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Endoplasmic reticulum (ER) stress has been linked to many diseases, including cancer. A
large body of work has focused on the activation of the ER stress response in cancer cells
to facilitate their survival and tumor growth; however, there are some studies suggesting
that the ER stress response can also mitigate cancer progression. Despite these contradic-
tions, it is clear that the ER stress response is closely associated with cancer biology. The
ER stress response classically encompasses activation of three separate pathways, which
are collectively categorized the unfolded protein response (UPR).The UPR has been exten-
sively studied in various cancers and appears to confer a selective advantage to tumor cells
to facilitate their enhanced growth and resistance to anti-cancer agents. It has also been
shown that ER stress induces chromatin changes, which can also facilitate cell survival.
Chromatin remodeling has been linked with many cancers through repression of tumor
suppressor and apoptosis genes. Interplay between the classic UPR and genome dam-
age repair mechanisms may have important implications in the transformation process of
normal cells into cancer cells.
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INTRODUCTION
Cells in the body are continuously exposed to a dynamic envi-
ronment dictated by the metabolic and nutritional status of the
organism. Certain instances, such as exposure of the organism to
nutrient excess or deprivation, extremes in temperatures, xeno-
biotics, and radiation, cause damage to cellular components and
disruption of cellular processes. It has long been recognized that
cells are adept at compensating for changes in their environment by
altering certain cellular processes. The mobilization of such coping
mechanisms is designed to maintain or recover proper function,
overcome stressful conditions, and increase the chance for survival
(Figure 1).

In the past several years, there has been increasing evidence
linking endoplasmic reticulum (ER) stress with development of
diseases, including certain types of cancers (1–5). In the case of
cancers, especially non-inherited cancers that arise from genome
damage, the cells capitalize on the ER stress response, which may
be adaptive and advantageous at the cellular level, but deleterious
to the organism. In this review, we discuss ER stress and genome
damage in relation to cancer development. We provide observa-
tions supporting a link between different corrective strategies that
cells adopt, which may lead to malignancies.

The accumulation of unfolded and misfolded proteins dis-
rupts ER homeostasis and leads to the activation of the classic
coping mechanism termed the unfolded protein response (UPR)
(Figure 1). The UPR is initiated by the molecular chaperone

glucose-regulated protein 78 (GRP78). GRP78 not only binds
to the misfolded and unfolded proteins, but also regulates the
transmembrane ER stress sensors, namely protein kinase RNA
like ER kinase (PERK), inositol-requiring protein 1α (IRE1α), and
activating transcription factor 6 (ATF6) (6–8).

Each ER stress sensor activates a separate arm of the UPR
to facilitate immediate changes to a set of cellular functions
designed to temporarily arrest general protein synthesis, and
to produce active transcription factors that ultimately facilitate
correct protein folding, degradation of proteins that cannot be
properly processed, and regain of ER function. Under extreme
conditions, these strategies may not be sufficient to alleviate
the ER stress and thus require the removal of the malfunction-
ing cells. In such cases, cells undergo controlled cell death by
activation of the apoptotic pathway. In some situations, certain
adaptive strategies provide these cells with a selective growth
advantage over other cells (Figure 1). This selective advantage
could permit cells to survive and propagate even under chronic
ER stress.

ER STRESS AND CANCER
The high proliferative rates and inadequate vascularization of solid
tumors culminate in a very unfavorable microenvironment. The
low pH, low oxygen tension, and low nutrient supply result in an
accumulation of misfolded proteins and ER stress, which could
signal cell death (9, 10). Cancer cells, however, have developed a
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FIGURE 1 | Coping response mechanisms. The unfolded protein response (UPR) pathway operates to restore correct folding of proteins and recovery of the
ER from stress. The genome damage response (GDR) pathway enables repair of damaged DNA, histones, and other DNA binding proteins and restores normal
nuclear function.

capacity to survive these extreme conditions, despite the presence
of ER stress, through modulation of the UPR response (11–14).

