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With the advent of next generation sequencing methods and 
progress in transcriptome analysis, it became obvious that the 
human genome contains much more than just protein-coding 
genes. In fact, up to 70% of our genome is transcribed into RNA 
that does not serve as templates for proteins. In this review, we 
focus on the emerging roles of these long non-coding RNAs 
(lncRNAs) in the field of tumor biology. Long ncRNAs were 
found to be deregulated in several human cancers and show 
tissue-specific expression. Functional studies revealed a broad 
spectrum of mechanisms applied by lncRNAs such as HOTAIR, 
MALAT1, ANRIL or lincRNA-p21 to fulfill their functions. Here, 
we link the cellular processes influenced by long ncRNAs to 
the hallmarks of cancer and therefore provide an ncRNA point-
of-view on tumor biology. This should stimulate new research 
directions and therapeutic options considering long ncRNAs 
as novel prognostic markers and therapeutic targets.
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Introduction

In 2001, the human genome sequencing consortium released its 
final draft of the human genome.1 Based on this work, the com-
plete human transcriptome could be identified and characterized 
in recent years mainly due to the development of two new tech-
niques: deep sequencing and DNA tiling arrays. These methods 
revolutionized our view of genome organization and content as 
they revealed an unexpected finding: a much larger part of the 
human genome is pervasively transcribed into RNA than previ-
ously assumed. It is estimated that up to 70% of the genome 
is transcribed but only up to 2% of the human genome serve 
as blueprints for proteins.2-6 RNA molecules that lack protein-
coding potential are collectively referred to as non-coding RNAs 
(ncRNAs) and well-known ncRNAs are classical “housekeep-
ing” RNAs, such as tRNAs (tRNAs), rRNAs (rRNAs), small 
nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs), 
which are constitutively expressed and play critical roles in pro-
tein biosynthesis.
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very limited. However, recently it became obvious that lncRNAs 
play an important role in regulating gene expression at various 
levels, including chromatin modification, transcription and post-
transcriptional processing.16,35 For example, the lncRNAs Xist 
(X inactive-specific transcript) or HOTAIR (HOX Antisense 
Intergenic RNA) interact with chromatin remodeling complexes 
to induce heterochromatin formation in specific genomic loci 
leading to reduced target gene expression.23,36-38 Long ncRNAs 
can also function by regulating transcription through a variety of 
mechanisms that include interaction with RNA binding proteins, 
acting as a co-activator of transcription factors, or repressing a 
major promoter of their target gene.39-41 In addition to chroma-
tin modification and transcriptional regulation, long ncRNAs 
can modulate gene expression at the post-transcriptional level 
or splicing level.42-44 In Figure 1 we provide an overview about 
lncRNA functions. However, this is only a snapshot of our cur-
rent knowledge and more functional insights might be obtained 
in the future. Consequently, if we want to fully understand the 
complex mechanisms underlying malignant processes, e.g., car-
cinogenesis, metastasis and drug resistance, we need to consider 
this family of regulatory transcripts that add a new layer of com-
plexity to biology.

Hallmarks of Cancer: The Basics

Cancer is one of the leading causes of death worldwide and 
accounted for 7.6 million (13% of all deaths) in 2008.45 In the 
US, for example, lifetime probability of developing cancer is 
~44% for men or ~38% for women, respectively.46 Determining 
the causes of cancer is a complex issue, but well-known risk fac-
tors are alcohol and tobacco abuse, infections, radiation, obesity 
and a lack of physical activity.

Although “cancer” comprises a heterogeneous group of dis-
eases, one characteristic and unifying feature is the creation of 
abnormal cells that grow beyond their natural boundaries. In 
2000, Hanahan and Weinberg proposed six hallmarks of cancer 
that all together form the fundamental principle of this malig-
nant transformation.47 Since tumor formation is a multistep 
process, normal cells evolve progressively to the neoplastic stage 
and along their way they acquire particular capacities that enable 
them to become tumorigenic. These basic hallmark capabilities, 
distinct and supplementary, are: (1) sustaining proliferative sig-
naling; (2) evading growth suppressors; (3) enabling replicative 
immortality; (4) activating invasion and metastasis; (5) inducing 
angiogenesis and (6) resisting cell death. Over the last decade, 
remarkable progress was made in the field of cancer research 
which led to a better understanding of these hallmark capabili-
ties, but also led to modifications and, ultimately, expansions of 
the original concept.48

In this review, we would like to further expand our thinking 
of the causes and consequences of cancer by introducing long 
ncRNAs into cancer biology. Thus, we will first summarize the 
conceptual basis of each hallmark and, second, highlight latest 
findings that connect lncRNAs with these fundamental capaci-
ties. Moreover, we will point out new areas of cancer research 
by including lncRNAs into basic scientific questions. Finally, we 

Long ncRNAs: What, Where and Why?

According to their size, ncRNAs are subdivided into two groups: 
small ncRNAs (< 200 nt) and long ncRNAs. In recent years, 
small ncRNAs like microRNAs (miRNAs), small interfering 
RNAs (siRNAs) or PIWI-interacting RNAs (piRNAs) received 
most attention and especially miRNAs were shown to play many 
important roles in cancer.7-9 However, it has become increas-
ingly clear that mammalian genomes encode also numerous 
long ncRNAs, defined as endogenous cellular RNAs of more 
than 200 nucleotides in length that lack an open reading frame 
of significant length (less than 100 amino acids).10-13 Therefore, 
long ncRNAs (lncRNAs) constitute a very heterogeneous group 
of RNA molecules that allows them to cover a broad spectrum 
of molecular and cellular functions by implementing different 
modes of action.

Originally, lncRNAs were discovered via large-scale sequenc-
ing of full-length cDNA libraries in the mouse.14 Other names 
such as large RNA, macroRNA and long intergenic ncRNA (lin-
cRNA) are also used to refer to these. LncRNAs often overlap 
with or are interspersed between coding and non-coding tran-
scripts.4,15,16 From a genetic point of view long, ncRNAs fall into 
one or more of five broad categories: (1) sense or (2) antisense, 
when overlapping one or more exons of another transcript on the 
same or opposite strand, respectively; (3) bidirectional, when the 
expression of it and a neighboring coding transcript on the oppo-
site strand is initiated in close genomic proximity, (4) intronic, 
when derived from an intron of a second transcript; or (5) inter-
genic, when it lies as an independent unit within the genomic 
interval between two genes.12

Several studies were conducted to identify lncRNAs in the 
human genome.17-24 A recent study identified 5,446 lncRNA 
genes in the human genome and combined them with long 
ncRNAs from four published sources to derive 6,736 long 
ncRNA genes.25 This study also investigated the protein-cod-
ing capacity of known genes overlapping with lncRNAs and 
revealed that 62% of known genes with “hypothetical protein” 
names lacked protein-coding capacity and this might even fur-
ther enlarge the catalog of human lncRNAs.

For the vast majority of these recently discovered lncRNAs, 
the cellular function needs to be elucidated. For each individual 
molecule, it needs to be established whether it executes impor-
tant functions or whether it just represents “transcriptional noise” 
or background transcription. Very convincing arguments that 
support the idea of functional relevance are conservation and 
regulation. In fact, some lncRNAs show clear evolutionary con-
servation or strict regulation, implying that they are of functional 
importance.26-29 In addition, some transcripts are derived from 
ultra-conserved genomic regions (UCR) and these T-UCRs can 
be altered in human cancer.30,31

Also, long ncRNAs are often expressed in a disease-, tis-
sue- or developmental stage-specific manner making these 
molecules attractive therapeutic targets and pointing toward 
specific functions for lncRNAs in development and diseases.32-34 
Nevertheless, our knowledge of how lncRNAs can act in the cell 
and which roles they might play in diseases, e.g., cancer is still 
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cascades that enable them to be more or less independent of pro-
liferation signals, which results in unlimited growth. To achieve 
this independency, tumor cells acquired the capability to sustain 
proliferative signaling in multiple ways: (1) They produce their 
own growth factors and the corresponding receptor molecules 
themselves resulting in autocrine stimulation. (2) They might 
also produce paracrine signals to stimulate normal, tumor-associ-
ated cells (tumor stroma) which in turn produce various growth 
factors to support the cancer cells. (3) Moreover, growth factor 
receptor levels could be elevated or the receptor signaling cascade 
could be altered, making cancer cells hyperresponsive. (4) Last 

will introduce new therapeutic concepts that focus on lncRNAs 
as treatment targets.

