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Abstract
Human herpesvirus 6A (HHV-6A) and 6B (HHV-6B) are ubiquitous betaherpesviruses that

infects humans within the first years of life and establishes latency in various cell types.

Both viruses can integrate their genomes into telomeres of host chromosomes in latently

infected cells. The molecular mechanism of viral integration remains elusive. Intriguingly,

HHV-6A, HHV-6B and several other herpesviruses harbor arrays of telomeric repeats

(TMR) identical to human telomere sequences at the ends of their genomes. The HHV-6A

and HHV-6B genomes harbor two TMR arrays, the perfect TMR (pTMR) and the imperfect

TMR (impTMR). To determine if the TMR are involved in virus integration, we deleted both

pTMR and impTMR in the HHV-6A genome. Upon reconstitution, the TMRmutant virus rep-

licated comparable to wild type (wt) virus, indicating that the TMR are not essential for HHV-

6A replication. To assess the integration properties of the recombinant viruses, we estab-

lished an in vitro integration system that allows assessment of integration efficiency and

genome maintenance in latently infected cells. Integration of HHV-6A was severely

impaired in the absence of the TMR and the virus genome was lost rapidly, suggesting that

integration is crucial for the maintenance of the virus genome. Individual deletion of the

pTMR and impTMR revealed that the pTMR play the major role in HHV-6A integration,

whereas the impTMR only make a minor contribution, allowing us to establish a model for

HHV-6A integration. Taken together, our data shows that the HHV-6A TMR are dispensable

for virus replication, but are crucial for integration and maintenance of the virus genome in

latently infected cells.

Author Summary

Herpesviruses are ubiquitous pathogens that persist in the host for life. Two human her-
pesviruses (HHV-6A and HHV-6B) can integrate their genetic material into the telomeres
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of host chromosomes. Integration also occurs in germ cells, resulting in individuals that
harbor the virus in every single cells of their body and transmit it to their offspring, a con-
dition that affects about 1% of the human population. We set to elucidate the integration
mechanism that allows these viruses to maintain their genome in infected cells. Intrigu-
ingly, HHV-6A, HHV-6B and several other herpesviruses harbor telomere sequences at
the end of their genome. Removal of these sequences in the genome of HHV-6A revealed
that the viral telomeres are crucial for the integration of this human herpesvirus. In addi-
tion, we demonstrate that the telomere sequences at the right and left end of the virus
genome play different roles in the integration process. Taken together, our data sheds light
on the integration mechanism that allows HHV-6A to integrate into somatic cells and to
enter into the germ line.

Introduction
In 2012, the two previously described variants HHV-6A and HHV-6B were classified as sepa-
rate virus species based on differences regarding their genetic and biological characteristics
including variations in DNA sequences (especially in the IE region), distinct restriction pat-
terns and specific reactivity to monoclonal antibodies [1–4]. Primary infection with HHV-6B
occurs during early childhood until the age of two [5–7]. HHV-6B is the most common causa-
tive agent of the febrile illness roseola infantum (sixth disease) and in rare cases causes severe
neurological complications such as seizures and encephalitis [8, 9]. Greater than 90% of the
adult human population is seropositive for HHV-6B. The epidemiology and disease association
with HHV-6A, which was initially discovered in patients with lymphoproliferative disorders
[10], is much less characterized.

Upon primary infection, both HHV-6A and HHV-6B (HHV-6) establishes latency, which
allows the virus to persist in the host for life. First evidence for HHV-6 integration dates back
to 1993 [11], but over the years both virus species were shown to integrate virtually exclusive
into the telomere region of host chromosomes in latently infected cells [12–15], while no circu-
lar episomes were detected. In addition, the virus can also integrate into germ cells, resulting in
vertical transmission and individuals that harbor the integrated virus in every single cell of
their body. This condition is termed inherited chromosomally integrated HHV-6 (iciHHV-6)
and is present in about 1% of the human population [16–24]. The actual percentage is depen-
dent on geographic origin and demographics of the cohort and has been shown to vary from
0.6% to 2.7% in large cohort studies. In a recent study, the relative incidence of iciHHV-6A and
iciHHV-6B was determined to be 41% and 59%, respectively [24]. HHV-6 can reactivate from
latently infected cells and in iciHHV-6 patients, which in both cases is associated with several
diseases including encephalitis as well as infections or graft rejection following transplantation
[25, 26]. While the integration is a well-established phenomenon, the underlying molecular
mechanism remains completely unknown.

