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Adaptor proteins contribute to the selection, differentiation and activation of natural

killer T (NKT) cells, an innate(-like) lymphocyte population endowed with powerful

immunomodulatory properties. Distinct from conventional T lymphocytes NKT cells

preferentially home to the liver, undergo a thymic maturation and differentiation process

and recognize glycolipid antigens presented by the MHC class I-like molecule CD1d

on antigen presenting cells. NKT cells express a semi-invariant T cell receptor (TCR),

which combines the Vα14-Jα18 chain with a Vβ2, Vβ7, or Vβ8 chain in mice and the

Vα24 chain with the Vβ11 chain in humans. The avidity of interactions between their

TCR, the presented glycolipid antigen and CD1d govern the selection and differentiation

of NKT cells. Compared to TCR ligation on conventional T cells engagement of the

NKT cell TCR delivers substantially stronger signals, which trigger the unique NKT

cell developmental program. Furthermore, NKT cells express a panoply of primarily

inhibitory NK cell receptors (NKRs) that control their self-reactivity and avoid autoimmune

activation. Adaptor proteins influence NKT cell biology through the integration of TCR,

NKR and/or SLAM (signaling lymphocyte-activation molecule) receptor signals or the

variation of CD1d-restricted antigen presentation. TCR and NKR ligation engage the SH2

domain-containing leukocyte protein of 76kDa slp-76 whereas the SLAM associated

protein SAP serves as adaptor for the SLAM receptor family. Indeed, the selection

and differentiation of NKT cells selectively requires co-stimulation via SLAM receptors.

Furthermore, SAP deficiency causes X-linked lymphoproliferative disease with multiple

immune defects including a lack of circulating NKT cells. While a deletion of slp-76 leads

to a complete loss of all peripheral T cell populations, mutations in the SH2 domain

of slp-76 selectively affect NKT cell biology. Furthermore, adaptor proteins influence

the expression and trafficking of CD1d in antigen presenting cells and subsequently

selection and activation of NKT cells. Adaptor protein complex 3 (AP-3), for example, is

required for the efficient presentation of glycolipid antigens which require internalization

and processing. Thus, our review will focus on the complex contribution of adaptor

proteins to the delivery of TCR, NKR and SLAM receptor signals in the unique biology of

NKT cells and CD1d-restricted antigen presentation.
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INTRODUCTION

Specific and appropriate intercellular interactions or the
communication of cells with their environment requires the
integration and coordination of multiple signaling pathways.
Adaptor proteins contain a series of protein-binding sites that
link respective interaction partners to each other and facilitate the
generation of larger signaling complexes (1). This is, for example,
pivotal for the delivery of signals from the T cell receptor (TCR)
which plays a critical role in T cell biology (2).

There exist several T cell populations with distinct functions
(3). Alpha beta (αβ) T cells, for example, termed conventional
(αβ) T cells, are predominantly part of the adaptive immune
system and display a large TCR diversity. TCR ligation by
self-peptides embedded in major histocompatibility complex
(MHC) molecules on antigen-presenting cells (APCs) in the
thymus determines the fate of developing conventional T cells.
Weak TCR signals perpetuate positive selection whereas strong,
agonist, signals support the removal of potentially self-reactive
TCRs through negative selection (4). The resulting diverse TCR
repertoire endows conventional T cells to respond to foreign
antigens in the periphery upon exit from the thymus. NKT cells
can be divided into two distinct subpopulations.

