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Deciphering quantum fingerprints in electric
conductance
Shunsuke Daimon 1,2,8✉, Kakeru Tsunekawa1,8, Shinji Kawakami1, Takashi Kikkawa 1,3,4, Rafael Ramos 3,7,

Koichi Oyanagi 4,5, Tomi Ohtsuki 6 & Eiji Saitoh1,2,3,4

When the electric conductance of a nano-sized metal is measured at low temperatures, it

often exhibits complex but reproducible patterns as a function of external magnetic fields

called quantum fingerprints in electric conductance. Such complex patterns are due to

quantum–mechanical interference of conduction electrons; when thermal disturbance is

feeble and coherence of the electrons extends all over the sample, the quantum interference

pattern reflects microscopic structures, such as crystalline defects and the shape of the

sample, giving rise to complicated interference. Although the interference pattern carries

such microscopic information, it looks so random that it has not been analysed. Here we

show that machine learning allows us to decipher quantum fingerprints; fingerprint patterns

in magneto-conductance are shown to be transcribed into spatial images of electron wave

function intensities (WIs) in a sample by using generative machine learning. The output WIs

reveal quantum interference states of conduction electrons, as well as sample shapes. The

present result augments the human ability to identify quantum states, and it should allow

microscopy of quantum nanostructures in materials by making use of quantum fingerprints.
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In metals at low temperatures, the quantum–mechanical wave
nature of conduction electrons comes to the fore, which can
be described in terms of their wave functions. The phase of

the wave function can be modulated by a magnetic field, causing
wave interference of electrons as a function of external fields1,2.
The simplest case can be found in a ring sample where the wave
propagation is completely restricted along the circumference. In
such a sample, an electron circling along the ring gains a phase
proportional to the magnetic field inside the ring. If the phase is
an even multiple of π, constructive interference of the electrons
enhances the wave nature and electric conductance. When the
phase is an odd multiple of π, on the other hand, destructive
interference reduces electric conductance, giving rise to a peri-
odic oscillation of the conductance with respect to the external
field, called an Aharonov-Bohm oscillation3–6. In a real nano-
metal, however, there are many scatterers for the electron waves,
such as impurities and nanostructures (Fig. 1a, b). As a result,
interference among all electron waves propagating among the
scatterers piles up to modulate the conductance, giving birth to
a complicated magnetic field dependence reflecting the dis-
tribution of the scatterers7,8 (Fig. 1c). These complex patterns of
electric conductance are called conductance fluctuations or
quantum fingerprints in electric conductance1. The fingerprint
thus carries information concerning the quantum electron
states. Nevertheless, it has been considered difficult to interpret
it due to its complexity. In the literature (refs. 9–11), con-
ductance was shown to be predicted from microscope infor-
mation such as defect positions by using machine learning
methods. Here we show that, by developing machine
learning12,13 for quantum interference, fingerprint patterns in
magneto-conductance can be transcribed into a real image of
electron WIs and a sample shape.

Feature extraction and geometry generative deep-neural net-
works are combined to reconstruct electron WIs and sample
shape images from the magneto-conductance data (Fig. 1d). We
named the present network a quantum geometric decoder
(QGD). As a training dataset, we use numerical-calculated con-
ductance and WIs in two-dimensional nanowires with antidot
defects exposed to magnetic fields (Fig. 2). The network (A)+ (B)
in the QGD (Fig. 1d) extracts essential features of the WI images
using a dimensionality-reduction technique based on a varia-
tional autoencoder14,15 (VAE) (Fig. 3a). By training the network
to compress the calculated real-space WI data onto a low
dimensional latent space and to reconstruct the data from the
latent-space data, the network (A) learns to convert the WI
images into a vector in the latent space so as to best reproduce the
original images using the network (B), and the network (B) to
generate WI images from the compressed information repre-
sented by the vector (Fig. 3a). In the following, we will show that
owing to the latent-space information, the QGD can find rela-
tions between complicated quantum interference and quantum
fingerprints, which cannot be realised by conventional methods.