Hallmarks of Cancer: Adding Long ncRNAs

Sustaining proliferative signaling. One of the most prominent 
characteristics of a cancer cell is its ability to proliferate con-
stantly and in the absence of external stimuli. Normal cells care-
fully manage the production of growth promoting or inhibiting 
factors to ensure a tight control of cell number, tissue architecture 
and function. In contrast, tumor cells show deregulated signaling 

Figure 1. Cellular functions of long ncRNAs. LncRNAs can act in diverse ways in the cell. In general, they can regulate gene expression, influence 
protein localization (D) and are important for the formation of cellular substructures or protein complexes, where they fulfill scaffolding functions (C; 
H).199 Regulating gene expression is one of the best studied functions of lncRNA and multiple mechanisms are applied by lncRNAs. (A) LncRNAs could 
be processed into small, single- or double-stranded RNAs that could act as endo-siRNAs targeting other RNAs, which subsequently leads to target 
degradation. (B) LncRNAs can act as “miRNA sponge” and sequester miRNAs to inactivate these small regulatory RNAs. This influences the expression 
of miRNA target genes.200 (D) The interaction of lncRNAs with proteins can modulate protein activity and localization. For example, the lncRNA NRON 
(non-coding repressor of NFAT) binds to the cellular transcription factor NFAT (nuclear factor of activated T cells). This regulates nuclear-cytoplasmic 
trafficking of NFAT and finally leading to an repression of NFAT target gene expression.201 (E) Furthermore, lncRNA regulate gene transcription via 
recruiting transcription factors to their target gene promoters, therefore activating gene expression.39 However, they can also block binding of general 
transcription factors, potentially via formation of RNA-DNA-Triplexes.40 (F) LncRNAs contribute to transcriptome complexity, as they can regulate alter-
native splicing of pre-mRNAs.42 (G) The balance between transcriptional active euchromatin and silent heterochromatin is controlled by lncRNAs. They 
can interact with chromatin remodeling complexes and induce local or global changes in chromatin packaging.23,202
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RNA as a multi-functional molecule and not only an intermedi-
ate for protein synthesis.

In addition to SRA, there are several other long ncRNAs 
recently discovered which have a role in cell proliferation. In 
an exemplary study, Prensner et al. applied RNA-Seq technol-
ogy and identified 121 differentially expressed long ncRNAs in 
prostate cancer whose expression patterns distinguished benign, 
localized and metastatic prostate cancer.22 Moreover, they char-
acterized one long ncRNA, PCAT-1 (prostate cancer associated 
transcript 1), in more detail. PCAT-1 was highly upregulated in 
a subset of metastatic and high-grade localized prostate cancers. 
To further explore the functional role of this novel ncRNA, over-
expression and knockdown experiments were performed, which 
resulted in a modest increase in cell proliferation in case of stable 
overexpression and consistently a reduced proliferation rate (25–
50%) after siRNA-mediated depletion. Gene expression profiling 
after knockdown of PCAT-1 in LNCaP cells identified 255 genes 
upregulated and 115 genes downregulated by the loss of PCAT-1. 
Gene ontology analysis of the upregulated genes showed enrich-
ment for gene sets associated with mitosis and cell cycle, whereas 
the downregulated genes had no significant associations. Taken 
together, these results suggest that PCAT-1 functions as tran-
scriptional repressor for a subset of genes and thereby might con-
tribute to prostate cancer progression.

A further example of an lncRNA impacting cell proliferation 
is introduced by a novel role for the well-known small nuclear 
RNA 7SK, also known as RN7SK. A key function of this 
ncRNAs is the regulation of transcription elongation via bind-
ing to the positive transcription elongation factor b (P-TEFb) 
which abolishes its positive effect on RNA Polymerase II tran-
scription elongation.62,63 Now, HMGA1, a transcription factor 
and chromatin regulator, was identified as a novel 7SK interac-
tion partner.64 HMGA1 (high mobility group AT-hook 1) itself 
shows high expression levels in both, embryonic and transformed 
neoplastic cells.65,66 In this recent study, 7SK RNA was shown to 
interact with HMGA1 and compete with its binding to DNA. 
This, in turn, has an impact on HMGA1 target gene expression 
affecting also growth-related genes. This again shows the diverse 
mechanistic functions of lncRNAs and underlines the need to 
develop new methods to identify and analyze these transcripts 
in more detail.

Finally, a recent study identified 216 putative long ncRNAs 
derived from promoter regions of cell cycle genes.67 Many of 
these transcripts showed periodic expression during the cell cycle 
and an altered expression in human cancers. Their expression is 
regulated by specific oncogenic stimuli, stem cell differentiation 
or DNA damage and future work will elucidate their molecular 
functions and their role in cancer cell proliferation.

Taken together, the newly discovered long ncRNAs are more 
and more recognized as active molecules instead of “transcrip-
tional noise” and evidence is accumulating that some of them 
have critical roles in carcinogenesis by influencing tumor cell 
proliferation.

Evading growth suppressors. A highly complementary hall-
mark capability for sustaining proliferative signaling in cancer 
cells is the ability to evade growth suppression. Several tumor 

but not least, cancer cells could become completely independent 
from exogenous growth factors, because of constitutive activation 
of downstream signaling pathways or the disruption of negative-
feedback mechanisms.

With this in mind, we can now ask the question: Which roles 
do long ncRNAs play here? A first answer to this arises from 
hormone signaling, especially sex steroid hormone signaling. 
Estrogen, progesterone and androgen are well-known hormones 
targeting female mammary glands, ovary and uterus or the male 
testis and prostate gland. They exert their functions in these 
tissues through the specific interaction with their intracellular 
receptors, the estrogen receptor (ER), the progesterone receptor 
(PR) and the androgen receptor (AR). This regulates target gene 
expression, as these receptors function as transcription factors 
and the abnormal expression or function of these receptors has 
been implicated in tumors of reproductive organs in both, males 
and females.49 As for many other transcription factors, the activ-
ity of these receptors is influenced by additional factors, so called 
coactivators or corepressors. While coactivators enhance the 
transcriptional activity, corepressors block their activity resulting 
in a complex interplay underlying coordinated gene expression. 
Changes in the expression level or pattern of these coactivators 
and corepressors can affect transcriptional activity of the ste-
roid hormones and subsequently cause disorders of their target 
tissues.50-52

