed as 0 (none/weak), 1 (intermediate)
or 2 (strong) (Supplementary Figure 1). The criteria were
chosen to reflect the histopathologic changes commonly
observed and evaluated in the clinical practice. With regard
to the criterion of stromal cellularity, a minimal density of
(myo)fibroblasts was assigned a score of 0, while a score of 2
was given if the area occupied by (myo)fibroblasts exceeded
the area occupied by the acellular stroma in a given field. As
for the fibrosis criterion, minimal deposition of fine collagen
fibers with significant fiber spacing was assigned a score of 0,
whereas dense collagen deposition with sclerosis was classified
as 2. In terms of orientation of stromal cells, a relatively
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TABLE 1 Research cohort statistics.

Overall (N = 291)

Histology*

High grade serous 291 (100.0%)

Age at diagnosis

Mean (SD) 63.337 (11.231)

Median 64.000

Q1, Q3 56.000, 71.000

Range 24.000 - 89.000

Age at diagnosis (group)

[20,50] (premenopausal) 32 (11.0%)

(50,90] (postmenopausal) 259 (89.0%)

Stage

3 217 (74.6%)

4 74 (25.4%)

Grade

2 1 (0.3%)

3 290 (99.7%)

Vital status at Last Follow-up

Alive 34 (11.7%)

Deceased 257 (88.3%)

Months from Diagnosis to Enrollment

Mean (SD) 0.989 (8.425)

Median 0.000

Q1, Q3 0.000, 0.082

Range 0.000 - 107.664

Months from Diagnosis to Last Follow-up

Mean (SD) 50.358 (43.148)

Median 37.072

Q1, Q3 17.763, 70.197

Range 0.263 - 196.711

Median Time to Last Follow-up (months)

Events 257

Median Survival 37.434

Debulking Status

Missing 1

Optimal 220 (75.9%)

Suboptimal 70 (24.1%)

Suboptimal 70 (24.1%)

*Since the SBOT cases were only included in training deep learning models for providing
negative controls, the characteristics of SBOT cases were not included in this table.

linear, unidirectional orientation was assigned a score of 2,
while a haphazard orientation without appreciable directionality
was scored as 0.

To create an annotated dataset for model training, five
HGSOC slides were randomly selected. Within each slide,
five most representative regions of interest (ROIs) were
circled by pathologists in tumor-stroma interface regions,
which were areas where the borders of the tumor islands
came into close proximity with the surrounding stromal
areas and the stroma exhibited morphologic characteristics

different than the non-neoplastic ovarian stroma (Figure 1A).
Two experienced pathologists were invited to annotate three
TSR scores using an interactive tool named QuPath (17).
In each slide, five most representative ROIs were circled
by pathologists in tumor-stroma interface regions. The
size of each ROI was at least 1,024∗1,024 pixels. Within
each ROI, polygons were used to annotate homogeneous
regions with the same TSR scores. Sub-regions with
the same TSR scores were labeled to the same category
(Supplementary Figure 1B).

Dataset preprocessing

Using a framework developed in our previous work (18),
TSR annotations were parsed using Groovy script within
QuPath and converted into a pair of image and annotation mask
for each annotated ROI. For the convenience of visualization,
annotation masks were encoded from dark to light R/G/B colors
for each TSR scoring metric (Supplementary Figures 1D–
F). To extract regular size of images and annotation masks
for model training and evaluation, a 256∗256 pixel sliding
window was applied to the ROIs. Taking full capacity of
pathologists’ annotations, the sampling stride was set to 128
for the aim of creating augmented/enlarged dataset. In total,
11,240 image patches with TSR annotations were obtained
from HGSOC cases.

Considering that SBOT confirmed cases were free of
significant TSR, we proposed to train the TSR prediction model
with image samples from SBOT WSIs as negative controls.
Thus, image patches from SBOT cases were also prepared and
labeled to TSR score zero. We randomly selected five slides from
our previous research (18), from which 1,405 image patches
from stroma regions were randomly extracted and added into
“annotated” dataset. In total, 7,025 image patches were obtained
from SBOT cases.

To identify tumor-stroma interface areas and quantify
TSR inside these regions, we repurposed TSR annotations for
tumor-stroma segmentation modeling. The stroma region is
defined as all the tissue region except the tumor region. Within
each annotated ROI, overall stroma regions were obtained by
merging all three different TSR score regions, while the tumor
regions were defined as the remaining tissue regions inside the
ROIs. The same sliding-window sampling strategy was used to
extract image patches for segmentation modeling.