HHV-6 has a class A genome of about 160 kb in length and is composed of one unique seg-
ment (U) that is flanked by direct repeats (DR). The HHV-6 genome harbors two distinct
arrays of telomeric repeats (TMR) at the ends of its DR region. At the right genomic terminus
of the DR are the perfect TMR (pTMR), a repeat array of the hexanucleotide TTAGGG identi-
cal to the human telomere sequences. At the left end of the DR are the imperfect TMR
(impTMR), telomeric repeats that are interrupted by related hexamers [27–30]. The number of
TMR varies from 15 to 180 copies among clinical isolates and different laboratory strains [29];
with HHV-6B having slightly longer and more complex TMR sequences [31]. Even though
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TMR have been identified in the HHV-6 genome many years ago, the role of the HHV-6 TMR
remained elusive. We hypothesized that the TMR could facilitate the integration of HHV-6
into the telomeres of host chromosomes by homologous recombination.

In this study, we determined the role of the TMR arrays in HHV-6A replication and integra-
tion. We generated recombinant viruses that lack all TMR or only harbor either pTMR or
impTMR. Analysis of their replication properties revealed that deletion of the TMR does not
affect HHV-6A replication. To determine integration efficiencies of the recombinant viruses,
we established an in vitro integration system that allowed us to measure the integration effi-
ciency and genome maintenance by fluorescence in situ hybridization (FISH) and qPCR,
respectively. Using this system, we could demonstrate that the TMR are essential for efficient
virus integration and that the pTMR are the key component for integration, while the impTMR
only play a minor role. Our study provides the first molecular evidence on the HHV-6A inte-
gration mechanism and the viral sequence elements that facilitate its integration.

Results

Generation of ΔTMRmutant virus
To elucidate the role of the HHV-6A TMR in viral replication and integration, both TMR
regions (pTMR and impTMR) were sequentially deleted in the HHV-6A BAC (ΔTMR) using
en passantmutagenesis (Fig 1A). Mutants were analyzed by DNA sequencing, RFLP (Fig 1B)

Fig 1. Generation and characterization of the ΔTMRmutant. (A) Schematic representation of the HHV-6A genome with deletion of
the TMR (ΔTMR). (B) RFLP pattern of the wt, the ΔpTMR intermediate and the double deletion mutant ΔTMR upon digestion with SacI
analyzed on a 0.8% agarose gel o/n at 65 V. M = marker. Sizes of the marker fragments are indicated on the left. Red boxes highlight the
fragments containing the target regions, where the expected band shifts can be observed. (C) Corresponding southern blot analysis
detecting TMR sequences of the impTMR (upper panel) and pTMR (lower panel) after SacI digestion of the indicated BAC clones using
a DIG-labeled TMR probe. (D)Growth kinetics comparing replication properties of wt and ΔTMRmutant virus in JJHan cells. HHV-6A
genome copy numbers were detected by qPCR. Copy numbers per 1x 106 cells are shown as means of three independent experiments
with standard errors.

doi:10.1371/journal.ppat.1005666.g001

Role of Telomeric Repeats in HHV-6 Integration

PLOS Pathogens | DOI:10.1371/journal.ppat.1005666 May 31, 2016 3 / 15



and Southern blotting, using a specific probe for the TMR (Fig 1C). Both wild type (wt) and
ΔTMRmutant were reconstituted in JJHan cells by nucleofection of BAC DNA. JJHan cells are
permissive for the virus and are commonly used for virus propagation. Replication kinetics in
JJHan cells revealed that replication was comparable between wt and ΔTMRmutant virus (Fig
1D and S1A Fig), confirming that the TMR are dispensable for HHV-6A replication in JJHan
cells.