A unique coactivator for the steroid receptors PR, ER, GR 
(glucocorticoid receptor) and AR is the steroid receptor RNA 
activator (SRA). SRA acts as an ncRNA.53 It is part of an RNA-
protein complex containing also SRC-1 and it fulfills its trans-
activation function through the AF-1 domain of the nuclear 
receptors. SRA expression can be detected in normal and malig-
nant human mammary tissues. Interestingly, elevated levels of 
SRA are found in breast tumors and the increased SRA levels 
might contribute to the altered ER/PR action that occurs dur-
ing breast tumorigenesis.54 However, recent progress in this field 
has revealed a more complex situation: the SRA1 gene might 
not only act as an ncRNA but also produces a protein that acts 
as a coactivator or corepressor, as well.55,56 Alternative splicing 
balances the ratio of non-coding and coding transcripts derived 
from the SRA1 gene.57 This balance of transcripts not only char-
acterizes specific tumor phenotypes but might also be involved 
in breast tumorigenesis and tumor progression by regulating 
the expression of specific genes.58 This duality of RNA tran-
scripts and the concept of coding and non-coding functions add 
another level of complexity and should be considered to gain 
deeper insights into complex regulatory circuits. In line with 
this concept, a recent report presented a novel, coding-indepen-
dent function for the p53 mRNA.59 Usually, the E3 ubiquitin 
ligase Mdm2 is a negative regulator of p53 protein expression. 
However, Mdm2 bound to p53 mRNA shows a different activ-
ity: it promotes p53 expression following genotoxic stress. This 
is achieved because the p53 mRNA binding to Mdm2 controls 
Mdm2 SUMOylation and nuclear trafficking and the accumu-
lation of Mdm2 in nucleoli. This plays an important role in p53’s 
capacity to respond to DNA damage.60,61 These two examples 
emphasize the importance of being open-minded and reflect 
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ANRIL interacts with SUZ12 (suppressor of zeste 12 homolog), 
a subunit of the polycomb repression complex 2 (PRC2) and 
recruits the complex to repress the expression of p15 (INK4B), 
a well-known tumor suppressor gene. Moreover, the depletion 
of ANRIL increases the expression of p15(INK4B) and inhibits 
cellular proliferation. A similar study identified CBX7 (chromo-
box homolog 7), a subunit of the polycomb repressive complex 1 
(PRC1) as molecular interaction partner of ANRIL. This results 
in the recruitment of PRC1 to the p16(INK4A)/p14(ARF) 
locus and subsequent silencing of this gene locus by H3K27-
trimethylation.76 Both, CBX7 and ANRIL show elevated levels 
in human prostate cancer corroborating the importance of this 
interaction for tumor development. In line with these findings, a 
recent study from Jeannie T. Lee’s lab identified > 9,000 PRC2-
interacting RNAs via RIP-Seq (RNA immunoprecipitation and 
sequencing) technology in embryonic stem cells making it very 
likely that more and more genes will be identified that are regu-
lated by the ncRNA-mediated recruitment of PRC2 and it will be 
interesting to see how this relates to carcinogenesis.38 However, 
an unanswered question so far is how ncRNAs can specifically 
recruit these silencing machineries to only a subset or even only 
one specific gene.

In addition to these active oncogenic functions of long ncRNAs 
there are also tumor suppressor functions assigned to them. One 
very famous example is the ncRNA GAS5 (Growth Arrest-Specific 
5). It was originally identified based on its increased levels in 
growth-arrested mouse NIH3T3 fibroblasts.77 Conversely, GAS5 
expression is strongly reduced in actively growing leukemia cells 
or NIH3T3 cells and in turn increases after density-induced cell 
cycle arrest.78 The human GAS5 gene is transcribed from chromo-
some 1q25.1 and is alternatively spliced. Its exons contain a small 
and poorly conserved open reading frame that does not encode a 
functional protein.79,80 GAS5 is a host gene for multiple snoRNAs, 
which are located in the introns and may mediate important bio-
logical activities.81 In contrast to SRA, GAS5 functions as a “ribo-
repressor”: the ncRNA interacts with the DNA binding domain of 
the glucocorticoid receptors, thus competing with the glucocorti-
coid response elements in the genome for binding to these recep-
tors. This suppresses the induction of several responsive genes 
including cellular inhibitor of apoptosis 2 (cIAP2) and ultimately 
sensitizes cells to apoptosis.82 Moreover, GAS5 expression induces 
growth arrest and apoptosis independently of other stimuli in 
some prostate and breast cancer cell lines.83 Interestingly, the inhi-
bition of mammalian Target Of Rapamycin (mTOR) pathway via 
Rapamycin depends on GAS5. The mTOR pathway plays a criti-
cal role in control of cell growth and regulates cellular protein syn-
thesis and proliferation.84,85 Downregulation of GAS5 by RNA 
interference protects both leukemic and primary human T cells 
from the anti-proliferative effect of Rapamycin, suggesting that 
GAS5 might—directly or indirectly—be required.86 How do can-
cer cells cope with this tumor-suppressive ncRNA? Breast cancers 
show a significantly lower GAS5 expression compared with nor-
mal breast epithelial tissues.83 In addition, genetic aberrations of 
the GAS5 locus have been found in many types of tumors includ-
ing melanoma, breast and prostate cancers but their functional 
significance still needs to be established.87-89

suppressive protein-coding genes that operate in diverse ways to 
inhibit cellular growth and proliferation had been discovered, 
e.g., Tp53, PTEN or RB. Activation of these tumor suppressor 
genes depends on external or internal stimuli and can either lead 
to cell cycle arrest or might induce senescence and even apop-
tosis in cells. Therefore, tumor cells must find a way to prevent 
their activation or expression. One mechanism how cancer cells 
deal with this is the complete loss of the tumor suppressor gene 
or the accumulation of mutations that render this gene inac-
tive. In fact, more than 50% of human tumors contain a muta-
tion or deletion of the Tp53 gene and people who inherited only 
one functional copy of the Tp53 gene will most likely develop 
tumors in early adulthood, a disease known as Li-Fraumeni syn-
drome.68 Alternatively, tumor suppressor genes could also bind 
to other proteins expressed in tumor cells and therefore become 
inactivated or rapidly degraded. One such example is given by 
the human papilloma virus (HPV) oncogenes E6 and E7, which 
are preferentially expressed in human cervical cancers. They 
interact with Tp53 and RB, which leads to their inactivation.69 
Also, Mdm2 as mentioned earlier is the predominant E3 ubiq-
uitin ligase of Tp53 and therefore induces its degradation via the 
proteasome.70

In addition to these mechanisms, cancer cells have developed 
alternative ways to inhibit tumor suppressor functions with the 
help of long ncRNAs. For instance, five human ncRNA frag-
ments interact with the tumor suppressor PSF.71 The PSF protein 
represses transcription of proto-oncogenes via binding to their 
regulatory regions. It contains a DNA-binding domain and two 
RNA-binding domains that bind VL30-1 RNA in mice, which 
leads to the release of PSF from a repressed proto-oncogene and 
activates transcription of the latter ones.72-74 However, VL30-1 
RNA is not encoded in the human genome and Li et al. aimed 
at identifying human RNA counterparts that interact with PSF 
protein.71 In their screen, they found five RNA fragments associ-
ated with PSF and releasing it from the human proto-oncogene 
GAGE6 regulatory region resulting in an activation of GAGE6 
expression. Overexpression of these RNA fragments in a human 
melanoma cell line led to an enhanced tumorigenic phenotype. 
In an additional experiment, the relative amounts of the PSF-
binding RNAs were determined in two human fibroblast cell 
lines and nine human tumor cells. Each tumor cell line expressed 
higher levels of PSF-binding RNAs compared with normal 
human fibroblasts. The pattern of expression differed among 
the tumor lines, suggesting that different groups of PSF-binding 
RNAs contribute to the tumorigenicity of each tumor cell line. 
Interestingly, the amount of PSF mRNA was not changed in 
eight out of nine tumor cell lines compared with fibroblasts, 
suggesting that not a decrease of PSF protein contributes to the 
tumorigenicity of human tumor cells but rather the increased 
expression of its interacting RNAs. Future work should therefore 
focus on protein-RNA interactions and reveal their molecular 
consequences.