Tumor-stroma tissue segmentation

In order to identify tumor-stroma interface areas where
TSR occurs, tumor and stroma regions were segmented using
a deep learning neural network named Mask-RCNN (19),
as shown in Figure 1B. Mask -RCNN was preferred in
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this study as it has been used in many histological image
processing tasks (20, 21) and was reported to be more
robust than the U-Net for image segmentation (22, 23).
The hyperparameters of Mask-RCNN, such as the dimension
of convolutional layers (input dimension = 256 × 256),
learning rate (lr = 0.01) and RPN anchor scales (RPN = [8,
16, 32, 64, 128]) were modified to adapt to our image
segmentation task. Taking annotated dataset described in
Data Preprocessing section, images from HGSOC cases were
shuffled and divided into training, validation, and testing groups
(3,317:1,105:1,110). From the training subset, the input layers
of Mask-RCNN took both original images and tumor-stroma
multilabel masks as training samples. In the training process,
tumor and stroma areas were iteratively proposed by a sub-
structure of Mask-RCNN named Region Proposal Network
(RPN). Fully connected network layers were concatenated to
the forehead layers to identify differences between ground
truth (annotations) and proposed segmentation masks. By
minimizing the differences, Mask-RCNN was trained to
segment tumor and stroma within WSIs. To facilitate training
convergence, weights from the model pretrained with Coco
dataset (24) were loaded to our model as initial settings and fine-
tuned on our training dataset. Specifically, the model trained
at the 315th epoch reached the lowest loss in the validation
set.

In the testing phase, tumor stroma regions were segmented
and saved as multilabel masks for each image patch from
the hold-out testing dataset using trained tumor-stroma
segmentation models. Three commonly used evaluation metrics
for image segmentation tasks (25, 26) were calculated to measure
concordance between model prediction and ground truth,
including DSC (Dice similarity coefficient), IoU (intersection of
union) and AP (averaged precision).

Tumor-stroma reaction scoring
modeling

In our work, TSR score estimation was formulated into
an image classification problem. In other words, different TSR
scores corresponded to different image categories. We employed
a commonly used DL network architecture named VGG16
(27) as our image classification model, as this model also
achieved an encouraging performance on identifying tumor
infiltrating lymphocytes (TIL) (28). To estimate three TSR
scores, three VGG16 models (Figure 1B) were trained with
the combinational dataset (from both HGSOC and SBOT
cases) established in data preprocessing steps. The annotated
dataset was divided into training, validation, and testing subsets
(12,743:2,247:2,249, 6,000 training samples were from SBOT
as negative control). During the training phase, the training
dataset was divided into batches (32 samples per batch) to
meet the computational resource limitations. The maximum

training epoch was set to 30. At the end of each training epoch,
training loss was calculated on the validation dataset. To avoid
overfitting, the training process was set to stop when the loss
variation is less than 10−3 within four epochs. To increase
generalizability and avoid bias from different H&E-staining
conditions, training image dataset was augmented using linear
image transformation, such as rotation and flipping. With the
same training strategy, three VGG16 image classification models
were trained independently to estimate fibrosis, cellularity,
and orientation TSR scores, respectively (Figure 1B). During
the testing phase, three TSR scores were estimated for each
input image from the hold-out testing dataset using the three
trained VGG16 models. The performances of the three models
were evaluated by comparing the concordance between model
estimation and human annotation.

Extrinsic model evaluation

Before applying our models to the entire research cohort,
it was essential to evaluate model performances on an
independent dataset (extrinsic) as our DL models were trained
and evaluated using annotated images from ROIs (intrinsic).
To this end, we developed an interactive evaluation tool
(Supplementary Figure 2) for the assessment on a dataset
that was independent of annotated ROIs and WSIs. For
the sake of pathologists’ convenience, the original image
as well as corresponding tumor-stroma segmentation and
TSR scores predicted by the trained models were loaded
into this evaluation tool. With the original image in the
center, eight neighborhood image patches were also shown
in the user interface as additional references for pathologists
to make an accurate judgment. The concordance (average
precision) between pathologists’ evaluations and predictions
were recorded as pathologists proceeded reviewing by clicking
buttons and checking boxes.