Results
Calculation of wave function intensities and conductance. To
prepare a training dataset, we perform numerical calculation;
Fig. 2a shows a calculation model of the two-dimensional
nanowire with a size of 60 × 50 single-orbital sites. For simpli-
city, defects in the nanowire are introduced as two antidots with a
radius of 5 sites. One antidot is fixed around the upper centre of
the system. With 1591 different antidot positions and five dif-
ferent random potentials applied to the systems, 7955 samples are
prepared as a dataset. For each sample, we calculate WIs and

Fig. 1 Concept of quantum geometric decoder. a, b A schematic illustration of a magneto-conductance measurement in a small metal sample (a) and its
magnified view (b). The green stripe pattern describes electron wave function intensity (WI) in the sample with defects. c Conductance change ΔG for a
nanowire sample. e, h, and a are the elementary charge, the Plank constant, and the lattice constant in the calculation model, respectively. ϕ0 ¼ h=e is the
magnetic flux quantum. d Concept of Quantum Geometric Decoding based on a deep neural network. First, the networks (A) and (B) compress the WI
images into the latent space. Then, the networks (C) and (B) output a geometry image including the sample shape, defect distribution, and WI information
from the input of the magneto-conductance.
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two-terminal magneto-conductance by using a tight-binding
method and Landauer’s formula (see “Methods”), where the
magnetic field is introduced as a Peierls phase in the Landau
gauge and inelastic scattering is not taken into consideration,
assuming extremely low temperatures.

Figure 2c exemplifies the calculated magneto-conductance, G, for
a sample as a function of the externally applied magnetic flux
density B. Each conductance data exhibits different complex
patterns. To highlight the patterns, we introduce the normalised
magneto-conductance ΔGðBÞ calculated by subtracting the averaged

Fig. 2 Numerical calculation of WI distribution and magneto-conductance in a sample with antidot defects. a A sample system for calculation with two
antidot defects. One antidot is fixed at the upper centre of the nanowire, while the other is located so as not to overlap with the fixed one. Two leads are
attached to the top and bottom ends of the sample to measure conductance. b Calculated WI distribution. The square of the absolute value of the
calculated wave function is plotted in the sample region with 60 ´ 50 pixels. The WI values are normalised such that the sum of the intensity equals to
unity for each antidot configuration; ∑60

i¼1∑
60
j¼1Xi;j ¼ 1, where X is a WI image, and the suffixes i; j represent the pixel label. We added zero padding with

5 sites to the left and right ends of the nanowire. c Magneto-conductance G for 10 samples with different defect distributions. Here, B is the magnetic flux
density. d Normalised data of the calculated magneto-conductance ΔG for the antidots distribution shown in a. ΔG is obtained by subtracting the averaged
G ð� GaveÞ over all the nanowire configurations from the B dependence of G ½ΔG Bð Þ � G Bð Þ � GaveðBÞ�.

Fig. 3 Visualisation of the data geometric structure in the feature extraction network. a, b The feature extraction network based on VAE, trained by
using geometry images with WIs (a) and without WIs (b), and an example of input and output images. c, d UMAP data points generated in the latent
space, trained with the geometry images together with WIs (c), and without WIs (d). x; yð Þ represents the location of the antidot defect. The data structure
is mapped onto a three-dimensional space from the seven-dimensional latent space by using UMAP to visualise the data geometry. Each data point
corresponds to one WI image and is coloured in blue or yellow depending on the parity of x. e The definition of Δx. f, g Images of the absolute difference
between x; yð Þ data and xþ Δx; yð Þ data, where x; yð Þ ¼ 12; 33ð Þ, for Δx ¼ 1 (f) and Δx ¼ 2 (g), respectively. The RMS difference values are shown below the
images. h The RMS differences at ðx; 33Þ.
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G over all the 7955 conductance data from the raw GðBÞ data (see
Fig. 2d). We also calculate the wave functions under the zero
magnetic flux density condition. We then obtain the WI images by
squaring the modulus of the wave functions. Figure 2b shows WI
images, where complicated quantum interference can be seen
around the antidot defects. Zero padding16 with a width of 5 pixels
is added to the left and right ends of each 60 × 50 pixel WI image,
resulting in the final size of 60 × 60 pixels.

Quantum geometric decoder network. The QGD is trained to
generate correct sample-shape images and quantum interference
patterns from ΔGðBÞ (Fig. 1d). To realise the generation, we
combine a feature extraction network [(A)+ (B) in Fig. 1d] and
a geometry generative network [(C)+ (B) in Fig. 1d] in the
QGD. The feature extraction neural network is based on
VAE14,15; VAE was shown to compress its input and extract the
information necessary to reproduce the input on the output of
the network14. The network converts a WI image with 3600
pixels into a seven-dimensional latent-space data [(A) in Fig. 1d]
and then converts the data back to an image with 3600 pixels
[(B) in Fig. 1d]. The network is trained so that the output image
matches the input image (see Supplementary Fig. 1a and
Tables 1, and 2 for more details). After the training, the latent
space of the QGD acquires essential information to reconstruct
the WI images.