A completely different mode of action is executed by the 
long ncRNA ANRIL (antisense non-coding RNA in the INK4 
locus) to block the activity of tumor suppressor genes.75 Instead 
of competing with DNA for binding to the repressor protein, 
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end of the chromosomes. (II) The remaining 10% of all tumor 
cells employs alternative lengthening of telomeres (ALT), a non-
conservative telomere lengthening pathway involving the transfer 
of telomere tandem repeats between sister chromatids.95-98 The 
exact mechanism of the ALT pathway still needs to be uncovered. 
However, it could be shown that ALT cells produce abundant 
t-circles, possible products of intratelomeric recombination and 
t-loop resolution providing mechanistic insights.99,100

Interestingly, the major pathway involving telomerase criti-
cally depends on an ncRNA. The telomerase holoenzyme con-
sists of a protein component, a reverse transcriptase named 
TERT (Telomerase Reverse Transcriptase) and an RNA primer, 
also known as TERC (Telomerase RNA Component) or TR 
(Telomerase RNA).101 The telomeric RNAs are highly divergent 
between different species, varying in both size and sequence com-
position, from: 150 nt in ciliates and: 450 nt in vertebrates up to: 
930–1,300 nt in the budding yeast. Telomere synthesis involves 
TERT-catalyzed reverse transcription of a small template region 
within TERC making it essential for immortalization. Not 
astonishing, the TERC gene is amplified in several human can-
cers, thus making it a potential target for therapeutic inhibitors 
of telomerase activity in cancer cells.102-104 For a more detailed 
discussion on TERC structure and function please see refer to 
Theimer and Feigon.105 For a more comprehensive summary on 
telomerase structure and function the interested reader is referred 
to Wyatt, West and Beattie.106

TERC is not the only RNA associated with telomeres. 
Recently, a group of long ncRNAs was discovered and named 
TERRA (telomeric repeat-containing RNA).107-109 TERRA 
transcripts are derived from several subtelomeric loci. Telomere 
transcription is an evolutionarily conserved phenomenon in 
eukaryotic cells suggesting functional importance.110 TERRA 
localizes to telomeres and is involved in telomeric heterochroma-
tin formation.111 TERRA is thought to be a negative regulator 
of telomerase, which may act globally or at individual telomeres 
as a direct inhibitor of the telomerase enzyme.112 HnRNP A1 
is a protein interaction partner of TERRA and together with 
POT1 (protection of telomeres 1), they act in concert to displace 
RPA (replication protein A) from telomeric ssDNA after DNA 
replication to promote telomere capping and preserve genomic 
integrity.113 Reduction of TERRA transcription is necessary 
for telomerase-mediated telomere lengthening which may link 
TERRA to cancer. Telomerase-positive cancer cells with high 
levels of subtelomeric methylation display low levels of TERRA 
compared with matched ALT-positive cancer cells or normal 
cells.114 Moreover, when cell extracts are incubated with an excess 
of synthetic RNA oligonucleotides mimicking TERRA, telomer-
ase activity is inhibited.109 However, a deregulation, silencing or 
mutation of TERRA in human cancer remains to be discovered. 
For a more detailed overview about TERRA the interested reader 
is referred to Caslini.110

Taken together, both introduced ncRNAs, TERC together 
with TERT forming a functional ribozyme and TERRA, which 
comprises a group of ncRNA transcripts, demonstrate once more 
the broad biological importance of long ncRNAs—here as regu-
lators of genome stability and replication.

However, GAS5 is not the only ncRNA with growth-suppres-
sive functions. John Rinn and colleagues identified several novel 
ncRNAs by asking how the transcription factor Tp53 can do both, 
activate and repress gene expression.28 One answer to this ques-
tion was given by the discovery of lincRNA-p21. This ncRNA is 
a direct p53 target gene residing next to the p21 (Cdkn1a) gene 
on mouse chromosome 17. Its expression is activated upon DNA 
damage in different tumor models. LincRNA-p21 associates with 
hnRNP K, a well-known RNA binding protein and hnRNP K 
acts as a transcriptional repressor. LincRNA-p21 mediates the 
binding of hnRNP K to its target genes, which finally leads to 
gene silencing and the induction of apoptosis. However, this study 
was conducted in mice and although lincRNA-p21 seems to be 
conserved and is also induced in human fibroblasts after DNA 
damage induction, it needs to be determined, whether a similar 
mechanism can be found in normal human cells. Moreover, it 
will be interesting to see how human cancers regulate this tumor 
suppressive ncRNA, especially in Tp53-positive cancers that 
show an intact Tp53 response.

Interestingly, the expression of the tumor suppressor p21 
is regulated by at least one other non-coding RNA transcript. 
Kevin Morris and coworkers found that transcriptional activa-
tion of p21 gene depends on the post-transcriptional silencing of 
a p21-specific antisense transcript, which functions in Argonaute 
1-mediated transcriptional control of p21 mRNA expression.90 In 
human cells, this bidirectional transcription could be an endog-
enous gene regulatory mechanism whereby an antisense RNA 
directs epigenetic regulatory complexes to a sense promoter, 
resulting in RNA-directed epigenetic gene regulation. The epi-
genetic silencing of tumor suppressor genes, such as p21, may be 
the result of an imbalance in bidirectional transcription levels 
and this imbalance allows the antisense RNA to direct silent state 
epigenetic marks to the sense promoter, resulting in stable tran-
scriptional gene silencing.

In summary, these examples clearly demonstrate a role for 
long ncRNAs in evading growth suppressors and tumor cells 
must find ways to circumvent both, the activation of protein and 
non-protein tumor suppressor genes.

Enabling replicative immortality. In line with the first two 
hallmarks of cancer and closely related to proliferation is the 
third trait of cancer: unlimited replicative potential. In con-
trast to normal cells that are able to pass through only a limited 
number of cell division cycles, tumor cells show nearly unlim-
ited replication. In normal cells, replication potential is limited 
due to the appearance of either senescence or crisis with the lat-
ter one finally ending in cell death. The chromosome ends, the 
telomeres, are crucial for this replication limit.91,92 In vertebrates, 
these sequences are composed of multiple repeats of the hexanu-
cleotide “TTA GGG” and protect the ends of chromosomes from 
end-to-end fusions.93 However, in normal cells, these telomeric 
repeats shorten after each cell division and therefore the length 
of telomeric DNA dictates the number of cell division cycles.94 
The loss of these protective ends finally leads to crisis. Tumor 
cells have found two ways to circumvent the loss of telomeres: (I) 
About 90% of all human cancers express a specialized enzyme, 
called telomerase, which is able to add telomeric repeats to the 
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processed into a highly conserved tRNA-like small cytoplasmic 
RNA of 61 nucleotides that is broadly expressed in human tis-
sues.130 However, the function of this so-called mascRNA is so 
far unknown.

MALAT1 is retained in the nucleus and specifically localizes 
to nuclear speckles.29 These structures play a role in pre-mRNA 
processing and recently MALAT1 has been shown to regulate 
alternative splicing of pre-mRNAs by modulating the levels of 
active serine/arginine splicing factors.44 These factors regulate 
tissue—or cell-type specific alternative splicing in a concentra-
tion—and phosphorylation-dependent manner. Depletion of 
MALAT1 alters the processing of a subset of pre-mRNAs, which 
play important roles in cancer biology, e.g., Tissue Factor or 
Endoglin.131 This supports the hypothesis that MALAT1 could 
be a regulator of post-transcriptional RNA processing or modi-
fication. However, a recent study from the Rosenfeld lab indi-
cates additional functions for MALAT1 in the nucleus.132 Here, 
MALAT1 was shown to interact with the unmethylated form 
of CBX4 and this controls relocation of growth-control genes 
between polycomb bodies and interchromatin granules, places of 
silent or active gene expression respectively. Therefore, the exact 
mechanism of MALAT1 function is still a mystery and it seems 
not unlikely that this lncRNA might fulfill cell type- or tissue-
specific functions.

MALAT1 expression can be found in many healthy organs 
with the highest levels of expression in pancreas and lung.128 In 
several human cancers including lung cancer, uterine endometrial 
stromal sarcoma, cervical cancer and hepatocellular carcinoma 
(HCC), MALAT1 is upregulated.128,133-135 In addition, it is signif-
icantly associated with metastasis in NSCLC patients. This asso-
ciation with metastasis is stage- and histology-specific. Therefore, 
MALAT1 can serve as an independent prognostic parameter for 
patient survival in early stage lung adenocarcinoma.128 A recent 
study shed light onto the role of the metastasis marker MALAT1 
as a potentially active player in the metastatic process. MALAT1 
promotes cell motility of lung cancer cells through transcriptional 
or post-transcriptional regulation of motility-related genes.136 
Additionally, MALAT1 supports proliferation and invasion 
of cervical cancer cells and knockdown of MALAT1 in CaSki 
cells led to an upregulation of caspase-8 and -3 and Bax and the 
downregulation of Bcl-2 and Bcl-x

L
.133 Thus, both studies find a 

plethora of potential MALAT1 functions linked to proliferation, 
apoptosis, migration or gene regulation and future studies will 
have to unravel the specificity of these effects. Since both stud-
ies were performed with individual siRNAs only and lack rescue 
experiments, further investigations are necessary to ensure the 
specificity of the observed effects and to corroborate the func-
tional importance of MALAT1 in carcinogenesis or metastasis. 
For this reason, we have recently developed a novel gene knockout 
strategy based on the stable bi-allelic integration of RNA destabi-
lizing elements into the human genome with the help of so called 
Zinc Finger Nucleases.129 This method yielded a highly specific 
and more than 1,000-fold reduction of MALAT1 expression in 
human A549 lung cancer cells and will allow deeper analysis of 
MALAT1 function in lung cancer and its role in migration and 
metastasis in a clean loss-of-function model.