To create an independent dataset for extrinsic evaluation,
image patch-level TSR score distribution was calculated for each
slide. Slides with ultra-high (TSR = 2) or low (TSR = 1) TSR
score ratio were selected to epitomize the performances of our
trained models. Unannotated cases were selected based on TSR
score ratio distribution, only the upper 5% quantile and low
5% quantile were included for manual evaluation. To limit the
number of images to be evaluated, we randomly selected at least
10 but less than 30 images from each slide within tumor stroma
interfacing regions.

Applying deep learning models to
research cohort

Trained DL models were generalized to the research cohort
according to the following procedures.
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Tissue detection and patch extraction
To cut down the computational cost, only the tissue regions

(foreground of WSIs) were included in the testing phase. Tissue
regions were detected within a down-sampled whole slide
image (down-sample rate = 128), and then image patches were
extracted from tissue regions accordingly. To detect foreground
within down-sampled whole slide images, the color space was
converted from RGB to LAB, and then threshold method was
applied to L channel for tissue detections. As a commonly used
foreground detection method for bright field whole slide images,
feasibility of this method has been proved in our previous
research (18, 29). By mapping the coordinates of pixels within
detected tissue regions back to original WSI, image patches
(256∗256 pixels) were extracted in a tiling manner. With the
same threshold-based method, foreground within the original
resolution of image patches was detected. If more than 50% of
the patch is background, it was excluded from our study. In the
end, the extracted images were fed into our trained models for
patch-level predictions.

Tumor-stroma interface area identification
To investigate TSR in invasive tumor front, tumor-

stroma interface areas were identified based on tumor-stroma
segmentation results. By down-sampling (r = 1/128) and
stitching patch level results back to their original locations,
slide level tissue segmentation (tumor vs. stroma) were
reconstructed. Within slide level tumor-stroma segmentation
results, tumor-stroma interface areas were identified using
serials of image morphological and logical operations
(Figure 1C and Supplementary Figure 5). The calculation
process can be formulated as follows:

Tumorcore = C (IT, S)

Stromacore = C (IS, S)

ROIinterface = and
(
xor
[
D
(
Stromacore, S

)
,E
(
Stromacore, S

)]
,

Stromacore,D
(
Tumorcore, S

))
,

in which, IT and IS denotes the tumor and stroma multilabel
image from slide level segmentation, respectively. S denotes
the structural elements for morphological operations, including
closing C(I, S), erosion E(I, S) and dilation D(I, S) (30).

To evaluate the accuracy of this automatic tumor-stroma
localization method, the multilabel masks of interface areas and
the counterpart WSIs were shown side-by-side and reviewed
by our pathologists. Specifically, top five largest connected
components were detected as the representative sub-regions for
detailed reviews (31). The misidentifications were recorded for
quantitative assessment metrics calculation.

Slide level feature summarization
To enable association analysis, TSRs were summarized to

abstract slide level descriptors (Figures 1D,E). Since the ROI
(tumor-stroma interface area) size varies from case to case,
we used mean and standard deviation to denote slide level
characteristics. Normalized distributions of TSR scores were
calculated by counting TSR scores of each image patch within
tumor-stroma interface regions. The entire assembled workflow
was generalized to all the slides in our cohort. The summarized
features were prepared for association analysis.

Downstream association analysis

The summarized TSR characteristics were associated with
clinical and molecular information. In our work, only HGSOCs
were included for downstream analysis.

Clinical associations

In HGSOC cases, for each TSR score (Fibrosis, Cellularity,
and Orientation), median split was used to divide patients into
two groups (i.e., score-high and low) to facilitate categorical
comparisons. For univariate and multivariable [adjusted for
age, FIGO stage (IV vs. III), and residual tumor after primary
debulking surgery] survival analysis, a Cox proportional hazards
regression model was used, and hazard ratios (HRs) and
associated 95% confidence intervals (CIs) were estimated. All
statistical tests were two-sided, and a P-value of less than 0.05
was considered statistically significant.