Deletion of the TMR severely impairs integration
To determine the integration efficiency of wt and ΔTMR mutant, we first established an in
vitro integration assay using the human osteosarcoma cell line U2OS; the U2OS cells allowed
the most efficient and reproducible integration of HHV-6A and HHV-6B amongst several cell
lines tested (Gravel et al., submitted). U2OS cells were infected by co-seeding with JJHan cell-
associated wt and ΔTMR viruses that express GFP under the control of the HCMVmajor
immediate early promoter. JJHan cells were removed by stringent washes and GFP positive
U2OS cells were sorted 36 h post infection. The pure infected cell population was cultured and
used for further analyses. After 14 days, no lytic replication was detected by FISH and almost
all cells lost the GFP expression, indicating that HHV-6A either established latency or the virus
genome was lost. To determine if deletion of the TMR had an effect on the integration of
HHV-6A, we performed metaphase FISH and could demonstrate that integration was almost
abolished in the ΔTMRmutant virus compared to wt virus, which integrated in about 30% of
the cells (Fig 2A). The integration observed in the U20S cells was not attributed to fusion events
between JJHan and U2OS cells, as we did not observe multi-nucleated cells that would be indic-
ative of fusion. In addition, we obtained comparable integration frequencies upon infection of
U2OS cells with cell-free HHV-6A (S2 Fig). To ensure that this is not a metaphase specific
effect, we analyzed interphase nuclei and observed the same phenomenon (Fig 2B). Further-
more, we generated clonal U2OS cell lines to further characterize potential integration events.
Out of 92 clonal cell lines generated for the ΔTMR virus, none was positive for HHV-6A ana-
lyzed by qPCR analysis while wt lines could be readily generated. To determine if the mainte-
nance of the virus genome was impaired in the absence of the TMR, we performed qPCR
analyses at d0 and d14 post sort. Even though both viruses had similar levels at d0, genome
copy numbers of the ΔTMR virus were significantly reduced compared to the wt virus at d14
(Fig 2C), suggesting that the virus genome is inefficiently maintained in the absence of the
TMR. Our data demonstrate that the viral TMR play a crucial role in the integration of HHV-
6A and that this process is essential for the maintenance of the virus genome.

The pTMR are the major factor for HHV-6A integration
To investigate the distinct contribution of the pTMR in the integration process, we generated a
virus that lacks the pTMR (ΔpTMR) and only contains the impTMR (Fig 3A). In addition, a
revertant virus (ΔpTMRrev) was generated, in which the pTMR were restored to exclude that
secondary mutations affect the integration phenotype. BAC mutants were confirmed by DNA
sequencing of the target region, RFLP and Southern blotting (Fig 3B). Upon reconstitution,
growth kinetics revealed that the ΔpTMR virus replicated comparable to wt and revertant virus
(Fig 3C and S1B Fig).

Next, we assessed the integration efficiency of ΔpTMR using the U2OS in vitro integration
system as described above. Integration of ΔpTMR was severely impaired, while the wt and
revertant virus consistently integrated in about 30% of the metaphases (Fig 3D). Comparable
results were obtained when analyzing interphase nuclei (Fig 3E). As observed for the ΔTMR
mutant, the genome copies of the ΔpTMR mutant were significantly lower at d14 compared to
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Fig 2. Integration efficiency and genomemaintenance of the ΔTMRmutant in the U2OS integration
system. (A) Integration frequency was quantified by determining the integration status of at least 90
metaphases. Significant differences between wt and ΔTMR (Mann-Whitney U-test, p < 0.05) are indicated
with an asterisk (*). Results are shown as means of three independent experiments with standard errors.
Representative metaphase images are shown on the right. Scale bar corresponds to 10μm. (B) 300
interphase nuclei were examined for the presence of HHV-6A. Significant differences between wt and ΔTMR
(Mann-Whitney U-test, p < 0.05) are indicated with an asterisk (*). Results are shown as means of three
independent experiments with standard errors. Representative interphase images are shown on the right.
Scale bar corresponds to 10μm. (C)Maintenance of the HHV-6A genome was determined by qPCR analysis
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at d0 and d14 post sorting. Copy numbers per 1x 106 cells are shown as means of three independent
experiments with corresponding standard errors. Significant differences between wt and ΔTMR (Mann-
Whitney U-test, p < 0.01) are indicated with asterisks (**).