Activating invasion and metastasis. The fourth hallmark 
capability, the ability to invade and form distant metastases, is 
a highly challenging one and underlies a plethora of complex 
interactions and regulatory mechanisms. It was noted decades 
ago that epithelial carcinomas of higher grade show a more inva-
sive phenotype and distant metastases and most patients die from 
these metastases and not from the primary tumor. Often, cancer 
cells undergo morphological alterations and change their cell-cell 
or cell-matrix interactions. All this enables them to successfully 
pass through the first steps of the multistep process of invasion 
and metastasis. This invasion-metastasis cascade comprises mul-
tiple biological changes that allow cancer cells to invade into 
healthy tissues, followed by intravasation into blood and lym-
phatic vessels.115,116 During their transit through the lymphatic 
system and blood circulation, cancer cells must escape immune 
surveillance and show anchorage-independent growth and sur-
vival. Next, cancer cells must extravasate from the vessels into 
their target tissues to form micrometastases and eventually lat-
eron a secondary tumor. Much progress was made over the last 
years and interesting concepts, e.g., the regulation of invasion 
by the developmental regulatory program known as “epithelial-
mesenchymal transition” (EMT) were put forward.117-119 Also, 
several important factors of this cascade had been identified. For 
example, E-cadherin (CDH1) is a key cell-to-cell adhesion mol-
ecule and helps to assemble epithelial cell layers. An increased 
E-cadherin expression therefore inhibits invasion and metasta-
sis formation. E-cadherin expression itself is regulated in mul-
tiple ways and involves also a natural antisense transcript (NAT) 
that regulates expression of Zeb2, a transcriptional repressor of 
E-cadherin.42 Not surprisingly, E-cadherin is frequently down-
regulated or inactivated in human carcinomas.120,121 In addi-
tion to E-cadherin, several other adhesion molecules that either 
mediate cell-to-cell or cell-to-matrix interactions are altered in 
some aggressive carcinomas. On the other hand, N-Cadherin 
(CDH2), which is found in migrating neurons and mesenchymal 
cells, is often upregulated in many invasive tumors. Besides these 
alterations within cancer cells, it becomes more and more obvi-
ous that also crosstalk between cancer cells and tumor stroma 
cells is required for this hallmark capability.122-125 Also, cells of 
the immune system contribute to this capability by supplying, 
e.g., matrix-degrading enzymes and in that way support inva-
sive tumor cell behavior.123,126,127 One of the major tasks for the 
future is to identify a “metastatic signature” of genes that support 
the invasion of tumor cells and facilitate the formation of distant 
metastases in specific tissues.

As depicted earlier, some protein factors with important func-
tions could already be identified. In addition, early work by Ji and 
Diederichs et al. established a role for long ncRNAs in metasta-
sis formation. They identified MALAT1 (Metastasis-Associated 
Lung Adenocarcinoma Transcript 1, MALAT-1), also later 
referred to as NEAT2 (Nuclear-Enriched Abundant Transcript 
2) as a prognostic marker for metastasis and patient survival 
in non-small cell lung cancer (NSCLC).128 This ncRNA is 
extremely abundant in many human cell types and is highly con-
served across several species underscoring its functional impor-
tance.44,129 Moreover, the 8 kb long MALAT1 transcript can be 
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process in wound healing and female reproductive cycling. An 
“angiogenic switch” is also turned on during tumor progression, 
which leads to continuous sprouting of new vessels that help to 
sustain tumor growth.141 To achieve this, tumor cells induce pro-
angiogenic factors or block antiangiogenic signals.142 Some of 
these angiogenic regulators are signaling proteins that bind to acti-
vating or inhibiting receptors present on the surface of endothe-
lial cells.143 One well-known activator of angiogenesis is VEGF-A 
(vascular endothelial growth factor-A), a secreted protein whose 
expression can be induced by hypoxia or oncogenic signals.144 Its 
effect could be counterbalanced by Thrombospondin-1, which 
also binds to transmembrane receptors displayed by endothelial 
cells.145 Thus, the expression of these factors needs to be tightly 
controlled and it is noteworthy that oncogenes like Ras and Myc 
contribute to proliferative signaling and angiogenesis. Therefore, 
it will be interesting to see, whether long ncRNAs with a role in 
cellular proliferation, as discussed above, will also play a role in 
tumor angiogenesis.

That long ncRNAs can also have functions in regulating 
the angiogenic process is becoming more and more evident. 
Nearly a decade ago, it was shown that αHIF, a natural anti-
sense transcript (NAT) complementary to the 3' untranslated 
region of the hypoxia inducible factorα (HIF1α), negatively reg-
ulates the expression of HIF1α, a critical regulator of angiogen-
esis.146,147 Overexpression of αHIF triggers HIF1α mRNA decay 
and HIF1α and αHIF constitute a negative feedback loop.148 
Interestingly, αHIF transcripts can be detected in several human 
tissues and cancers and αHIF is a marker for poor prognosis in 
breast cancer.146,147,149

However, αHIF is not the only antisense RNA associated with 
angiogenesis. Another NAT was discovered when studying the 
transcriptional unit of the human endothelial nitric-oxide syn-
thase (eNOS). The transcript was termed sONE or NOS3AS 
and it regulates the expression of eNOS in a post-transcriptional 
manner under normoxia and hypoxic conditions.150,151 In contrast 
to eNOS, sONE expression is detectable in a variety of cell types 
except endothelial cells. In tumors, protumorigenic agents, such 
as estrogen, induce eNOS expression and several cancer treat-
ment methods influence eNOS expression and activity.152 For a 
more detailed overview about eNOS function in cancer biology, 
please refer to Ying and Hofseth.153 At the moment it is a matter of 
debate, whether sONE really acts as RNA, because also a protein 
product derived from this RNA has recently been described.154

Finally, a very recent study identified an NAT for tyrosine 
kinase containing immunoglobulin and epidermal growth fac-
tor homology domain-1 (tie-1), tie-1AS.155 This long ncRNA is 
conserved in zebrafish, mouse and humans where it selectively 
binds to tie-1 mRNA in vivo and regulates tie-1 transcript levels, 
resulting in specific defects in endothelial cell contact junctions 
in vivo and in vitro. In addition, the ratio of tie-1 vs. tie-1AS is 
altered in human vascular-related disease states and it would be 
interesting to know if and how cancer cells can manipulate this 
ratio to achieve proper blood vessel formation.