The QGD can directly generate WI images from magneto-
conductance data G Bð Þ (Fig. 4a, b). First, the network (C) in
Fig. 1d connects the input 101-points ΔG Bð Þ data and the seven-
dimensional latent space, and then generates a WI image using
the deconvolution part (B) of the VAE-based network. We
trained the fully-connected neural network (C) so that the
generated image well reproduces the input WI image associated
with the magneto-conductance data (see Supplementary Fig. 1b
and Table 3 for more details). Such a Y-shaped QGD was found
to acquire an excellent capacity for WI generation as follows.

Deciphering quantum fingerprint in magneto-conductance.
Figure 4a, b shows a typical result of deciphering a quantum fin-
gerprint into a WI image by using the QGD. Surprisingly, the QGD
spontaneously generates a clear WI image just from conductance
data (see Fig. 4a, b). The generated WI image and sample shape
coincide with a separately calculated WI image (Fig. 4d) and the
corresponding sample shape (Fig. 4c), respectively. To evaluate the
generation fidelity, we calculated the root mean squared (RMS) error
between the generated and calculated images for each sample in the
test dataset (see “Methods” for more details). The average RMS error
is 2:1 ´ 10�5. More examples are shown in Fig. 4e–g; WI images are
almost correctly generated for all the magneto-conductance inputs.
In addition to the locations of the antidots, significantly, the quan-
tum interference patterns of the WIs are well generated from only
the magneto-conductance data (see the fringe patterns in Fig. 4f).
We also checked that similar generalisation performance of the
QGD can be obtained even if some different system parameters are
used (see “Methods”). The results show that, although a quantum
fingerprint pattern looks random, it contains information on the
quantum interference in the sample, and the QGD can interpret it.

Discussion
To check the performance of the feature extraction network
[(A)+ (B) in Fig. 1d], in Fig. 3a, we show the result of the WI
autoencoding by the trained network. The output image clearly
reproduces the input WI image (see Supplementary Figs. 3 and 10
for detailed error profiles), which can be attributed to the fact that
the sharpness of the image generation is an advantage of the VAE.
The RMS error is 2:0´ 10�5, comparable to the error of the QGD
output. More examples are shown in Supplementary Fig. 3a–c. It
is surprising that such complicated geometry information is
reconstructed using only the seven-dimensional data in the latent
space, which is three orders of magnitude smaller than the
dimension of the input data: 3600. This demonstrates the excel-
lent compressing ability of the feature extraction network.

Fig. 4 Result of quantum geometric decoding (QGD). a, b The geometry generative network and an example of the input conductance and output
deciphered image. ΔG and B are the normalised magneto-conductance and the magnetic flux density, respectively. c The sample system whose magneto-
conductance is shown in a. d The absolute difference image between the original image (inset) and the output deciphered image shown in b.
e, f, g Examples of the input conductance (e), output deciphered images (f), and original images (g). Colour scales of the intensity images in f and g are the
same as those of b and the inset to d, respectively.
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The above decipherment using the QGD means that the pre-
sent network can analyse the quantum fingerprints to reconstruct
the microscopic images (geometry and WIs) in the sample. In the
network, information on the interference is compressed into the
seven-dimensional latent space. Each WI image is convoluted
into a Gaussian distribution in the latent space, and the set of the
distribution forms a global geometric structure describing simi-
larity among the states. We now visualise and discuss the geo-
metric structure of the data in the latent space. To this end, we
use a dimensionality reduction method called the universal
manifold approximation and projection (UMAP)17, which con-
verts data points in the seven-dimensional latent space into those
in a three-dimensional space while keeping their topological
structure. Figure 3c shows the obtained three-dimensional
representation of the latent-space data. Owing to the variational
Bayesian approach of VAE14, VAE was found to construct well-
organised data structures in the latent space (see also Supple-
mentary Fig. 12). In the present feature extraction network, one
can see that the dataset forms a two-dimensional curved surface
in the latent space (Fig. 3c), but the surface shows a structure with
some thickness (see, for instance, the regions with a dual-layered
structure indicated by the red arrows in Fig. 3c). The two-
dimensional nature of the dataset is consistent with the degree of
freedom of the antidot location ðx; yÞ. However, the appearance of
the data-point scattering along the thickness direction cannot be
explained by the location degree of freedom.