In contrast, mucosa-associated semi-invariant T (MAIT) cells,
gamma delta (γδ) T cells and natural killer T (NKT) cells
express semi-invariant TCRs with limited diversity and react
rapidly to conserved self and/or microbial ligands. Most of these
cells acquire memory cell features during thymic maturation
and exhibit unique patterns of migration into peripheral,
frequently non-lymphoid tissues where they become resident,
regulate tissue homeostasis and/or fight infection (5). These
innate(-like) T lymphocytes display also several other innate-
like characteristics and are therefore considered to be mainly
part of the innate immune system. Distinct from conventional
T cells, innate(-like) lymphocytes recognize higher affinity and
avidity antigens through their TCR, which has been suggested
to deliver substantially stronger signals (4, 6). Thus, the TCR
signal threshold for negative selection is higher. However, it is
not completely understood how unconventional T cell precursors
escape negative selection despite agonist signaling. Thus, adaptor
proteins might play a pivotal role in the tight control of TCR
signals as they tie multiple and complex intracellular pathways.
Indeed, some adaptor proteins are specifically important for
innate(-like) lymphocytes, and a lack of specific adaptor proteins
impairs or even selectively inhibits the selection of these
frequently autoreactive cell subsets. In detail, we will discuss here
the impact of adaptor proteins on the biology of natural killer T
(NKT) cells. We will focus thereby on type 1 or invariant NKT
cells, which we will refer to as iNKT cells hereinafter.

NATURAL KILLER T (NKT) CELLS AND
CD1D-MEDIATED ANTIGEN
PRESENTATION

Natural killer T (NKT) cells belong to the group of innate(-
like) unconventional T cells. They explosively release various

cytokines and chemokines upon TCR engagement and thus,
exhibit powerful immunomodulatory properties. NKT cells
can be divided into two distinct lineages, namely type 1 or
invariant NKT cells and type 2 NKT cells. Type 2 NKT cells
exhibit a more diverse TCR repertoire. In contrast, type 1 or
invariant NKT cells—hereinafter referred to as iNKT cells—
express a semi-invariant canonical T cell receptor (TCR), which
combines the Vα14-Jα18 chain with the Vbeta2, Vbeta7, or
Vbeta8 chain in mice and the Vα24-Jα18 chain with the Vβ11
chain in humans. Simultaneously, they carry a wide range of
activating and inhibitory NK cell receptors (NKRs) on their
surface (7). The inhibitory NKRs presumably control the self-
reactivity of iNKT cells and avoid autoimmune activation (8,
9). Vice versa, the NKT cell TCR shapes the pattern of NKR
expression, as exemplified for Ly49 receptors (10). Furthermore,
balanced signaling through activating and inhibitory NKRs
might influence the developmental program of iNKT cells (11).
As NKR signaling engages also adaptor proteins, the propagation
of signal transduction through adaptor molecules is in particular
critical for diverse ranges of cellular processes in iNKT cells.

In contrast to conventional T cells, iNKT cells respond
to glycolipid antigens and home predominantly to the liver
(12). Unlike the development of conventional T cell, the
selection of iNKT cells requires antigen presentation by double-
positive thymocytes rather than thymic epithelial cells (13–
17). iNKT cells are selected on high-affinity self-glycolipid
ligands presented by the MHC class I-like molecule CD1d
(18) which triggers their unique developmental program (19).
Their selection uniquely requires co-stimulation via SLAM
(signaling lymphocyte-activation molecule) family members and
the tyrosine kinase Fyn (20–32) as discussed below. Once
selected in stage 0, iNKT cells pass through complex activation,
expansion, maturation and differentiation processes, termed
stages 1–3 (Figure 1). These include the induction and regulation
of promyelocytic leukemia zinc finger PLZF, the iNKT cell
lineage transcription factor, multiple rounds of intrathymic cell
divisions, the acquisition of a memory phenotype, the activation
of cytokine gene loci, and the expression of multiple NKRs over
the course of several weeks (7, 33). Although associated with their
development (33, 34), PLZF is not unique to iNKT cells and also
expressed in innate lymphoid cells (ILCs), mucosa-associated
semi-invariant T (MAIT) cells and subsets of γδ T cells (35–37).