The presented examples directly implicate long ncRNA-medi-
ated post-transcriptional regulation of gene expression as a fun-
damental control mechanism for physiological processes, such 

A second long ncRNA involved in cancer metastasis is known 
as HOTAIR (HOX Antisense Intergenic RNA). It was discov-
ered by the lab of Howard Chang as a 2.2 kb long ncRNA tran-
scribed in antisense direction from the HOXC gene cluster.23 The 
same study also revealed that HOTAIR functions in trans by 
interacting and recruiting the polycomb repressive complex 2 
(PRC2) to the HOXD locus which leads to transcriptional silenc-
ing across 40 kb. Later, HOTAIR was found to interact with 
a second histone modification complex, the LSD1/CoREST/
REST complex, which coordinates targeting of PRC2 and LSD1 
to chromatin for coupled histone H3K27 methylation and K4 
demethylation.37 Given its important role in the epigenetic regu-
lation of gene expression, it is not surprising that HOTAIR is 
deregulated in different types of cancer.36,137-139 In human breast 
cancer, HOTAIR expression is increased in primary tumors and 
metastases and its expression level in primary tumors positively 
correlates with metastasis and poor outcome. Overexpression of 
HOTAIR in epithelial cancer cells alters H3K27 methylation via 
PRC2 and therefore alters target gene expression. This leads to 
increased cancer invasiveness and metastases. On the other hand, 
HOTAIR depletion inhibits cancer invasiveness.36 In HCC, 
HOTAIR levels are increased compared with non-cancerous 
tissues and for those HCC patients, who received a liver trans-
plantation, high HOTAIR expression levels are an independent 
prognostic marker for HCC recurrence and shorter survival.137 
Similar to breast cancer, HOTAIR depletion in liver cancer cells 
reduces cell invasion and cell viability. Moreover, HOTAIR 
might be a potential biomarker for the existence of lymph node 
metastasis in HCC.140 In addition, HOTAIR suppression sen-
sitizes cancer cells to tumor necrosis factorα induced apoptosis 
and renders them more sensitive to the chemotherapeutic agents 
cisplatin and doxorubicin.137

These two examples indicate already the functional impor-
tance of long ncRNAs for the activation of invasion and 
metastasis formation. Hence, future studies should foster the 
identification of such transcripts, e.g., in the context of epithelial-
to-mesenchymal transition. LncRNAs could be important regu-
lated genes during EMT or act as possible regulators for other 
EMT-relevant genes. In addition, ncRNAs could be involved in 
the complex interplay of tumor cells with the tumor stroma or 
might also influence inflammatory cell behavior. HOTAIR and 
MALAT1 could regulate a broad subset of genes involved in can-
cer cell invasion and metastasis. So, these lncRNAs are on the 
one hand part of the “metastatic signature” of gene expression 
and on the other hand they contribute to shaping it.

Inducing angiogenesis. When cancer cells grow and prolifer-
ate, tumor mass and size increases. This process would be limited 
by the natural diffusion limit of oxygen and nutrients, if tumor 
cells would not acquire the fifth trait: the ability to induce angio-
genesis. The formation of new blood vessels, induced by tumor 
cells, secures not only a supply with nutrients and oxygen, but 
allows tumors to dispose their metabolic (toxic) wastes and enter 
the hematogenous metastatic process, as well. The processes of 
vasculogenesis and angiogenesis are usually restricted to embry-
onic development, but can become re-activated under specific 
conditions in adults. For example, angiogenesis is an important 
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promote their expansion. Necrotic cells can attract proinflam-
matory cells, which in turn can activate angiogenesis, cancer cell 
proliferation and invasiveness.161,163 Thus, more studies are neces-
sary to fully understand the double-edged nature of this process 
and how it can be manipulated to achieve a beneficial effect for 
the patient.

Maybe long ncRNAs can provide some insights here, as they 
were already shown to influence cell death decisions. Over a 
decade ago, PCGEM1 (Prostate-specific transcript 1) was iden-
tified as a prostate tissue-specific and prostate cancer-associated 
long ncRNA.164 Later studies provided some insights into its func-
tion. They ruled out a role for this ncRNA in cell proliferation 
and colony formation and established a function for this ncRNA 
in apoptosis inhibition after doxorubicin treatment of prostate 
cancer cells.33,165 The anti-apoptotic effect might result from a 
delayed induction of p53 and p21(Waf1/Cip1) after PCGEM1 
overexpression in LNCaP cells. In addition, cleaved caspase 7 
and cleaved PARP levels were strongly reduced after doxorubi-
cin treatment in PCGEM1 transfected cells compared to nor-
mal cells. This PCGEM1-associated delay in apoptotic responses 
seems to be androgen-dependent, as androgen-independent vari-
ants of LNCaP cells did not exhibit this delay.

However, PCGEM1 is not the only long ncRNA with anti-
apoptotic functions. A more global approach using differential 
display identified genes conveying drug resistance to cancer 
cells.166 This led to the discovery of CUDR (cancer upregulated 
drug resistant), an ncRNA that confers resistance to doxorubi-
cin and etoposide as well as drug-induced apoptosis in squamous 
carcinoma cells A431. One possible explanation for this function 
might be the observed downregulation of effector caspase 3 after 
CUDR overexpression.

A study from George Calin and Carlo Croce indicates that 
more long ncRNAs can be discovered that play a role in cell death 
control and that this might be an evolutionary conserved func-
tion.31 Their study identified several hundred transcripts derived 
from ultraconserved regions (T-UCRs), which are consistently 
altered at the genomic level in human leukemias and carcino-
mas. More importantly, they examined the biologic effect of the 
ncRNA uc.73A(P), a significant upregulated T-UCR in colon 
cancer. Depletion of this ncRNA resulted in reduced cellular 
proliferation of COLO-320 cells and an increase in sub-G1 cells, 
suggesting higher apoptosis rates. Thus, uc.73A(P) could act as 
an oncogene by increasing the number of malignant cells as a 
consequence of reduced apoptosis.

Another study shows that long ncRNAs have a plethora of func-
tions in tumorigenesis including apoptosis prevention.167 Here, 
several long ncRNA, which are differentially expressed in mela-
noma cell lines in comparison to melanocytes and keratinocytes 
had been discovered. One of these long ncRNAs, SPRY4-IT1, 
is derived from an intron of the SPRY4 gene. SPRY4-IT1 is pre-
dominantly localized in the cytoplasm of melanoma cells, and 
SPRY4-IT1 knockdown results in defects in cell growth, differ-
entiation and higher rates of apoptosis in melanoma cell lines.

Finally, DNA damage can induce five long ncRNAs from the 
p21 promoter, and one of these was named PANDA (P21 asso-
ciated ncRNA DNA damage activated).67 Further experiments 

as vascular development and show their importance for cancer 
development. Future work should focus on the identification of 
novel long ncRNAs regulated by or being involved in the “angio-
genic switch” of cancer cells. Most important questions are: (1) 
Can HIF1α, the major transcriptional regulator under hypoxic 
conditions, actively regulate long ncRNA expression? (2) Are 
lncRNAs involved in recruiting this transcription factor to its 
target genes? (3) Which signaling cascades can regulate lncRNA 
expression in endothelial or tumor cells, e.g., is VEGF signal-
ing involved? (4) Can lncRNAs act as second messengers, i.e., 
can they function in a cytokine-like way to activate or repress 
endothelial cells or other cells involved in tumor angiogenesis like 
immune cells? (5) Are long ncRNAs involved in signal transduc-
tion pathway relevant for blood vessel formation?

Finding answers to these and similar questions will broaden 
our view on the complex interplay between tumor cells and sup-
porting tumor stroma and could provide new anti-angiogenic 
treatment options.

Resisting cell death. The dream of immortality—for cancer 
cells it can come true, if they acquire the last hallmark capabil-
ity: resisting cell death. Three major pathways can lead to cell 
death and their activation must be carefully controlled by tumor 
cells. The first mechanism leading to controlled cell death is 
apoptosis. Apoptosis can be induced by various external as well 
as internal stimuli and several studies have shown how highly 
malignant cancers can attenuate apoptosis and become therapy 
resistant.156,157 Induction of DNA damage, e.g., by chemothera-
peutic agents (cisplatinum, etoposide, etc.,) is one way to trigger 
apoptosis via the Tp53 (p53) pathway. Tp53 induces the expres-
sion of pro-apoptotic proteins Noxa and Puma (p53-upregulated 
modulator of apoptosis) leading to cell death. As mentioned ear-
lier, 50% of all human cancers have either lost the Tp53 gene or 
show mutations.68 This makes them more resistant to such cellu-
lar stresses. Alternatively, tumors show an increased expression of 
survival factors or anti-apoptotic regulators like Bcl-2 and Bcl-x

L
. 