Molecular associations

Tumor gene expression profiles were measured using
Agilent Whole Human Genome 4x44K Expression Arrays
and processed as previously described (2, 4). For gene-level
association analysis, normalized expression levels of each gene
were correlated with each TSR score from the same tumors using
Spearman Rank correlation. For over-representation pathway
analysis purposes, genes with positive and negative correlations
with each TSR score (nominal p-value < 0.05) were analyzed
using DAVID bioinformatics tool (32, 33), to reveal pathways
statistically enriched in correlated gene sets. False discovery rates
were computed to correct for multiple hypothesis testing.

Results

Tumor-stroma segmentation

The developed tumor stroma segmentation model identified
the tumor vs. stroma region within both HGSOC and
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SBOT WSIs (Figure 2A). Figure 2B demonstrates the
whole slide level segmentation results by stitching patch-level
segmentation results together according to patch locations.
Different tissue types were colored according to predicted
categories. More examples of slide-level segmentations were
shown in Supplementary Figure 3.

In the hold-out testing subset (N = 1,110) reserved for
segmentation accuracy assessment, DSC, IoU and AP achieved
93.5, 88.65, and 95.34%, respectively (Figure 3A). Moreover,
we observed that IoU and DSC dramatically decreased if there
was a tissue type misdetection (Figure 3B). Our evaluation
also suggested that IoU and DSC were highly correlated to
each other (Figure 3C), and AP could be a more suitable
metric for measuring our segmentation accuracy. Since the
hold-out testing set is from annotated ROIs, our evaluation
results suggested that the trained tumor-stroma segmentation
model performed well in intrinsic cases.

Based on the criteria mentioned in the methods, 15
unannotated slides were identified, from which 615 image
patches were sampled for independent tumor-stroma
segmentation and TSR score evaluation. By analyzing the review
records from the extrinsic evaluation tool (Supplementary
Figure 2), our model achieved 90.6% accuracy, indicating
that pathologists generally agreed with our tumor-stroma
segmentation performance within independent WSIs. It is
noteworthy that our trained model can be applied to the entire
research cohort to generate tumor-stroma segmentation across
the whole slide for the downstream analytical steps.

Based on our tumor-stroma segmentation results, some
WSIs with low stroma tissue areas were identified. By
checking the original images of these cases within QuPath, the
pathologists confirmed that our tumor-stroma segmentation
results were accurate, as the tumor islands occupied the
majority of these slides, while the stromal areas consisted of a
significant number of adipocytes, necrosis, and/or hemorrhage,
with minimal collagenous and cellular stroma [Supplementary
Figure 4 case (4)].

Tumor-stroma reaction scoring and
evaluations

Using our trained models, three TSR scores were predicted
for each patch inside the stroma regions based on the tumor
stoma segmentation results. The spatial overview of slide-level
TSR was reconstructed by mapping three TSR scores to different
colors with ranked saturation (Figure 2C). More examples
of slide level segmentations are shown in Supplementary
Figure 4. More zoomed in results can be found in our GitHub
repository.

Our qualitative results suggested that the predicted TSR
scores were not even in stroma regions of all HGSOC.
Heterogeneity between regions and cases were high, as shown

in Figure 2C and Supplementary Figure 4. Confusion matrices
were calculated to quantitatively evaluate model performances
on the hold-out testing dataset (N = 2,249). The results indicated
that our model achieved accurate TSR score estimation,
especially in predicting fibrosis (>90%), as shown in Figure 4A.
In the extrinsic evaluation, with an average precision over
82.8%, the results suggested that the trained model can
be generalized to our research cohort for objective TSR
scoring.

We also observed false positives (TSR scores > 0) in some
region from three SBOT cases, as illustrated Supplementary
Figure 4 case (3). By mapping the TSR scores back to the
WSIs and observing with high resolution, we identified that
these false-positive predictions were presumably due to these
slides having mostly non-neoplastic ovarian stroma, which
inherently has a relatively cellular and fibrotic composition.
Since our model is mainly trained on annotated HGSOC
regions, the trained model did not capture texture patterns
within normal SBOT regions.

Violin plots illustrated the distributions of TSR score ratios
per case. Figure 4B indicates that the majority of image patches
had low TSR scores (TSR = 0), regardless of the diagnosis
being SBOT or HGSOC. However, compared to SBOT cases,
HGSOC cases were more likely to have higher TSR scores
(>1), especially for fibrosis score. We observed a significant
proportion of image patches from HGSOC cases had fibrosis
TSR scores of 1. After checking the training dataset, we
confirmed that half (3,339 out of 6,743) of the annotated
images of HGSOC cases had moderate fibrosis TSR scores,
indicating that the ambiguity of fibrosis scores could be high,
and our TSR scoring model was trained to match pathologists’
interpretations.