Furthermore, iNKT cells differentiate into three polarized
subsets, NKT1, NKT2, and NKT17 cells (38) before egress into
the periphery (Figure 1). Although TCR signal strength has been
implicated in the polarization of the three iNKT cell sublineages
and the regulation of PLZF expression (39), the intrathymic
branching traits and cellular and molecular mechanisms of
sublineage diversification are still under investigation. TCR-
specific signals contribute also to the tissue distribution and
phenotypic presentation of iNKT cells (40, 41). Although the
signal delivered through the iNKT cell TCR is stronger than for
the conventional T cell TCR (6, 42–44), the role of the TCR signal
strength in iNKT cell lineage commitment and differentiation is
still under investigation.

Next to α/β-TCR+ iNKT cells CD1d-restricted γ/δ T cells
also respond to (glycol-)lipid antigens (45). These γ/δ NKT cells
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FIGURE 1 | iNKT cell development. iNKT cells express PLZF upon positive

selection and undergo a unique intrathymic maturation, expansion, and

differentiation program. This includes multiple rounds of intrathymic cell

divisions, the acquisition of a memory phenotype, the activation of Th1, Th2

and Th17 cytokine genes and the expression of a panoply of NKRs.

Furthermore, iNKT cells branch into three polarized subsets, NKT1, NKT2, and

NKT17 cells before egress into the periphery. In the periphery NKT1 cells

home preferentially to the spleen and liver while NKT2 and NKT17 cells mainly

populate the lung and peripheral lymph nodes, respectively. Although TCR

signal strength has been implicated in the polarization of the three iNKT cell

sublineages and the regulation of PLZF expression, the intrathymic branching

traits and cellular and molecular mechanisms of sublineage diversification are

still under investigation. NKR, NK lineage receptors including NK1.1, Ly49,

NKG2D, CD94, DX5; PLZF, promyelocytic leukemia zinc finger.

express γ1.1 and δ6.3 chains and the promyelocytic leukemia
zinc finger (PLZF), the lineage transcription factor of NKT cells.
Further comparisons of γ/δ- with α/β-TCR expressing NKT
cells revealed also converging patterns of cytokine, gene and
cell surface marker expression implying similar differentiation
programs in both NKT cell subsets (33, 34, 37, 46–48). Thus,
several observations obtained with α/β-TCR+ iNKT cells, might
be reflected in the biology of CD1d-restricted γ/δ T cells.

Another feature of iNKT cells distinct from conventional T
cells is the recognition of glycolipid antigens presented by CD1d.
CD1d molecules are assembled in the endoplasmatic reticulum
(ER) as non-covalently linked heterodimers of an isotype-specific
heavy chain and β-2-microglobulin (β2m). During its assembly

in the ER, CD1d incorporates endogenous lipids and traffics
to the plasma membrane. While certain lipids can load onto
CD1d directly at the cell surface, CD1d with its hydrophobic
binding groove of intermediate size usually has to recycle into
late endosomal and lysosomal compartments for efficient antigen
exchange and loading (49, 50). Upon trafficking back to the cell
surface, antigens are presented by CD1d to NKT cells (51, 52).

ADAPTOR PROTEINS IN INKT CELL
BIOLOGY

Adaptor molecules are multi-domain proteins lacking intrinsic
catalytic activity, functioning instead by nucleating molecular
complexes during signal transduction (53). Several adaptor
proteins influence iNKT cell selection, differentiation and
activation, either intrinsically or indirectly through interference
with CD1d-mediated antigen presentation. For example, one
of the pivotal molecules engaged upon TCR ligation is the
intracellular adaptor protein slp-76. While the complete absence
of slp-76 (54–56) or of its N-terminal region (57) leads to a
lack of all peripheral T cell populations, selective mutations
in the SH2 domain of slp-76 affect in particular iNKT cells
(58). Most importantly and in strict contrast to conventional
T cells, the selection of iNKT cells requires co-stimulation
via SLAM (signaling lymphocyte-activation molecule) family
members (20–24). Thus, the SLAM-associated adaptor protein
(SAP) signaling pathway is selectively required for iNKT cell
development. Adaptor proteins, however, can also influence
CD1d expression by antigen presenting cells (APCs) and
subsequently affect iNKT cell biology in an extrinsic manner.
Adaptor protein complex 3 (AP-3), for example, is required
for the efficient presentation of glycolipid antigens that require
internalization and processing (59).