A second mechanism leading to controlled cell death is autoph-
agy. This mechanism usually operates at low levels in cells, but it 
can be activated by certain kinds of cellular stress, e.g., nutrient 
deficiency.158 Autophagy can be seen as a recycling program that 
allows cells to break down their organelles and to use the degra-
dation products to fuel biosynthesis pathways or use for energy 
production. Several regulatory components and effector proteins 
are known and the interested reader might refer to Levine and 
Kroemer and Mizushima.158,159 Interestingly, autophagy can have 
both, beneficial effects for cancer cells or block carcinogenesis. 
For example, mice lacking the Beclin-1 gene, a critical factor 
for autophagy induction, show increased susceptibility to can-
cer. The same holds true for other components of the autoph-
agy machinery.158,160 On the other hand, severely stressed cells 
shrink via autophagy to a state of reversible dormancy and this 
survival response might be the reason for cancer recurrence after 
therapy.160 The last mode of cell death is constituted by necro-
sis. Although often referred to as “uncontrolled” cell death, more 
and more evidence is accumulating that also necrosis is a con-
trolled process rather than an undirected way to die.161,162 Similar 
to autophagy, necrosis can do both—eliminate cancer cells or 
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Long ncRNAs: Future Challenges

Long ncRNAs have proven to be important regulators in health 
and disease. However, only individual examples have been 
functionally studied in detail so far and many important ques-
tions remain to be addressed. Biochemical analyses are needed 
to explore the functions and mechanisms of action of this 
novel class of biomolecules. This is where long ncRNAs raise a 
lot of challenges due to their mechanistic heterogeneity that is 
just beginning to emerge from the first discoveries in this field. 
However, a good way to start with are classical loss-of-function or 
gain-of-function studies using RNA interference to knockdown 
long ncRNAs, genetic loss-of-function models or overexpression. 
Subsequent analyses of tumor-relevant phenotypes such as prolif-
eration, migration, cell viability or apoptosis could provide first 
insights into ncRNA functions. However, RNA interference-
mediated loss-of-function studies should always be scrutinized 
to exclude frequent off-target effects and a validation of the phe-
notype specificity in rescue experiments reversing the phenotype 
by overexpression of the targeted gene should always be included. 
Furthermore, studying the localization of lncRNA can also pro-
vide valuable insights into its function. Establishing the cellular 
fraction, in which the lncRNA is normally present, can guide 
further analyses on the molecular function.

To unravel ncRNA mechanisms at the molecular level, iden-
tification of protein interaction partners of individual lncRNAs 
is informative and necessary to fully understand the mechanistic 

showed that PANDA acts in trans via interaction with the 
transcription factor NF-YA and limits the expression of pro-
apoptotic genes. Consequently, PANDA depletion markedly 
sensitized human fibroblasts to apoptosis by doxorubicin. In 
contrast, DNA damage can also lead to the activation of cis-
acting ncRNAs. Wang et al. showed that ncRNAs induced by 
DNA damage derive from regulatory regions of the human 
CCND1 promoter and bind to TLS (translocated in liposar-
coma) protein.41 TLS in turn inhibits cyclin D1 expression via 
interaction with and inhibition of CBP (CREB-binding pro-
tein) and p300.

Future studies, conducted to understand cell death regulation, 
will have to include long ncRNAs into the analyses to achieve a 
complete overview about activators and inhibitors of this impor-
tant cancer hallmark. Especially, the growing fields of autophagy 
and necrosis research are promising areas to unravel further func-
tions for long ncRNAs in healthy and malignant states.

All in all, the presented studies strongly emphasize the func-
tional importance of long ncRNAs and provide first mechanistic 
insights how long ncRNAs can contribute to the hallmark capac-
ities of cancer cells. A complete list with the herein described 
lncRNAs and additional examples can be found in Table 1. An 
extensive list of lncRNAs with a connection to cancer is provided 
in an overview article from Spizzo et al.168

Next, we want to provide a brief overview on what is needed 
for a better understanding of long ncRNA biology, including 
their discovery and functional analysis.

Table 1. LncRNAs and the hallmarks of cancer

Cancer Hallmark LncRNA Mode of action Reference

I. 
sustaining proliferative  

signaling

SRA 
PCAT-1 
RN7SK 

ncRNAs derived from cell cycle gene promoters 
KRASP1 

PR antisense

Transcriptional co-activator 
Regulating gene expression 

Regulating transcription 
Unknown 

miRNA sponge 
Regulating gene expression

53, 54, 58 
22 

62–64 
67 

203 
204

II. 
Evading growth suppressors

PSF-interacting RNA 
ANRIL 
GAS5 

lincRNA-p21 
E2F4 antisense

Modulating protein activity 
Chromatin remodeling 

Competitor 
Transcriptional co-repressor 
Regulating gene expression

71 
75, 76 

77–83, 86–89 
28 

205

III. 
Enabling replicative immortality

TERC 
TERRA

RNA primer 
Enzymatic inhibitor

101–103, 105 
107–114

IV. 
Activating invasion and  

metastasis

MALAT1 
HOTAIR 
HULC 
BC200

Modulating protein activity; sensor; scaffold 
Chromatin remodeling 

miRNA sponge 
Translational modulator

29, 44, 128–136 
23, 36, 137 

173, 174, 200 
206, 207

V. 
Inducing angiogenesis

αHIF 
sONE/NOS3AS 

tie-1AS 
ncR-uPAR

RNA decay 
RNA decay 
RNA decay 

Regulating gene expression

146–149 
150, 151, 154 

155 
208

VI. 
Resisting cell death

PCGEM1 
CUDR 

uc.73A(P) 
SPRY4-IT1 

PANDA 
LUST 
PINC

Regulating gene expression 
Regulating gene expression 

Unknown 
Unknown 

Modulating protein activity 
RNA-Splicing 

unknown

33, 164, 165 
166 
31 

167 
67 

209 
210
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metastases.173,174 PCGEM1, PCA3 (Prostate cancer gene 3) or 
PRNCR1 (prostate cancer non-coding RNA 1) are three long 
ncRNAs exclusively associated with prostate cancer.175-177 This 
makes them interesting candidates for tumor- and tissue-specific 
treatments and their expression can be used to identify unknown 
primary tumors. Moreover, long ncRNAs can also be used to dif-
ferentiate between subtypes of the same cancer.22,36 As ncRNAs 
can be easily detected from minute amounts, e.g., in biological 
fluids like blood and urine, using qRT-PCR amplification, they 
are of great diagnostic value. For example, HULC can be eas-
ily detected in the blood of HCC patients using qRT-PCR.174 
In addition, a quantitative PCA3 urine test with the potential 
for general use in clinical settings was developed; the ProgensaTM 
PCA3 urine test. This specific test can help patients who had 
a first negative prostate biopsy to avoid unnecessary repeated 
biopsies.178 Furthermore, lncRNA expression can correlate with 
patient response to chemotherapy and therefore can be seen 
as predictive marker. For example, the expression of the long 
ncRNA Xist strongly associates with the disease-free survival of 
Taxol-treated cancer patients.179 LncRNAs are also powerful pre-
dictors of patient outcome, e.g., MALAT1 can serve as an inde-
pendent prognostic parameter for patient survival in early-stage 
lung adenocarcinoma.128 The same is true for HOTAIR whose 
expression positively correlates with metastasis and poor outcome 
in primary breast tumors, gastrointestinal, hepatocellular and 
colorectal cancers.36,137,139,140

These few examples of long ncRNAs show already the great 
value of these newly discovered transcripts and it is highly likely 
that many other long ncRNA markers will be discovered in the 
near future. Hence, currently generated cancer genome data 
can only be fully exploited if also the non-coding content of the 
human cancer genome is studied in great detail—after all, it con-
stitutes the large majority of the genomic information! The more 
we learn about long ncRNA expression patterns in different types 
of cancer—as well as in healthy cells—the higher the chances for 
an improved diagnosis and better prognosis will be.