In order to understand the geometric structure, we performed a
control experiment using geometry images without WIs (com-
pare Fig. 3a, c and b, d and see “Methods” for details of the
geometry images without WIs). In contrast to the images which
contain WI as well as sample-shape images, the dataset without
WI images forms a simple plane without the thickness structures
in the three-dimensional representation (see Fig. 3d). By com-
paring the data in the latent space, we found that the dataset
generated from the inputs with WI images is about ten times
thicker than that generated from the inputs without WI images,
where the thickness is defined as the variance of the data points
(see “Methods” and Supplementary Fig. 11). The result suggests
that the thickness structures, such as the dual-layered structure,
carry electron information represented by WIs.

The dual-layered structure was found to be related clearly to
the antidot location and interference; the upper layer consists of
the data points for even x, while the lower one for odd x in the
present parametrisation [see the points coloured in yellow (for
even x) and blue (for odd x) around the red arrows in Fig. 3c]. To
show how the interference patterns change with the antidot
location x; y

� �
, we calculate the absolute difference and the RMS

difference of the WI images between x; y
� �

and ðx þ Δx; yÞ.
Figure 3f, g shows the results at x; y

� � ¼ ð12; 33Þ for Δx ¼ 1; 2,
respectively. The absolute difference for Δx ¼ 2 is less than that
for Δx ¼ 1 [compare the images between Fig. 3f and g, e.g., at the
left and right sides of the antidot position x; y

� �
]. In Fig. 3h, we

plot the RMS difference in each image as a function of x at
y ¼ 33. For most of the x values, the RMS difference for Δx ¼ 2
turned out to be less than that for Δx ¼ 1, indicating that the WI
image for the antidot position x; y

� �
has similar features to that

for ðx þ Δx; yÞ with Δx ¼ ± 2; ± 4; ± 6 � � � in the present para-
metrisation. In fact, we found that, near the antidot, the crest and
trough patterns of the WIs agree with each other between x; y

� �
and x þ Δx; y

� �
for even Δx numbers, while those are reversed

for odd Δx, suggesting that, in the present study, the constructive
and deconstructive interference gives rise to the observed dual-
layered structure in the latent space (see “Methods” for more
details). The result suggests that the electron information, such as
interference, is encoded in the latent space as the thickness-

dimension information, which emerges on the two-dimensional
curved surface representing the antidot location. Such extra-
dimension information appears to allow the QGD to interpret
quantum fingerprint patterns in the present study.

In summary, we demonstrated the decipherment of quantum
fingerprints in conductance by developing QGD. The QGD was
found to transcribe the complicated magneto-conductance pat-
terns into geometric information such as defect distributions and
WIs in the samples. The WI patterns turned out to be encoded in
the latent space of QGD as an extra dimension of the manifold
representing the defect position information. It is truly worth-
while to tune the network by using data from real objects to show
the versatility of the present method (for experiments using
physical samples, see Supplementary Fig. 4 and Supplementary
Note 1). We expect that a wide range of signals from quantum
systems can be interpreted by this method.

Methods
Numerical calculations of the input dataset. The WIs and two-terminal mag-
neto-conductance calculations are based on a tight-binding model and the
Landauer–Buttiker formula2. The Hamiltonian for the present calculation is
H ¼ ∑ið4t þ UiÞcyi ci �∑<i;j>t exp½�i πBa2=ϕ0ðxi � xjÞðyi þ yjÞ�cyj ci , where cyi and
ci are creation and annihilation operators, respectively, for electrons at the site
xi; yi
� �

, t is the hopping energy, Ui is a random potential representing sample-
specific randomness, and ϕ0 � h=e is the magnetic flux quantum. The magnetic
flux density B is introduced over the entire scattering region. a is the lattice con-
stant and it is not a fixed parameter since our model is spatially scale-free
calculation18. The second term in the Hamiltonian is a Peierls phase with the
Landau gauge and is summed over the nearest-neighbour pairs. The hopping
energy is set to t ¼ 1. The magnitude of the disorder potential is set to one tenth of
the hopping energy; Ui is sampled uniformly but randomly in the range from
−0.05t to 0.05t. The Fermi energy is set to 2.0t except for the dataset of the Fermi-
energy dependent magneto-conductance calculation in Supplementary Fig. 8. One
antidot is fixed at the upper centre of the system, while the other is located so as not
to overlap with the fixed one. The antidot is modelled by removing lattice points in
a circular shape from the two-dimensional square lattice of the nanowire. Two
leads with the same square lattice and hopping energy are attached to both ends of
the scattering region. Kwant18, a code for numerical calculation of wave functions
and quantum transport properties, is used to obtain the dataset of magneto-
conductance and WIs for the samples with antidot defects. B dependence of the
two-terminal conductance is calculated, where B is swept from 0 to 0:12 in 101
divisions. The normalised magneto-conductance ΔGðBÞ is calculated by subtracting
the averaged conductance GaveðBÞ from the raw GðBÞ, where we defined GaveðBÞ as
the conductance value averaged over 7955 conductance data with 1591 different
antidot positions and 5 different random potentials. We checked that the con-
ductance calculation works well (see Supplementary Figs. 13 and 14) and ΔG Bð Þ
shows fluctuation with respect to B with the variance comparable to e2=h19. WIs
are calculated at the zero magnetic flux density condition. We note that a part of
wave function phase information is included in the WI because the amplitude is the
result of complex interference between scattered waves. The WI images shown in
the figures are normalised such that the sum of the intensity equals to unity for
each antidot configuration; ∑60

i¼1∑
60
j¼1Xi;j ¼ 1, where X is a WI image, and the

suffixes i; j represent the pixel index. Note that the normalisation is done only for
the visualisation plots after the training, and unnormalised data is used during the
training. A geometry image without WIs is defined as an image with a non-zero
constant value on a nanowire and zero inside the antidots and outside the nano-
wire. No WI images are superimposed. The constant value is determined by the
normalisation condition ∑60

i¼1∑
60
j¼1Xi;j ¼ 1, where X is an image, and the suffixes

i; j represent the pixel label.

Feature extraction network and its training. The feature extraction network is
based on a VAE network14,15 comprising image encoding and decoding networks.
The encoding network is composed of 2 two-dimensional convolution layers with
the kernel size of 4 ´ 4 and 3 fully-connected layers, where each layer has 1024, 512,
and 7 nodes. The encoding network outputs a seven-dimensional gaussian dis-
tribution in the latent space via the reparameterisation trick used in VAE14,15. The
dimension of the latent space is set to 7 to reconstruct the input WI images with
high accuracy. The decoding network is composed of 2 fully-connected layers and
2 two-dimensional deconvolution layers with the kernel size of 4 ´ 4. The network
architecture parameters are determined based on a recipe found in machine
learning for image recognition15 and then fine-tuned. Rectified linear units
(ReLUs)20 and Leaky ReLUs21 are used as activation functions. To improve the
learning performance, the batch normalisation technique22 is used. For the training
and evaluation of the network, each dataset is split into training and test datasets
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with the ratio of 7 to 3. The loss function is the evidence lower bound14, and the
optimisation algorithm is Adam23 with a learning rate of 0.0001. See Supple-
mentary Figs. 1a, 2a and Supplementary Tables 1, 2 for more details. We used the
WI images as the inputs to the feature extraction network to extract defect position
and WI information. The definition of the RMS error in evaluation isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N ∑

N
n¼1

1
3600∑

60
i¼1∑

60
j¼1 XðnÞ

i;j � Y ðnÞ
i;j

h i2� �s
, where N is the number of samples in the

test dataset, XðnÞ is the n-th numerical-calculated WI image input, YðnÞ is the n-th
output image of the feature extraction network [(A) + (B) in Fig. 1d], and the
suffixes i; j represent the pixel index. The RMS error is a dimensionless quantity
because the WI images XðnÞ and YðnÞ are dimensionless quantities that satisfy the
normalisation conditions: ∑60

i¼1∑
60
j¼1X

ðnÞ
i;j ¼ 1 and ∑60

i¼1∑
60
j¼1Y

ðnÞ
i;j ¼ 1.