It has been observed that GRP78, a dominant regulator of
the ER stress response, is increased in a variety of cancer types
including breast, brain, lung, colon, prostate, skin, and some other
malignancies (2, 12, 15–20). This chaperone is associated with pro-
longed cell survival, mainly by preventing ER stress-induced apop-
tosis and thereby promoting cell malignancy, metastatic develop-
ment, and resistance to anti-cancer agents (12, 14, 21, 22). High
levels of GRP78 are also associated with rapid proliferation and
malignancy of tumors (12, 14). In breast cancer cells that express
estrogen receptor α [NR3A1], the estrogen-mediated increase in
GRP78 abundance confers improved resistance to ER stress and
cell proliferation, both of which can be decreased through siRNA-
mediated knockdown of estrogen receptor α (12). Similarly, up-
regulation of GRP78 has been shown to increase growth of a
glioma cell line whereas its down-regulation inhibits tumor devel-
opment (14). The reduction of GRP78 in glioblastoma cell lines
and solid tumors treated with a chemotherapeutic agent increased
the expression of CHOP and caspase 7, leading to cell apoptosis
and inhibition of tumor formation (11, 14). Moreover, the anti-
tumor agent HKH40A decreases GRP78 not only at the transcrip-
tional level but also at the protein level by directly binding GRP78
to facilitate its degradation (11). Based on these characteristics,
GRP78 is considered as a biomarker of cancer progression (21).

The components of the UPR pathway have also been implicated
in cancer (2, 13, 21, 23). Mutations in IRE1α have been found in
some human malignancies (24, 25). Under hypoxia, the effector
of the IRE1α pathway, spliced XBP1 (XBP1s), is one of the factors
involved in tumor growth and survival. It promotes cancer cell
survival under low oxygen conditions by forming a transcriptional
complex around hypoxia-inducible factor-1, a major gene regula-
tor under hypoxic conditions (26). This transcription factor is also
involved in human breast tumorigenesis as well as in the progres-
sion of triple negative breast cancer (26, 27). Similarly, the PERK
pathway can contribute to cell survival and growth through ATF4,a
transcription factor that induces pro-survival genes (28, 29). ATF4
is overexpressed in solid tumors and is essential for tumor cell sur-
vival in various mouse and human cancers whereas elimination of
ATF4 in cancer cells induces apoptosis (29). PERK can also facil-
itate tumor growth by upregulating vascular endothelial growth
factor (VEGF) and thereby inducing angiogenesis in tumors (28).

Tumors derived from PERK-deficient mouse embryonic fibrob-
lasts are considerably smaller compared to those derived from
wildtype embryonic fibroblasts as a result of their impaired ability
to stimulate angiogenesis (28).

Despite ample examples suggesting that the activation of the
UPR is essential to cancer cell survival and tumor development,
there are also indications that ER stress may provide protection
against cancer (3, 30, 31). In particular, it has been shown that
XBP1 is protective against intestinal tumorigenesis (3). Prostatic
cancer cells have been shown to produce high levels of UDP-N -
acetylglucosamine pyrophosphorylase 1, which reduces ER stress
in these cells and facilitates their growth (30). The flavonoid
baicalein has also been shown to induce ER stress in hepatocellu-
lar cancer cells, resulting in increased apoptosis (31). Interestingly,
in this same study, increased IREα and eIF2α activation provided
a survival advantage to theses cancerous cells. This finding high-
lights the paradoxical role of the UPR in cancer and our incomplete
understanding of how signaling pathways may favor cell death or
survival under different conditions (32–34). Whichever the out-
come produced by ER stress, it is clearly apparent that the UPR
plays a critical role in cancer biology.

GENOME DAMAGE AND CANCER
Genome damage can be caused by a number of endogenous and
exogenous genotoxic factors, including reactive oxygen species,
altered cell metabolism, xenobiotics, and radiation (35, 36). These
factors lead to DNA strand breaks, collapsed DNA replication
forks, and damage to histones as well as other DNA-binding pro-
teins (35). In response to chromatin damage, cells can establish a
genome damage response (GDR) to repair damage to both DNA
and nuclear proteins, adapt to genome damage, and reestablish
nuclear function (Figure 1). Adaptation to genome damage can
lead to cell survival but also chromatin alterations, which may have
severe consequences for tissue function and physiology (36).