Finally, long ncRNAs are interesting targets in cancer therapy 
and especially their cancer- and tissue-specific expression could 
be a major advantage over other therapeutic options. In fact, anti-
tumor strategies that focus on RNA as target molecule are cur-
rently under development.

For example, ribonucleases, small proteins that can enter cells 
by endocytosis, translocate to the cyctoplasm where they evade 
mammalian protein nuclease inhibitors and degrade RNA. This 
can lead to cell death and can be used as anticancer therapy. One 
of these ribonucleases called Onconase, an amphibian nucle-
ase, even reached clinical trials.180,181 Onconase is very stable, 
less catalytically efficient but more cytotoxic than most RNase 
A homologs. It targets tRNA, rRNA, mRNA as well as miR-
NAs and therefore shows cytostatic and cytotoxic effects.182-186 
Treatment of cancer cell lines with Onconase leads to suppression 
of cell cycle progression, predominantly through G

1
, followed by 

apoptosis or cell senescence and Onconase even shows anticancer 
properties in animal models.187-189 Onconase sensitizes cells to a 
variety of anticancer modalities, suggesting its application as an 
adjunct to chemotherapy or radiotherapy.190-193

process accomplished by the ncRNA-based on the assumption 
that most ncRNAs will function in ribonucleoprotein complexes. 
A direct way to identify these proteins would be the application of 
RNA affinity purification, which uses the ncRNA as bait to fish 
out all putative important protein interaction partners. This could 
also be expanded to identifying ncRNA-interacting RNA or DNA 
molecules.169 These methods are of special interest as lncRNAs 
have been shown to play important regulatory roles and can 
function at the level of chromatin. To determine where lncRNAs 
bind to chromatin, two methods, called ChIRP and CHART, 
have been developed recently using complementary oligonucle-
otides to pull down lncRNAs associated with chromatin.170,171 
Alternatively, RNA immunoprecipitation-sequencing (RIP-
Seq) or PAR-CLiP (Photoactivatable-Ribonucleoside-Enhanced 
Crosslinking and Immunoprecipitation) represent complemen-
tary approaches to study RNA-protein interactions.172 Here, all 
RNAs that bind to a specific protein of interest are pulled down 
to identify substrate, target or regulator RNAs—either coding 
or non-coding. Expanding RIP-based analysis to long ncRNAs 
will help to create an experimentally documented RNA-protein 
interactome atlas, including both coding and non-coding tran-
scripts. Such atlas can be a helpful guide for in-depth studies on 
the functions of each long ncRNA.11

Besides their molecular analysis, long ncRNA expression pat-
terns should be further analyzed with genome-wide approaches, 
especially to discover these molecules in a wide variety of human 
diseases, e.g., cancers. This could be achieved by microarray-
based profiling, deep sequencing or RNA-Seq followed by care-
ful and detailed validation of the expression and sequencing data 
by qRT-PCR (quantitative polymerase chain reaction), Northern 
Blotting and Rapid amplification of cDNA ends techniques.

Long ncRNAs specifically expressed or silenced in human 
cancers could play an important role in these cancer entities and 
therefore might represent novel therapeutic target genes. Thus, in 
the last paragraph we will introduce several novel approaches in 
cancer therapy that target RNA molecules or make use of their 
tumor-specific expression. In addition, we will outline promising 
concepts to interfere with ncRNA function or expression, which 
could become beneficial in cancer therapy.

Fighting Cancer: Are ncRNAs a New Answer?

Currently, cancer therapy is greatly hampered by many diffi-
culties, e.g., specific targeting of cancer cells without interfer-
ing with normal tissue function, specific delivery of antitumor 
drugs, and in case of carcinoma of unknown primary, exact 
characterization of the malignancy. Here, long ncRNAs could 
offer a number of advantages, both as diagnostic and prognostic 
markers but also as novel specific therapeutic targets. The lat-
ter, of course, first requires detailed knowledge about the tumor-
specific ncRNA function and its requirement for essential cancer  
cell properties.

For instance, the long ncRNA HULC (highly upregulated in 
liver cancer) is a liver-specific RNA that is highly expressed in 
primary liver tumors and hepatic metastases of colorectal carci-
noma, but is not found in primary colon cancers or in non-liver 



714	 RNA Biology	 Volume 9 Issue 6

molecule inhibitors that mask the binding site in protein inter-
action partners or antagonistic oligonucleotides that bind to 
the ncRNA and therefore hinder proteins from binding. (3) As 
long ncRNA function is most likely attributed to their second-
ary structure, one could develop methods to efficiently disrupt it. 
Again, small molecule inhibitors could be developed, e.g., via sys-
tematic evolution of ligands by exponential enrichment, which 
bind to lncRNAs and change their secondary structure or mimic 
their secondary structure and compete for their binding partners. 
Also, antagonistic oligonucleotides could target a specific region 
of the ncRNA and block its correct folding. (4) Once we have 
understood how ncRNAs can specifically recruit chromatin-
remodeling complexes to specific genes, we could make use of 
this by creating artificial ncRNAs with pre-designed targeting 
specificities. With this, one could silence driving oncogenes, e.g., 
Ras or Myc at the genomic level in cancer cells.

However, before we can make use of these new therapeutic 
options many more functional and structural studies are neces-
sary to fully understand long ncRNA biology—even for indi-
vidual examples. At the moment, we are just taking our first steps 
on the road to understanding the role of long ncRNAs in cancer. 
But as we move forward, we will discover new ncRNAs and find 
out more about their importance in cancer, which will inevitably 
help us to design better therapeutic agents. Given the exponen-
tially growing number of newly discovered long ncRNAs, many 
great discoveries may be expected in this field strongly encourag-
ing basic science as well as clinical research in this exciting field.
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In addition to this general approach that targets all cellular 
RNAs, there are currently new strategies under development 
that make use of the cancer- or tissue-specific expression of long 
ncRNAs to reduce the risk of affecting normal tissues during 
genetic treatment. For example, the expression of the lncRNA 
H19 is increased in a wide range of human cancers. A plasmid, 
BC-819 (DTA-H19), has been developed to make use of this 
tumor-specific expression of H19. The plasmid carries the gene 
for the A subunit of diphtheria toxin under the regulation of the 
H19 promoter. Intratumoral injections of this plasmid induce the 
expression of high levels of diphtheria toxin specifically in the 
tumor resulting in a reduction of tumor size in human trials. 
Recent studies have yielded encouraging results in a broad range 
of carcinomas including NSCLC, colon, bladder, pancreatic and 
ovarian cancers.194-198

Alternatively, one could also think about manipulating the 
expression of specific tumor-suppressive long ncRNAs that were 
discussed earlier:

GAS5 expression induces growth arrest and apoptosis inde-
pendently of other stimuli in some prostate and breast cancer cell 
lines.83 Therefore, finding a way to induce GAS5 expression in 
tumors or designing a vector that would induce the expression of 
GAS5 when injected into the tumor might provide an attractive 
therapeutic approach. The same holds true for TERRA, a nega-
tive regulator of telomerase.114 A potential therapeutic strategy in 
telomerase-positive cancer cells would be to enhance TERRA 
expression or to administer synthetic TERRA mimics.

A supplementary approach would target oncogenic long 
ncRNAs that show an increased expression in cancer. Here, one 
could block their activity via multiple ways: (1) One could try to 
decrease their expression. This is not a trivial task and silencing 
of long ncRNA expression via siRNAs can be complicated, pos-
sibly because of the extensive secondary structure or intracellular 
localization. Therefore, our lab has developed a specific approach 
that highly efficiently silences lncRNA expression via genomic 
integration of RNA destabilizing elements.129 This approach 
could be of special interest for blood-borne diseases where one 
could modulate the patient’s genome in hematopoietic stem cells 
and use these “corrected” cells for gene therapy. (2) One could 
block molecular interactions and therefore functionally silence 
lncRNAs. This could be achieved via application of either small 
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