doi:10.1371/journal.ppat.1005666.g002

Fig 3. Generation, characterization and integration efficiency of the ΔpTMRmutant. (A) Schematic
representation of the HHV-6A genome with deletion of the pTMR (ΔpTMR). (B) Southern blot analysis detecting
TMR sequences of the impTMR (upper panel) and pTMR (lower panel) after SacI digestion of the indicated BAC
clones using a DIG-labeled TMR probe. (C)Growth kinetics comparing replication properties of wt, ΔpTMRmutant
and ΔpTMRrev virus in JJHan cells. HHV-6A genome copy numbers were detected by qPCR. Copy numbers per
1x 106 cells are shown as means of three independent experiments with standard errors. (D) Integration frequency
was quantified by determining the integration status of at least 90 metaphases. Significant differences between wt
and ΔpTMR, as well as ΔpTMR and ΔpTMRrev (Mann-Whitney U-test, p < 0.05) are indicated with an asterisk (*).
Results are shown as means of three independent experiments with standard errors. (E) 300 interphase nuclei
were examined for the presence of HHV-6A. Significant differences between wt and ΔpTMR, as well as ΔpTMR
and ΔpTMRrev (Mann-Whitney U-test, p < 0.05) are indicated with an asterisk (*). Results are shown as means of
three independent experiments with standard errors. (F)Maintenance of the HHV-6A genome was determined by
qPCR analysis at d0 and d14 post sort. Copy numbers per 1x 106 cells are shown as means of three independent
experiments with corresponding standard errors. Significant differences between wt and ΔpTMR, as well as
ΔpTMR and ΔpTMRrev (Mann-Whitney U-test, p < 0.01) are indicated with asterisks (**).

doi:10.1371/journal.ppat.1005666.g003
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wt and revertant (Fig 3F), indicating that the virus genome is less efficiently maintained in the
absence of the pTMR. In addition, we generated clonal cell lines infected with wt, ΔpTMR or
revertant virus to examine the location of the virus genome within the host chromosome. For
the ΔpTMR mutant, few clonal cell lines could be established (4 out of 85). Intriguingly,
ΔpTMR still integrated at the end of the host chromosomes (Fig 4), suggesting that the
impTMR can facilitate integration into the telomeres with a very low efficiency. Upon stimula-
tion with Trichostatin A (TSA), not all of the ΔpTMR clones could express early (U41) and late
genes (U39), while all the wt and revertant clones did (S3 Fig). Overall, the levels of gene
expression in the presence and absence of TSA were highly clone dependent; however, no
increase in viral genome copy number could be observed (S4 Fig) as well as no infectious virus
particles were produced with the current stimulus. In summary, our data suggests that the
pTMR play an important role in integration and that the impTMR alone are not sufficient for
efficient integration.

The impTMR play a minor role in integration
To elucidate the role of the impTMR, we generated a virus that lacks the impTMR (ΔimpTMR)
and only contains the pTMR (Fig 5A). While generating the recombinant viruses, we observed
that the impTMR in the wt HHV-6A BAC are indeed 3 times longer (~ 2.1 kb) than reported
in the corresponding NCBI reference sequence (NC_001664). To determine if the length of the
impTMR has an effect on the integration, we generated a revertant virus that harbors the
impTMR as reported in the NCBI Refseq (Fig 5A). Southern blotting confirmed the expected
length of the impTMR region of wt and revertant virus (Fig 5B). In addition, the length of the

Fig 4. Generation of clonal U2OS cell lines containing wt, ΔpTMR andΔpTMRrev virus. The HHV-6A
genome was detected using a specific DIG-labeled probe by FISH (green) and nuclei and chromosomes
were visualized using DAPI (blue). Representative images of clonal U2OS cell lines for wt (clone #9), ΔpTMR
(clone #6) and ΔpTMRrev (clone #8) are shown. Metaphases are shown on the left, interphase nuclei on the
right. Scale bar corresponds to 10μm.