The slp-76 Family of Adaptor Proteins
The slp-76 family of adaptors includes the SH2 domain-
containing leukocyte phosphoprotein of 76 kDa (slp-76), the
B cell linker protein (BLNK), and the cytokine-dependent
hematopoietic cell linker (Clnk) (53). All three proteins interact
with similar but not identical signaling molecules and are critical
for the integration of multitudinous signal cascades downstream
of immunotyrosine-based activation motif (ITAM)-bearing
receptors and integrins in various hematopoietic cell populations
(60). Slp-76 is expressed in T cells, monocytes/macrophages,
NK cells, mast cells and platelets (61, 62). BLNK reflects the
slp-76 homolog in B cells. It shares about a 33% amino acid
identity, but some of its structural domains are similar to those
of slp-76 (60, 63, 64). BLNK is primarily responsible for the
transmission of signals through the B cell receptor (BCR). CLNK
is selectively expressed in various hematopoietic cells following
cytokine stimulation (65).

The SH2 Domain-Containing Leukocyte

Phosphoprotein of 76 kDa, Slp-76
Of these three family members primarily slp-76 is pivotal for T
cell development and TCR signaling (61, 62). Due to impaired
signals from the pre-TCR, double negative 3 (DN3) T cells
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cannot transform into the double negative 4 (DN4) stage (54,
55, 57). Consequently, slp-76−/− mice lack all peripheral mature
T cells (57).

The divergent functions of slp-76 are mediated by its
distinct signaling domains (Figure 2). The N-terminal acidic
domain contains three tyrosine residues (66) which become
phosphorylated by the protein tyrosine kinase ZAP-70 upon TCR
ligation (67, 68) and subsequently bind the SH2 domains of the
guanine nucleotide exchange factor Vav (68–70), the adaptor
protein Nck (71, 72) and the Tec-family kinase Itk (73, 74). The
deletion of this N-terminal region (57) leads to a lack of all
peripheral T cell populations, similar as the complete knockout
of slp-76 protein (54, 55, 57). Of these three binding partners
in particular Itk affects the development, maturation, cytokine
production and survival of NKT cells (75–79). Itk-deficiency
affected thereby not only α/β-TCR-, but also γ/δ-TCR-expressing
NKT cells which in particular affect the control of Th2 responses
and IgE production (80).

The central proline-rich domain of slp-76 interacts with the
phospholipase PLCγ-1 (81) and the adaptor molecule GADS
(Grb2-related adaptor downstream of Shc) (82). For none of
these two molecules a role in NKT cell biology has been
established so far.

The C-terminal SH2 domain of slp-76 binds to the serine-
threonine kinase HPK-1 (hematopoietic progenitor kinase 1)
(83) and to the adhesion and degranulation-promoting adaptor
protein (ADAP) (84, 85). ADAP is required for thymocyte
selection and TCR-mediated integrin activation (86–88). Thus,
slp-76 interferes with inside-out and outside-in signaling
cascades and integrin-expression (89) due to its multipoint
binding with ADAP (90).