Geometry generative network and its training. The geometry generative network
is a combination of a fully-connected network and the decoding network in the feature
extraction network. The fully-connected network has 4 layers, where the dropout
technique24 is used to improve the learning performance. The loss function is the
mean squared error. For the training and evaluation of the network, the dataset is split
into training and test datasets (corresponding WIs of the test data are not seen by the
QGD network). See Supplementary Figs. 1b, 2b and Supplementary Table 3 for more
details. The definition of the RMS error in the evaluation is the same as that used in the
feature extraction network, except that the YðnÞ is replaced by the generated WI image
from the n-th magneto-conductance input. The definition of the absolute difference

image Xdif of the WI images between X and X0 is Xdif
i;j ¼ Xi;j � X0

i;j

��� ���. Although
reconstructing a Hamiltonian from wave functions (an inverse problem) is difficult,
from a theoretical point of view, potential reconstruction is possible if scattering states
are known for all the incident wavenumbers25. In the present case, although the
incident wavenumbers are limited to those on the Fermi surface, the spatial dis-
tribution of the potential is reproduced. This might be attributed to the fact that the
potential shape is restricted to the antidot shape.

Latent-space dimension in QGD. To determine the appropriate dimension of the
latent space, we performed control experiments. Supplementary Figure 5 shows the
latent-space dimension dependence of the averaged RMS error of the decoded WI
images. For the feature extraction network, the latent-space dimension less than 5 was
found to show large RMS errors, which can be attributed to insufficient capacity of the
latent space as shown in Supplementary Fig. 5a, b. On the other hand, higher latent-
space dimension than 9 was found to show large RMS errors due to too many learning
parameters. Due to the competition between the two, the RMS error takes a minimum
around at dimension = 7. A similar behaviour was also found for the WI images
decoded from the geometry generative network (Supplementary Fig. 5c, d). Therefore,
we determined to use the seven-dimensional latent space for the QGD network.

Generalisation ability of the QGD network. In Supplementary Figs. 6 and 7, we
show some training results of the network with different tight-binding parameters: the
Fermi energy and disorder potential, respectively. The result shows that the network
we proposed exhibits high fidelity regardless of the parameters. Although the inter-
ference fringe patterns in the WI images largely depend on the Fermi energy and the
disorder potential (see Supplementary Figs. 6 and 7 and those captions for details), the
method can reconstruct WI images. In Supplementary Fig. 8, we also show the WI
images decoded from the Fermi energy dependence of the magneto-conductance,
where the Fermi energy is swept from 1.2t to 2.0t at zero magnetic flux density. The
data shows that the WI images can also be decoded with high fidelity when we use the
Fermi energy dependence data instead of the magnetic flux density dependence.

Quantitative analysis of the data structure in the latent space. We quantita-
tively estimated the difference between Fig. 3c and d by calculating the thicknesses
of the data structures as the variance of the data points in the thickness direction.
Firstly, as shown in Supplementary Fig. 11a, we cut out a part of the data structure
in the latent space, which locally forms two-dimensional plane with a thickness.
The local variance was calculated for the in-plane and thickness directions. The
ratio of the local variance along the in-plane and thickness directions is 0.10 for the
data structure formed by the geometry images with WIs (Supplementary Fig. 11c).
On the other hand, the data structure formed by the geometry images without WIs
exhibits a much smaller value of the ratio, 0.01 (Supplementary Fig. 11b, d).

Dual-layered data structure in the latent space. In the present calculation, we
chose the pixel size of the interference images so that the Fermi wavelength is
equivalent to 2 pixels. In the condition, the data scattering in the latent space was
found to apparently be quantised to show the most interpretable structure: the dual
layers, which can be explained by the fact that a standing wave between an antidot
and the sample end can be classified into two; destructive and constructive inter-
ference patterns. In fact, the dual-layer structure was found to change into a
randomly scattered structure around the surface by changing the pixel size,

showing that the essential feature here is the data scattering around the surface
structure representing the information of the antidot positions.

Quantitative comparison between original and deciphered WI images. We
analysed the WI images in terms of the normalised cross correlation:

RNCC ¼
∑
i;j
Aði; jÞBði; jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
i;j
Aði; jÞ2 ∑

i;j
Bði; jÞ2

r ;

where A and B are the original and generated WI images, respectively. As shown in
Supplementary Fig. 9a, b, RNCC increases with the training epoch. RNCC after the
training is much greater (RNCC > 0.997) than that before the training. We con-
firmed that the generated WI images show high fidelity in terms of the normalised
cross correlation.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The codes that support the findings of this study are available from the corresponding
author upon reasonable request.
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