The GDR is orchestrated by several factors encompassing sen-
sors, transducers, and effectors proteins (Figure 2), which require
post-translational modification and accumulation of proteins to
assemble multiprotein foci at the sites of DNA lesions (37–39).
In general, activation of GDR involves temporary cell cycle arrest,
local inhibition of transcription, and relaxation of chromatin to
facilitate repairs. This process requires post-translational modifi-
cation of proteins including the activation of the kinases ataxia
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FIGURE 2 | Functional components of the GDR pathway. Sensing of
damaged DNA, histones, and other DNA-binding proteins results in activation
of specific kinases [e.g., ataxia telangiectasia mutated (ATM) and ataxia
telangiectasia and Rad3-related (ATR) proteins] (37–40). Access to damaged
chromatin is facilitated by histone modification involving histone
acetyltransferases/deacetylases and histone methyltransferase/demethylases
as well as by DNA modification involving DNA methyltransferase (37, 38,
48–50). Certain transcription factors (e.g., E2F1, NR4A) stimulate genes

involved in chromatin repair (45). Translational arrest is facilitated by
microRNAs (e.g., mIR-155, miR-18a) (51, 52). Cell cycle arrest (e.g., via p53,
Chk1, Chk2) may be required in order to complete chromatin repair (41–44).
Unsuccessful chromatin repair due to extensive damage commits the cell to
die. Successful chromatin repair enables cells to survive and restore normal
function. In certain cases, incorrect repair escapes quality control surveillance
and leads to altered cell function, which may provide the cell with a survival
advantage, but manifest as pathology at the organismal level.

telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3
related (ATR), which phosphorylate transducer proteins at the
damages sites, including the histone H2A.x (H2AX139ph), which
anchors some important effector proteins required for damage
repair and cell cycle arrest (37–40). ATM and ATR also activate
the serine–threonine checkpoint effector kinases, Chk1 and Chk2,
which regulate a number of proteins involved in transcription, cell
cycle progression and apoptosis, including the tumor suppressor
protein p53 and BRCA1 (41, 42), and the cell cycle regulator pro-
teins Cdc25 and Wee1 (43, 44). Phosphorylation of transcription
factors, notably E2F1, NR4A, ATF2, and Sp1, also facilitate DNA
repair in a transcription-independent fashion, by direct interac-
tion with damaged DNA, and subsequently the co-localization of
other DNA repair proteins (45). In addition to post-translational
modifications, genotoxic lesions and DNA damaging agents can
also trigger nucleosomal remodeling via eviction of resident his-
tones and reincorporation of new histones into the reassembled
nucleosomes after damage repair (37, 46–48).

Local transcriptional arrest associated with GDR may be tran-
sient or stable (49, 53). Linked to this arrest are numerous histone
modifications, including hypoacetylation of histone H4, increased
histone H3K9me3 and H3K27me3, and decreased histone
H3K4me3 (49, 50). Histone chaperones, which transfer histones
to the nucleosomes, are required for transcriptional reinitiation

following DNA damage (49, 54). GDR also involves the participa-
tion of ATP-dependent chromatin remodeling complexes, includ-
ing the switch/sucrose non-fermentable (SWI2/SNF2), imitation
switch (ISWI), inositol requiring 80 (INO80), and chromodomain
helicase DNA-binding protein, which mediate nucleosome slid-
ing and histone displacement promoting access for DNA repair
proteins (37, 38, 48).