A missense mutation within the SH2-domain of slp-76 led to
an accumulation of iNKT cells in the thymus and in peripheral
lymph nodes. In contrast, iNKT cells were selectively reduced
in the spleens and livers of mice with the same mutation, along
with a reduced cytokine response, decreased levels of ADAP
protein and altered integrin and NKR expression patterns (58).
Although TCR signals were affected by these mutations, NKRs
might contribute to the observed phenotype as this mutation
affected also synapse formation and elimination of missing-
self targets by natural killer (NK) cells (91). In this context,
it is important to note that the tyrosine protein phosphatase
SHP-1 dephosphorylates its direct substrate slp-76 (92), which
reflects an important mechanism for the negative regulation of
immune cell activation by inhibitory NKRs. Further studies need
to delineate the mechanisms underlying the altered pattern of
NKR expression in mice with this slp-76 mutation and the role
of TCR signals in these processes. In addition, the specificity
of this mutation for iNKT cells needs to be characterized
in further detail by assessing the alterations in subsequent
signaling pathways and by screening additional slp-76 mutations.
Interestingly, despite exhibiting an NKR distribution that has
been associated with enhanced Th1 polarization (7, 38), a
simultaneous reduction of both IL-4- and IFN-γ-expression
along with a reduced TCR-reactivity was observed in iNKT
cells carrying this missense mutation within the SH2-domain of
slp-76 (58). Thus, variations in the tissue distribution rather than

the cytokine polarization are to be considered in patients with
allelic mutations in TCR signaling molecules before pursuing
vaccination strategies involving α-GalCer, the prototypical iNKT
cell ligand as an adjuvant.

The Cytokine-Dependent Hematopoietic Cell Linker

(clnk)
Next to cytokine driven expression clnk plays a role in Fc-
epsilon R1-mediated mast cell degranulation, B cell receptor
(BCR) and TCR signaling (60, 65). While not found in resting
T cells, clnk is abundantly expressed in previously activated T
cells (65). Similar to slp-76, clnk consists of a tyrosine- and
proline-rich amino-terminal basic domain, an SH2 domain and
a carboxy-terminal tail (60). While the SH2 domains of slp-76
and clnk exhibit the highest degree of homology within their
SH2 domains the sequence variations outside this region suggest
that clnk might not be phosphorylated by ZAP-70 and does not
associate with Vav, Nck, or GADS. Clnk can rescue TCR signals
in slp-76-deficient T cells (65), but clnk itself is dispensable for
T cell function and differentiation (93). Clnk might contribute
to the coordination of antigen-receptor signaling and cytokine
stimulation. Interestingly, clnk might mediate diverse or even
opposite signals by TCRs and NKRs as it promotes iNKT cell
responses, but impairs NK cell function (94). Thus, clnk might
function as a molecular switch, which controls diverse immune
responses in different cell populations.

Signaling Lymphocytic Activation Molecule
(SLAM) and Signaling Lymphocytic
Activation Molecule-Associated Protein
(SAP)
The signaling lymphocytic activation molecule (SLAM) family
of cell surface receptors comprises six members named 2B4
(CD244), Ly9 (CD229), CRACCSLAM (CD150), CD84, and
Ly108 (95, 96) which are exclusively expressed on hematopoietic
cells. They represent homophilic receptors with the exception
of 2B4, which recognizes CD48. SLAM family receptors possess
an extracellular segment with two or four immunoglobulin-
like domains responsible for ligand recognition, a single
transmembrane region and a cytoplasmic domain. This
cytoplasmic domain bears one to three inhibitory or activating
immunoreceptor tyrosine-based switch motifs (ITSMs) (97).

Signaling lymphocytic activation molecule (SLAM)-
associated proteins (SAPs) are adaptor molecules which contain
Src homology 2 (SH2) domains. SAPs are expressed in T cells, NK
cells, and iNKT cells. The SAP family of adaptors includes three
members most commonly known as SAP (also named SH2D1A),
Ewing’s sarcoma-associated transcript-2 (EAT-2; also named
SH2D1B1) and EAT-2-related transducer (ERT; also named
SH2D1B2) (98).Mutations in the SAP (SH2D1A) gene located on
chromosome X are responsible for X-linked lymphoproliferative
disease (XLP), characterized by higher susceptibility to Epstein-
Barr virus (EBV) infection, B cell lymphomas, severe immune
dysregulation, a nearly complete loss of iNKT cells and an
impaired humoral immunity (22, 23, 99–102). The correlation
of an augmented susceptibility to EBV infections with the lack of
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FIGURE 2 | Signaling domains of slp-76. SLP76 (SRC homology 2 (SH2)-domain-containing leukocyte protein of 76 kDa) contains inducibly phosphorylated tyrosines