doi:10.1371/journal.ppat.1005666.g004
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Fig 5. Generation, characterization and integration efficiency of the ΔimpTMRmutant. (A) Schematic
representation of wt, ΔimpTMR and ΔimpTMRrev. (B) Southern blot analysis detecting TMR sequences of the
impTMR (lower panel) and pTMR (upper panel) after EcoRV digestion of the indicated BAC clones using a DIG-labeled
TMR probe. (C)Growth kinetics comparing replication properties of wt, ΔimpTMRmutant and ΔimpTMRrev virus in
JJHan cells. HHV-6A genome copy numbers were detected by qPCR. Copy numbers per 1x 106 cells are shown as
means of three independent experiments with corresponding standard errors. (D) Integration frequency was quantified
by determining the integration status of at least 90 metaphases. Significant differences between wt and ΔimpTMR, as
well as wt and ΔimpTMRrev (Mann-Whitney U-test, p < 0.05) are indicated with an asterisk (*). Results are shown as
means of three independent experiments with standard errors. (E) 300 interphase nuclei were examined for the
presence of HHV-6A. Significant differences between wt and ΔimpTMR, as well as wt and ΔimpTMRrev (Mann-
Whitney U-test, p < 0.05) are indicated with an asterisk (*). Results are shown as means of three independent
experiments with standard errors. (F)Maintenance of the HHV-6A genome was determined by qPCR analysis at d0
and d14 post sorting. Copy numbers per 1x 106 cells are shown as means of three independent experiments with
standard errors. Significant differences between wt and ΔimpTMR, as well as wt and ΔimpTMRrev (Mann-Whitney U-
test, p < 0.05 or p < 0.01) are indicated with asterisks (* or **).

doi:10.1371/journal.ppat.1005666.g005
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impTMR was confirmed in the resulting viruses upon reconstitution. Growth kinetics revealed
that the removal of the impTMR has no influence on virus replication (Fig 5C and S1C Fig).
To determine the role of the impTMR in integration, we analyzed the integration efficiency of
the recombinant viruses by FISH. In contrast to the ΔpTMR, deletion of the impTMR had only
a minor effect on virus integration with two-fold reduction compared to the wt virus (Fig 5D).
Intriguingly, restoration of the impTMR region to the NCBI reference sequence in the
ΔimpTMRrev only partially restored the integration efficiency, indicating that the length of the
impTMR region positively affects the integration efficiency. Comparable results were observed
in FISH analyses of interphase cells (Fig 5E). In addition, deletion of the impTMR had only a
minor effect on the maintenance of the virus genome in U2OS cells determined by qPCR (Fig
5F). Taken together, our data demonstrates that the impTMR only play a secondary role in the
integration of HHV-6A.

Our data provides the first molecular evidence for the importance of the telomere repeat
arrays in the integration of HHV-6A.

Discussion
Most herpesviruses maintain their viral genome as extra-chromosomal circular episomes dur-
ing latency [31]. In the case of HHV-6, Arbuckle and colleagues found no evidence for viral
episomes in latently infected cells in vitro, but instead detected the integrated virus genome in
the telomeres of host chromosomes [15]; however, the exact in vivo latency reservoir of HHV-
6 is still poorly understood. Several groups proposed that the TMR present in the HHV-6
genome could facilitate integration [30]. This hypothesis was mainly based on sequence analy-
ses of the integration sites in iciHHV-6 patients, as the pTMR at the right end of the viral
genome were shown to be directly fused to the telomere/subtelomere sequences of the host
chromosomes [15, 32–36]. However, no experimental evidence was available that the TMR are
indeed involved in this process.