Identification of tumor-stroma
interface regions

Our tumor-stroma interface region identification strategy
identified five regions within each testing slide (Supplementary
Figure 5). The proposed interface regions were localized and
overlayed to the WSIs. According to pathologists’ manual
review, 83.4% (207 out of 250) proposed tumor-stroma regions
were confirmed to be tumor-stroma interface area. After
checking the falsely proposed tumor-stroma interface regions,
we found flaws of tumor-stroma segmentation in those regions
to be responsible for the failure, indicating that the tumor-
stroma interface identification relies heavily on tumor-stroma
segmentation results. To facilitate replication of our work,
all the code for this paper is public available on GitHub.1

The pretrained models for tumor-stroma segmentation

1 https://github.com/smujiang/TumorStromaReaction

Frontiers in Medicine 07 frontiersin.org

https://doi.org/10.3389/fmed.2022.994467
https://github.com/smujiang/TumorStromaReaction
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-994467 August 30, 2022 Time: 17:23 # 8

Jiang et al. 10.3389/fmed.2022.994467

FIGURE 2

Examples of tumor-stroma segmentation and TSR scoring results. (A) Original WSIs, with HGSOC and SBOT each; (B) tumor-stroma
segmentation, tumor and stroma were encoded with cyan and yellow; (C) TSR scores measured from three metrics, including fibrosis (Red),
cellularity (Green) and orientation (Blue). Each metric was encoded from dark to light color, denoting TSR score from low to high. *For better
visualization, TSR scores within all stroma regions were shown, but only the tumor-stroma interface regions were included for analysis.

and tumor-stroma reaction prediction can be obtained via
contacting authors.

Tumor-stroma reaction clinical and
molecular associations

All three TSR scores were significantly elevated in HGSOC
cases vs. SBOT cases (p < 0.001, Figure 5A). Moreover, in
HGSOC cases, higher fibrosis score (>median) was significantly
associated with worse survival (p = 0.02; Figure 5B), and
the prognostic association remained significant (p = 0.04;
Figure 5C) after multivariate adjusting for other established
prognostic factors (age at diagnosis, stage, and residual tumor
after surgical debulking). In order to gain further insight
into possible molecular mechanisms associated with each TSR
score, gene-level correlations were computed between mRNA
level of each gene and TSR score from the same tumors;
and significant associations were found in two correlations:
(1) correlation between fibrosis and molecular findings, and
(2) correlation between cellularity and molecular findings
(Figure 5D). Further genetic analysis suggested different
molecular bases between the three TSR scores. Through
pathway enrichment analysis, genes positively correlated with
TSR-fibrosis score were found to be enriched in 14 KEGG
pathways [FDR (false discovery rate) < 5%], which are mostly
associated with cancer signaling aberrations. On the other
hand, genes positively correlated with the TSR-orientation score

were enriched in 79 KEGG pathways, with leading significant
pathways implicated with immune response (Supplementary
Table 1). In contrast, genes having positive correlations with
TSR-cellularity score were only significantly enriched with one
KEGG pathway (hsa01100: Metabolic pathways; FDR = 0.04).
Detailed molecular association results including gene- and
pathway-level results were shown in Supplementary Table 1.

Discussion

In this study focusing on digital analysis of reactions
between tumor and stroma, combined with a critical pathology
review using subjective scoring systems, we demonstrated
highly concordant computational prediction based on VGG16
DL structure with training annotations and independent
validations by multiple pathologists in HGSOC. Conventionally,
TSR is often lumped as an overall subjective assessment
by pathologists. Herein we further dissected it into three
essential aspects of TSR and examined their individual and
combined significance by digital detection. With a series
of digital detection and quantification procedures including
tumor-stroma interface area detections, the trained DL model
has been successfully generalized to a large OC cohort from
a single institution consisting of nearly 300 patients with
long-term clinical follow-up and tumor transcriptome data.
Interestingly, among the three aspects of TSR, the data
revealed significant prognosis association only with fibrosis
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FIGURE 3