in the amino (N) terminus, a central proline-rich (PR-) domain and a carboxy (C)-terminal SH2 domain. The N-terminal acidic domain binds to the SH2 domains of the

guanine nucleotide exchange factor Vav, the adaptor protein Nck and the Tec-family kinase Itk. The subsequent signaling pathways influence predominantly the

reorganization of actin. This domain of slp-76 interacts also with the phosphatidylinositol 3-kinases (PI3K) which interfere with multiple cellular functions such as

proliferation, differentiation and survival. The central proline-rich domain of slp-76 interacts with the phospholipase PLCγ-1 and the adaptor molecule GADS

(Grb2-related adaptor downstream of Shc). The C-terminal SH2 domain of slp-76 binds to the serine-threonine kinase HPK-1 (hematopoietic progenitor kinase 1) and

to the adhesion and degranulation-promoting adaptor protein (ADAP), two molecule associated with the formation of the immunological synapse, integrin

activation/expression and inside-out and outside-in signaling cascades. ADAP, adhesion- and degranulation-promoting adaptor protein; GADS, GRB2-related adaptor

protein; GRB2, growth-factor-receptor-bound protein 2; HPK1, hematopoietic progenitor kinase 1; ITK, interleukin-2-inducible T-cell kinase; Lck, lymphocyte-specific

protein tyrosine kinase; NCK, non-catalytic region of tyrosine kinase; PLCγ1, phospholipase Cgamma1; PI3K, phosphatidylinositol 3-kinase; PR, proline-rich; Vav,

guanine nucleotide exchange factor.

iNKT cells together with the observation that the SLAM family
receptor 2B4 exhibits defect signaling function in SAP-deficiency
(103–105) suggest a key role for iNKT cells and SLAM family
receptors in the immune response to EBV.

SAP family adaptor proteins respond through their SH2
domains to the cytoplasmic domains of SLAM family receptors
by recruiting and activating the downstream tyrosine kinase
Fyn (Figure 3) (106). However, SLAM family receptors can also
signal through other SH2 domain–containing molecules such
as the protein tyrosine phosphatases SHP-1 and SHP-2 or the
SH2 domain inositol phosphatase 1 (SHIP-1), particularly in SAP
deficiency (25, 97, 101, 107–111). While SAP-dependent SLAM
family receptor signaling is pivotal for the selection of iNKT
cells, these receptors inhibit SAP-independently follicular helper
T cells and humoral immune responses (25).

iNKT cells are known to use unique signaling pathways
(26). Fyn, for example, is required for iNKT cell development,
but not for the differentiation of conventional T lymphocytes
or NK cells (20, 21). The loss of SAP resulted in a complete
absence of iNKT cells from both mice and humans. SAP-
transmitted signaling events were uniquely required for the
development of iNKT cells, as conventional T cells and NK
cells developed normally in the absence of SAP (22, 23). The
selection of iNKT cells also strictly requires co-stimulation
via SLAM (signaling lymphocyte-activation molecule) family
members (20–24). Homotypic interactions involving the SLAM
family receptors 1 and 6 are required for iNKT cell differentiation