To address the role of the HHV-6A TMR, we generated virus mutants lacking either the
impTMR (ΔimpTMR), the pTMR (ΔpTMR) or both in combination (ΔTMR) using the HHV-
6A BAC. The recombinant viruses replicated comparable to wt and revertant viruses, confirm-
ing that the TMR are dispensable for HHV-6A replication and indicating that the absence of
the TMR has no effect on circularization of the virus. To quantify the integration efficiency of
these mutants, we established an integration assay that allowed us to address this question
using a pure population of infected cells. In our FISH analyses, we observed that integration
occurred in various chromosomes, judging by their size and shape, but always at the end of
both chromatids of metaphase chromosomes. Episomal genomes would not specifically local-
ize to a single chromosome and the corresponding chromatids. Using this system, we could
demonstrate that HHV-6A integration is severely impaired in the absence of the TMR and that
the genome is rapidly lost. Despite our efforts, we were not able to generate clonal cell lines for
the ΔTMRmutant virus that harbor the HHV-6A genome, supporting our model that the
TMR are central for efficient integration and maintenance of the virus genome.

Viruses that merely lack the pTMR, which display 100% identity with the human telomere
sequences, also displayed significantly impaired integration capacity. This suggests that the
pTMR could facilitate the first recombination event via homologous recombination with the
host telomeres. Our conclusion is consistent with several studies obtaining sequence analyses
in iciHHV-6 patients. The integration sites of HHV-6 in vivo were mapped to the pTMR of
DRR being fused to the telomere/subtelomere region of the human chromosomes [15, 32–36].
The impTMR alone in the ΔpTMR mutant were not sufficient for efficient viral integration, as
only very few integration events occurred. The residual integration events observed for the
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ΔpTMR mutant virus could be explained by a recombination between the impTMR and the
host telomeres. As the impTMR are not completely homologous to the host telomeres, the
recombination efficiency is likely lower than for the pTMR. In patients, this less efficient inte-
gration event has already been observed in one iciHHV-6 patient, in which the impTMR could
be demonstrated as the site of integration [32].

Intriguingly, deletion of the impTMR only had a minor impact on HHV-6A integration fre-
quencies, suggesting that the impTMR are less important for the HHV-6A integration process.
If the pTMR would indeed facilitate the recombination with the telomeres, the impTMR would
represent the end of the host chromosome and could serve as a starting point to extend the
telomeres. In this scenario, an increased length of the impTMR as we discovered in the HHV-
6A wt BAC would be beneficial for the establishment of the new telomere. Upon deletion of
the impTMR, the new chromosome termini (DR of HHV-6A) could be identified as a double
strand break, which in turn would induce DNA damage responses. Finally, this could result in
a loss of some of the cells that harbor the integrated virus genome, unless the telomeres are
restored by other means.

Besides HHV-6A, already 16 other herpesviruses have been discovered that harbor TMR at
the end of their genomes [31, 37]. Aside from the TMR, these viruses are very diverse, repre-
senting almost all genome classes, all Herpesviridae subfamilies and even the Alloherpesviridae
that infect fish. The wide conservation of these repeats suggests that the TMR perform an
important function for these herpesviruses. Our data suggest that the TMR of HHV-6A and
also other viruses facilitate integration into the host telomeres, depicting a yet unappreciated
mechanism for the maintenance of the virus genome in latently infected cells.

Integration does not only occur upon infection in vitro, but also plays an important role in
vivo. We and other groups demonstrated that the highly oncogenic alphaherpesvirus Marek’s
disease virus (MDV) can also integrate its genome into the telomeres of latently infected host
chicken cells [38–40] providing thereby an optimal natural virus/host small animal model for
herpesvirus integration [41]. Integration of MDV plays an important role in the pathogenesis,
as it is a prerequisite for lymphoma formation in the chicken [38]. In addition, integration into
host telomeres not only allows stable maintenance of the virus genome in latently infected and
tumor cells but also permits efficient mobilization of the virus genome during reactivation
from latency [38]. Despite recent advances, more work needs to be done to fully understand
the integration mechanism that allows the maintenance of the genome of HHV-6A, MDV and
potentially other viruses in latently infected cells.