Non-coding RNAs are also known to affect DNA repair and
genome instability. Indeed, DNA damage responsive microRNAs
have been shown to be misexpressed in cancer cells and to affect
chemotherapy sensitivity (55–57). It has also been shown that
down-regulation of Dicer and Ago2, two essential microRNA
processing components, reduced cell survival and checkpoint
response after UV-induced DNA damage (58). Moreover, the miR-
18a was shown to downregulate ATM expression, reduce DNA
damage repair, and sensitize breast cancer cells to γ-irradiation
treatment (51). Also, up-regulation of the miR-24 decreases H2AX
and renders cells more vulnerable to DNA damage induced
by γ-irradiation and genotoxic drugs (59). Another microRNA,
miR-155, was shown to reduce the levels of RAD51, a recombi-
nase required to repair double strand breaks by DNA homolo-
gous recombination, and consequently decreased DNA repair and
enhanced sensitivity to ionizing radiation in human breast cancer
cells (52).
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UPR AND GDR CROSSTALK
There is accumulating evidence suggesting that ER stress and
GDRs are intertwined. Indeed, ER stress induced with tunicamycin
treatment or glucose deprivation decreases genomic DNA damage
repair by stimulating proteasomal degradation of Rad51 (60). On
the other hand, down-regulation of PERK enhances DNA damage
repair in irradiated cancer cells (61). Interestingly, induction of
ER stress recruits the histone acetyltransferase p300 to the GRP78
promoter and this correlates with increased histone H4 acetylation
and GRP78 gene expression (62). Increased GRP78 transcription is
associated with the recruitment of arginine histone methyltrans-
ferase, PRMT1 (62). It was suggested that arginine methylation
of MRE11 by PRMT1 regulates the activity of MRN complex,
which is required for proper DNA damage checkpoint control (63).
Therefore, it appears that increased GRP78 transcription from
ER stress can also facilitate DNA damage repair. These contradic-
tory effects further demonstrate our incomplete understanding
of the stress signaling pathways and how they interact to deter-
mine cell fate. However, it also illustrates how ER stress can cause
chromatin remodeling and affect the GDR pathway. If GDRs are
impaired by alterations in the UPR, this can affect DNA integrity
and subsequently increase risks of carcinogenesis.

Signaling from both ER stress and DNA damage also appear
to result in similar chromatin remodeling changes to respond to
cellular insults. Increased H3K14 acetylation as a consequence of
ER stress has been observed, and this can activate the expression of
other target ER stress response genes (64). Similarly, GDR results
in increased H3K14ac, which promotes the binding of BRG1, an
ATPase component of SWI2/SNF2 complex, to H2AXph139 at the
sites of DNA damage enabling chromatin remodeling for DNA
repair (65, 66). Phosphorylation of the histone H2Ax also enables
recruitment of other chromatin remodeling complexes includ-
ing INO80 and SWR1, and the histone acetyltransferase com-
plex NuA4 to facilitate DNA repair (67–70). Therefore, H3K14ac
and H2AXph139 seem to be important in connecting ER stress
and GDR.

Chromatin remodeling has also been shown to occur as a result
of hypoxia and heat stress, two common causes of ER stress that
also have effects on GDR (71). Hypoxia-induced ER stress leads to
global deacetylation and methylation of histones in the proxim-
ity of genes involved in the hypoxia-inducible factor-1-mediated
response (72–74). This facilitates transcription of the genes needed
for an adaptive response to hypoxia (75, 76). Yet, there is evi-
dence confirming that hypoxia can lead to defective DNA repair,
genomic instability, and consequently, to cellular transformation
(76). In addition, it has been well documented that chromatin
remodeling in response to heat stress results in increased tran-
scription of heat shock proteins (77). These proteins have been
shown to reduce accumulation of H2AXph139, decrease DNA
damage repair, and increase radiation sensitivity and genome
instability (78, 79).

While there is evidence demonstrating crosstalk between the
UPR and GDR, it is not well understood at this time. Increased
reactive oxygen species appears to be a common by-product
of most cellular insults, ER stress, and DNA damage included
(80). Oxidative stress can modulate multiple signaling pathways

through activation of common transducers and transcription
factors (81).