Tumor-stroma segmentation evaluation. (A) Boxplot of three evaluation metrics, including IoU, AP and DSC. (B) Examples of segmentation. Red
arrows point to missed targets in segmentation. (C) Correlation of three evaluation metrics. Each dot represents an image sample. Linear
regression was used to calculate correlation.

score. This is the first study demonstrating the outstanding
significance of fibrosis over other TSR pathological features
in HGSOC, indicating these features did not carry the equal
weight regarding clinical significance. At the design phase of
this study, the orientation score was selected as one of the
three quantification criteria, mainly to further characterize
the fibroblastic and/or myofibroblastic proliferation. In fact,
collagen fiber organization has been associated with prognosis
in breast cancer in the literature and DL approaches have
been employed to quantify this as a histomorphometric feature
(14, 34). However, our team observed this criterion to be
a highly subjective one. In addition, the orientation score
did not reveal any significant prognosis associations in our
transcriptome association analysis, calling the usefulness of

this criterion with regard to ovarian cancer TSR assessment
into question. These observations warrant further study on
individual components of the TSR, as well as aberrant
gene- and pathway-level activities associated with different
digital TSR scores.

Of note, the design of the TSR scoring in our study was
not specific or limited to HGSOC, and the same histological
principle can be applied to in majority types of solid cancers.
Therefore, the digital platform developed by our study can
be potentially generalized and applied to various tumor types.
These findings highlight potentials of powerful DL approaches
to generalize digital pathology-based predictions for large-scale
translational research and enable molecular discoveries to better
understand tumorigenesis and cancer progression.

Frontiers in Medicine 09 frontiersin.org

https://doi.org/10.3389/fmed.2022.994467
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-994467 August 30, 2022 Time: 17:23 # 10

Jiang et al. 10.3389/fmed.2022.994467

FIGURE 4

Tumor-stroma reaction (TSR) scoring evaluation. (A) Confusion matrix of intrinsic evaluation. (B) Violine plot for three TSR metrics within
HGSOC vs. SBOT. Majority of SBOT images have low TSR score, no matter in which metric.

To consolidate our discoveries, we considered including
other pre-existing cases into our research cohort. However,
we found that images scanned at different times could be
dramatically different in hue even if they were from the
same patient, same institution (Mayo Clinic) and shared
the same staining and image acquisition protocol. This
inconsistency may be due to multiple technical variables,
including scanner settings and/or age of the H&E-stained
slides. Since these batch effects in pathology image data
could be hidden variables in deep learning digital pathology
that compromise the accuracy of classification systems (35,
36), we opted for not including our previous HGSOC data
into this research. Many previous studies introduced color
normalization methods to minimize staining inconsistencies
(29, 37). Though it is hard to measure the preservation of
diagnostic information after image transformation, many
integrative studies investigating cancer subtype classification
and prognosis association achieved optimistic performances
by introducing image normalization (38, 39). From this
point of view, color normalization could be beneficial

for assorted research cohort from miscellaneous data
sources, especially from multiple institutions. Meanwhile,
we also noticed that some investigators improved their
model performance by synthesizing images using generative
adversarial network (GAN) (40, 41), which could be another
potential way to enhance the generalizability of our TSR
estimation model.

Although our tumor-stroma interface region detection
relies on patch-level tumor-stroma segmentation, the strategy
we introduced (Supplementary Figure 5) could partially
offset this limitation. To generate a slide-level overview of
tissue context (tumor vs. stroma) for image morphological
manipulations, patch-level tumor-stroma segmentation
results were down-sampled and stitched back to their
original locations. In this process, the tissue type (tumor
or stroma) in slide-level was determined by the dominated
component of patch-level segmentation. In other words,
for tumor-stroma interface region detection task, tumor-
stroma segmentation results were not required to achieve
pixel-level accuracy.
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FIGURE 5

Prognosis and molecular associations of fibrosis score. (A) Tumor-stroma reaction (TSR) score boxplots for HGSOC and SBOT groups.
(B) Overall survival differences between fibrosis high vs. low. (C) The prognostic association for other established prognostic factors (age at
diagnosis, stage and residual tumor after surgical debulking). (D) Correlation between fibrosis/cellularity/orientation and molecular findings.