Materials and Methods

Cells
Viruses were propagated on JJHan cells. JJHan and U2OS cells were cultured in RPMI and
MEMmedia respectively, supplemented with 10% FBS and 1% penicillin/streptomycin. Cells
were grown at 37°C, under 5% CO2 atmosphere. JJHan were obtained from the HHV-6 Foun-
dation Repository (Santa Barbara, CA) and U2OS from American Type Culture Collection
(ATCC, Manassas, VA)

Generation of recombinant viruses
TMRmutant viruses were generated in pHHV-6A (wt), an infectious BAC clone of HHV-6A
(strain U1102), expressing GFP under the control of the CMV IE promoter, using two-step
Red-mediated mutagenesis as described previously [42–44]. Primers used for the mutagenesis
are listed in (Table 1). For the TMR revertants, BAC-based transfer constructs were generated
by insertion of the I-SceI-aphAI cassette in very close proximity to the pTMR or impTMR
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region by Red-recombination. This BAC intermediates were used as PCR templates for muta-
genesis. Recombinant BAC clones were confirmed by Southern blotting using a specific digoxi-
genin (DIG)-labeled probe for the TMR as described previously [38].

Virus reconstitution and growth kinetics
Recombinant viruses were reconstituted by nucleofection of JJHan cells with the HHV-6A
BAC DNA as described previously [45]. Cell-free virus was generated by concentrating the
supernatant of highly infected JJHan cells and stocks were frozen at -80°C. Virus stocks were
titrated by analyzing the genome copies in newly infected JJHan cells by qPCR. Multi-step
growth kinetics were performed as described previously [45, 46] and viral genome copies deter-
mined at 0, 1, 4, 7, 10, and 15 days post infection (dpi) by quantitative PCR (qPCR). To deter-
mine the viral gene expression level, total RNA was extracted by using the RNeasy Mini Kit
(Qiagen) according to the manufacturer's protocol. The samples were then treated with DNase

Table 1. Primers and probes for qPCR and generation of recombinant viruses.

Construct name Sequence (5’ ! 3’)

ΔpTMR For GGTGGCCTGGCACGGTGCCAAAGGAAACCACCGGCTAACCCATCCCCCAACGCGTAGGGATAACAGGGTAATCGATTT

Rev CTCCCATAGCGGCGTGCGCGCGCGCGTTGGGGGATGGGTTAGCCGGTGGTTTCCTTTGGCCAGTGTTACAACCAATTAACC

ΔpTMRrev For TACACACGCAGACACACAGACA

Rev ATACCGTCGTCCGCTCTTTC

Kana-in
pTMR

For ATCCCCCCACGCGCGCGCGCACGCCGCTATGGGAGGCGCCGTGTTTTTCACCAACACGCGCGCCGCTGCGAGACTAGGGATAACAGGGTAATCG
ATTT

Rev GTCTCGCAGCGGCGCGCGTGTTGGTGAAAAACACGGCGCCAGTGTTACAACCAATTAACC

ΔimpTMR For CAAATCCCCCGGGGGGGCTAAAAAAAGGGGGGGTAATAACGCTGCCCCTCTTTCACACTAGGGATAACAGGGTAATCGATTT

Rev GAAGCGGCAGGGGGTGATGGTGTGAAAGAGGGGCAGCGTTATTACCCCCCCTTTTTCAGTGTTACAACCAATTAACC

ΔimpTMRrev For GACTCCTTTTTTGTTTCGTTTTCC

Rev CCCAAGAGTAGCCACCAATAAT

Kana-in
impTMR

For CTTTCACACCATCACCCCCTGCCGCTTCAACTTCACCTTCTTCCTCCATCTCGCCCCGCTTGTTTCTACATAGGGATAACAGGGTAATCGATTT

Rev GGACAAGTGTAGAAACAAGCGGGGCGAGATGGAGGAAGCCAGTGTTACAACCAATTAACC

pTMR (seq) For TACACACGCAGACACACAGACA

Rev ATACCGTCGTCCGCTCTTTC

impTMR
(seq)