(24). While SAP deficiency blocks positive selection at stage
0, the most immature stage of iNKT cell development (22,
23), mice lacking SLAM receptors exhibit less pronounced
iNKT cell defects that appear to spare stage 0 iNKT cells
(24, 25). Indeed, unlike SAP, SLAM family receptors promoted
iNKT cell development and intrathymic maturation due to the
restriction of TCR signal strength following positive selection
and the limitation of activation induced cell death (27). This
process involves the adaptor SAP-kinase Fyn complex and the
protein tyrosine phosphatases SHP-1. Thus, this study uncovers
important differences in SAP and SLAM signaling and highlights
the complex processes underlying iNKT cell maturation and
survival (112) as auto-reactive iNKT cell activation during
thymic selection is thought to induce a substantially stronger
TCR stimulus in comparison to that during the development
of conventional T cells (6, 113). As a consequence the
expression of the transcription factors Egr1 and Egr2 is strongly
increased (113), which in turn directly induce PLZF, the
key transcription factor controlling iNKT cell differentiation,
migration, and functions (113). SAP regulates also cytokine
production, expression of transcription factors, the polarization
of iNKT cells favoring the development of NKT2 cells and
the formation of the immunologic synapse (28, 114, 115).
Furthermore, SAP expression in iNKT cells promotes cognate
help to B cells (116, 117). Thus, the SLAM-associated adaptor
protein (SAP) signaling pathway is selectively required for iNKT
cell development and the loss of iNKT cells has been suggested
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FIGURE 3 | SLAM receptor signaling. SLAM receptor ligation recruits and

activates via SAP the protein tyrosine kinase FYN, which phosphorylates

SLAM and subsequently generates docking sites for SRC homology 2

(SH2)-domain-containing downstream adaptor proteins and enzymes. SLAM

engagement also cooperates with TCR-mediated signals leading to nuclear

factor-κB (NF-κB) activation, cytokine production and NKT cell development.

DOK1 and 2, docking proteins 1 and 2; RasGAP, RAS–GTPase-activating

protein; SAP, Signaling lymphocytic activation molecule (SLAM)-associated

proteins; SLAM, signaling lymphocytic activation molecule; SHIP,

SH2-domain-containing inositol−5′ phosphatase.

to contribute to the genesis of the lethal immunodeficiency
syndrome. The need for SAP-mediated signals may reflect the
unique requirements for the positive selection of iNKT cells
in the thymus. However, several questions remain unresolved.
For example, the role of individual SLAM family receptors in
cytokine polarization and iNKT cell differentiation needs to be
characterized in more detail as well as the impact of subsequent
signaling cascades and their interference with NKRs and TCRs.
In addition, it is still unknown, whether and how TCR and SLAM
family receptors interfere on a cellular and molecular level and
why this is specific for iNKT cells.

Adaptor Protein-3 (AP-3)
The hetero-tetrameric AP (adaptor protein) complexes are
involved in the sorting of cargo proteins into transport vesicles
that traffic between the different organelles of the cell. They
are known to bind to the tyrosine or dileucine-containing
sequence motifs in transmembrane proteins in order to direct

their selective localization to subsets of endosomal and lysosomal
compartments (118, 119). Five members, AP-1 to AP-5 and
their isoforms have been characterized in this family of cytosolic
complexes (118–120). In contrast to AP-4 and-5, AP-1,-2,
and-3 are clathrin-associated complexes (121). AP-1 and AP-2
direct proteins from the trans-Golgi network to endosomes and
recycling compartments, respectively (122, 123). AP-3 localizes
membrane proteins to lysosomes, platelet-dense granules, and
melanosomes (124). AP-3-deficient mice as well as Hermansky-
Pudlak syndrome type 2 (HPS-2) patients with mutations in the
AP-3 gene exhibited hypopigmentation and platelet dysfunction
(125–129). AP-4 mediates vesicle trafficking from the trans-Golgi
network to endosomes or the basolateral plasma membrane. The
function of AP-5 localized in late endosomes is largely unknown
(121). To date, there have been no interactions between AP-1,
AP4, and AP-5 with CD1d described. However, CD1d directly
interacts with AP-2, which targets the endosomal compartment,
and AP-3, which targets the lysosomal compartment (59, 130).
Indeed, AP-2 restrains iNKT cell activation due to the regulation
of CD1d internalization (131), and a connection of AP-2 with
autophagy as a regulator of iNKT cell activation, development
and survival is currently under investigation. In this context, a
deletion of the essential autophagy gene Atg7 abrogated thymic
iNKT cell development and peripheral iNKT cell functions in a
cell-intrinsic manner (132, 133). Unexpectedly, however, Atg7-
deficient thymocytes and bone marrow-derived DCs exhibited
no defect in the presentation of glycolipid antigens, implying
distinct differences in the mechanisms how AP-2 and autophagy
genes affect iNKT cell development and activation that need to be
dissected in the future.