We observed that our TSR scoring models highlighted some
regions with a potentially high TSR in five SBOT cases, for
example, case (3) in Supplementary Figure 4. The main reason
contributing to this flaw is that our models were not trained to
differentiate normal vs. abnormal ovarian stroma. We anticipate
that our TSR scoring pipeline can achieve a better estimation
if models can be trained using extra normal vs. abnormal
ovarian stroma annotations. Meanwhile, we acknowledge that
using TSR as the sole measurement is not enough to describe
the complex tumor micro-environment (TME). It has been
reported that TILs can also be assessed with the aid of
digital pathology in advanced-stage, HPV-negative head and
neck tumors (42). We will introduce more interpretable
measurements for pathology image metadata summarization,
which will bring more opportunities for novel discoveries.
To integrate cellular level features into large cohort analysis,
we also plan to introduce more advanced cell segmentation
modules to our workflow for better cell level representations
(43). As reported in our previous work (44), over- and under-
segmentations lead to inaccurate downstream analysis impute
to erroneous features calculated based on them.

Another imperfection of our study is way we summarize
predicted TSR score to slide level for association analysis.
For the sake of simplicity, we employed simple statistics and
assigned equal weights to patch level TSR predictions. However,
the relative importance of tissue regions contributing to the
diagnosis could be dramatically different depending on tissue
context. In this study, we introduced tumor-stroma interface
area identification methods that were aimed at mimicking
pathologists’ diagnoses. This strategy is simple and works well
in most cases; however, it highly depends on the tumor-stroma
segmentation accuracy. We noticed that some studies proposed
to introduce multi-resolution analysis for capturing subtle tissue
features within different WSI scales (45, 46). Attention based
deep neural networks (47) are also tangible options for locating
diagnostically relevant regions and assign those regions with
higher weights in automatic analysis. We will consider these
solutions to fill the gaps in our current work.

Further limitations of the current study include that all
the samples were from a single institution, requiring further
validations in external cohorts. H&E imaging-based digital
pathology studies as such may be also affected by paraffin block
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preservation protocols and digital scanning parameter settings,
which could lead to model differences when generalizing to WSI
samples collected and scanned following different protocols.
Computational developments and evaluations will be made to
address these challenges.

Conclusion

Our developed system achieved encouraging performances
in tissue segmentation and TSR score predictions and
generalized successfully to a large single-institution OC cohort,
resulting in novel discoveries of clinical prognosis associations
and molecular findings implicated in different TSR scores.
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SUPPLEMENTARY FIGURE 1

Tumor-stroma reaction (TSR) annotation. (A) Original image within ROI
selected for annotation. (B) Annotated ROIs. Polygons were used to
label regions with different TSR scores. (C) Legend of three TSR score
measurements. (D–F) Parsed annotations. TSR scores were encoded
into R/G/B colors to represent three measurements (fibrosis, cellularity,
and orientation), respectively; Panels (G,H) are two zoom in examples.
Panel (G) was annotated as Fibrosis = 2, Cellularity = 1, Orientation = 1;
Panel (H) was annotated as Fibrosis = 1, Cellularity = 2, Orientation = 2.

SUPPLEMENTARY FIGURE 2

Interactive tool for extrinsic evaluation. Source code available in our
GitHub. Buttons and checkboxes on the right are clickable, pathologists’
interactions were recorded for extrinsic evaluation.

SUPPLEMENTARY FIGURE 3

Extra examples of tumor-stroma segmentation results, including five
HGSOCs, five SBOTs and their tumor stroma segmentation results.

SUPPLEMENTARY FIGURE 4

Extra examples (two HGSOC and two SBOT) of TSR scoring results. TSR
scores measured with fibrosis (Red), cellularity (Green), and orientation
(Blue). From dark to light, TSR scores were encoded into R/G/B colors.
∗For better visualization, TSR scores within all stroma regions were
shown, but only the tumor-stroma interface regions were
included for analysis.

SUPPLEMENTARY FIGURE 5

Tumor-stroma interface area identification. (A) Original WSI and
tumor-stroma segmentation results. (B) Morphological and logical
operations were conducted on tumor-stroma segmentation for
localizing tumor-stroma interface regions. (C) Proposed ROIs (red
rectangles) for TSR score summarization.

SUPPLEMENTARY TABLE 1

Detailed molecular association results, including top 10 genes
positively/negatively associated with TSR-Fibrosis score, and pathways
positively associated with Fibrosis and Orientation scores, respectively.
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