ROLE OF UPR AND GDR IN CARCINOGENESIS
Classically, the development of cancer is largely associated with
inherited or acquired mutations of specific genes that regulate
cell cycle, proliferation, and apoptosis (82, 83). However, simi-
lar effects can be seen with epigenetic changes, which, alone or
associated with genetic mutations, can alter the expression of
tumor suppressor genes (84–87). There are many examples of
chromatin changes that lead to cancers. Hypermethylation of the
DNA repair gene BRCA1 has been associated with both breast
and ovarian cancer (88–90). Aberrant promoter methylation of
the Kelch-like-ECH-associated protein 1 gene, which codes for an
adaptor protein involved in degradation of cell survival and anti-
apoptosis gene products, has been linked to a poorer prognosis and
increased carcinogenesis in breast cancer patients (91). Hyperme-
thylation of tumor suppressor genes has been observed in renal
carcinomas and hematopoietic cancers (92–94). Hypermethyla-
tion of the cell cycle regulation gene RB1 and cyclin-dependent
kinase inhibitor genes, CDKN2B and CDKN2A, which are, respec-
tively, associated with the ocular tumor, retinoblastoma (95), and
various leukemias and lymphomas (93). Histone deacetylation has
been associated with a more aggressive form of acute myeloid
leukemia (AML) through its repressive effect on the tumor sup-
pressor gene death-associated protein kinase 1 (96). AML has
also been associated with changes in histone methylation patterns
(97). Finally, chromatin remodeling agents, including inhibitors
of histone deacetylases, histone lysine demethylases, and DNA
methyltransferases, have been tested for the treatment of various
cancers (94, 98–102).

Since both ER stress and GDR coping mechanisms affect
chromatin remodeling and DNA repair, adaptations based on
these mechanisms could lead to emergence of malignant cells
with self-renewal properties due to both genomic and epige-
nomic alterations. For example, hypermethylation of promoter
regions around ER stress response genes have been implicated in
the development of alcohol-induced liver cancer (103). GRP78-
deficient mice fed large quantities of alcohol throughout their
lives show high incidence of hepatic tumors, and correlate with
hypermethylation of ATF6, which upregulates genes involved in
ER-associated degradation to deal with the accumulation of mis-
folded proteins (103). Also, increased GRP78 stimulates the VEGF
receptor 2 and subsequently VEGF-induced endothelial cell pro-
liferation, which facilitates angiogenesis and tumor survival and
growth (104–106). The apparent contradictory effect on neoplas-
ticity as both inhibition and promotion of cancer progression,
predicted by GRP78 abundance, suggests that the nature and con-
text of coping response activation are important determinants of
the outcome.

Acetylation of H3K14 has also been implicated in cell sur-
vival and carcinogenesis, both with respect to the UPR and GDR.
Increase in H3K14 acetylation in response to ER stress results
in stimulation of transcription, promoting cell survival (64).
Increased H3K14ac during GDR enhances access of BRG1 to the
sites of DNA damage to promote chromatin remodeling required
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for DNA repair (65, 66). However, in addition to promoting DNA
repair, BRG1 has been associated with cancer development. For
example, BRG1 was shown to impair the recruitment of BRCA1
to DNA damage sites, which is important in DNA damage repair
and in the maintenance of genomic stability (107); to activate
the melanoma inhibitor of apoptosis gene (108); and to support
oncogenic transcriptional program, including Myc (109), for the
survival of leukemic cells (110). Finally, chromatin changes in
response to genotoxic conditions have been shown to alter the reg-
ulation of the Hedgehog–Gli signaling pathway, which has been
implicated in genome instability and in several types of cancers
(111–113).

SUMMARY
Coping mechanisms are designed to correct, minimize, or
overcome damage caused by harsh environments, and promote
cell survival. The UPR pathway is mobilized in response to the
accumulation of unfolded proteins and to ultimately regain ER
homeostasis. Similarly, the GDR pathway operates in response to
chromatin damage and to restore normal nuclear function. Some
adaptive strategies allow cells to overcome defects in cellular func-
tion through metabolic adaptation and gain a survival advantage,
such as in certain types of malignancies. A better understanding of
the interplay between UPR and GDR pathways may provide new
insights into the pathogenesis of cancers, which could give rise to
more effective anti-cancer therapies.
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