For GACTCCTTTTTTGTTTCGTTTTCC

Rev CCCAAGAGTAGCCACCAATAAT

TMR probe For TACACACGCAGACACACAGACA

Rev ATACCGTCGTCCGCTCTTTC

ß2M For CCAGCAGAGAATGGAAAGTCAA

Rev TCTCCATTCTTCAGTAAGTCAACTTCA

Probe FAM-ATGTGTCTGGGTTTCATCCATCCGACA-TAM

U86 For TGTACATGGGCTGTAGGAGTTGA

Rev ACATCCTCTGCTTCCAATCTACAATC

Probe FAM-TTCCGAAGCAAAGCGCACCTGG-TAM

U94 For CATGTACCAAAATGATCGATGTCA

Rev CCGCTTGAGCGTACCACTTT

Probe FAM-TGGAATAATAAAACTGCCGTCCCCACCC-TAM

U41 For CACGATTGACAACATTTCCC

Rev GGGTAATGCGCATACTGAGA

Probe FAM-TCGCCGAACAATTTACCAGATGATTG-TAM

U39 For CCAAGGGCCGATTATAACAC

Rev TCAGTCATCCGTTCAGCTTC

Probe FAM-TTTGCATCGACGACCCGCAT-TAM

doi:10.1371/journal.ppat.1005666.t001
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I (Promega). The cDNA synthesized with the high capacity cDNA reverse transcription kit
(Applied Biosystems) was used for qPCR (Table 1). The viral gene expression level was normal-
ized to the expression level of beta-2 microglobulin.

In vitro integration system
To determine the integration efficiency of recombinant HHV-6A viruses, U2OS cells were
infected by co-cultivation with highly infected JJHan cells for 3 h. GFP-positive cells were iso-
lated using a FACS AriaIII cell sorter (BD, San Jose) 36 h post infection and cultured for 14
days (d). Viral genome copies were quantified by qPCR at d0 and d14 post sort relative to cellu-
lar genome copies, using primers and probes specific for HHV-6A U86 and the cellular ß2M
gene (Table 1). Integration of HHV-6A was analyzed at d14 post sorting in metaphase chromo-
somes and interphase nuclei by fluorescent in situ hybridization (FISH) as described previously
[38, 47, 48]. Clonal U2OS cell lines were generated upon infection of U2OS cells harboring the
integrated HHV-6A genome and confirmed by qPCR and FISH.

Statistical analyses
Statistical analyses were performed using GraphPad Prism. qPCR data of HHV-6A genome
copies and integration efficiencies were analyzed using Mann-Whitney U test. Results were
considered significant when p<0.05.

Supporting Information
S1 Fig. Determination of viral gene expression levels. Viral gene expression levels for the
immediate early gene U86 (left panel) and the late gene U39 (right panel) were measured by
qPCR and normalized to the expression level of beta-2 microglubulin. (A) wt and ΔTMR, (B)
wt, ΔpTMR and ΔpTMRrev and (C) wt, ΔimpTMR and ΔimpTMRrev. Data of one experiment
determined in triplicates is shown.
(TIF)

S2 Fig. Integration frequency in U2OS cells after infection with cell-free virus. U2OS cells
were infected at an MOI of 10 and the integration frequency was quantified by testing 393
clones via PCR for the presence of the HHV-6A genome. Result is shown as mean of six inde-
pendent experiments with standard deviation. A representative metaphase image is shown on
the right. The scale bar corresponds to 10μm.
(TIF)

S3 Fig. Determination of viral gene expression level in clonal cell lines in the absence and
presence of a reactivation stimulus. Various clonal U2OS cell lines (wt, ΔpTMR and
ΔpTMRrev) were treated with 80 ng/ml TSA for 48 h. Viral gene expression levels for the
immediate early genes U94 (A) and U86 (B), the early gene U41 (C) and the late gene U39 (D)
were measured by qPCR and normalized to the expression level of beta-2 microglobulin.
(TIF)

S4 Fig. Relative genome copies of wt clonal cell lines in the absence and presence of a reacti-
vation stimulus. Clonal cell lines were treated with TSA (80ng/μl) for 48h. HHV-6A genome
copies per cell were detected by qPCR and are displayed relative to copy numbers of unstimu-
lated cell lines. Data of one experiment determined in triplicates is shown.
(TIF)
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