In contrast, numerous studies have investigated the
interaction of AP-3 and CD1d. Since CD1d recycles between the
cell membrane and the lysosome back and forth, AP-3 interferes
with glycolipid metabolism and CD1d-mediated (glyco-)lipid
antigen presentation (134). Indeed, it was shown that AP-3 is
required for the efficient presentation of glycolipid antigens
that require internalization and processing (59, 135). AP-3
interacts with CD1d, but does not affect MHC II presentation
(59, 135–137). Cells from AP-3-deficient mice show increased
cell surface expression of CD1d but decreased expression in
late endosomes. Consequently, AP-3-deficient splenocytes
present glycolipids to iNKT cells less efficiently. Furthermore,
AP-3–deficient mice exhibit significantly reduced iNKT cell
numbers. The simultaneous analysis of CD1d mutants with
alterations in the cytoplasmic tail to AP-3-knockout mice
proved also that CD1d molecules in lysosomes are functional in
antigen presentation (59, 130). iNKT cell numbers are reduced
in patients with Hermansky-Pudlak syndrome type 2 (HPS-2)
(138) and iNKT cell defects have been also associated with the
susceptibility to infections and lymphoma in patients with this
homozygous genomic AP-3 deletion (139). Thus, in summary
these studies showed that the localization of CD1d to late
endosomes or lysosomes is required for both (glycol-)lipid
antigen presentation and the subsequent development of iNKT
cells. These reports also demonstrated that different pathways
mediate the intracellular trafficking of MHC II and CD1
molecules, which both scavenge late endosomes or lysosomes.
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FIGURE 4 | Interactions of SAP and slp-76. SLAM receptor signaling

cooperates with TCR and NKR signals. While TCR and NKR signal through

slp-76, SLAM receptors utilize SAP and Fyn. It is unknown to date whether

slp-76 and SAP interact, whether these three receptor classes combine slp-76

and SAP signals and whether other receptors share similar signaling

pathways. DAP, DNAX activation adaptor protein; Fyn, SRC family tyrosine

kinase; NKR, NK cell receptor; SAP, Signaling lymphocytic activation molecule

(SLAM)-associated proteins; SLAM, signaling lymphocytic activation molecule;

slp-76, SRC homology 2 (SH2)-domain-containing leukocyte protein of 76

kDa; TCR, T cell receptor; ZAP-70, zeta-chain associated protein kinase 70.

CONCLUSION

Adaptor proteins play a pivotal role in the biology of CD1d-
restricted iNKT cells. SAP transfers SLAM receptor signals,

propagates the thymic selection of iNKT cells and induces the
iNKT cell effector program (33). The SH2 domain of slp-76
influences the tissue distribution and phenotype of iNKT cells
in the periphery (58). AP-3 interferes with the presentation of
glycolipid antigens by CD1d (59). Thus, these three adaptor
proteins engage unique functions in iNKT cells biology distinct
from conventional T lymphocytes. Particularly the expression
of SAP and slp-76 in iNKT cells raises the question whether
these two molecules interact (Figure 4). As SLAM receptors,
NKRs and TCRs share adaptor proteins for signal transmission
(140, 141), it will be interesting to define the contribution of
the respective receptors to the observed phenotypes. Another
interesting candidate to investigate in this context is the protein
tyrosine kinase SHP-1 since it also interferes with all three
receptor classes (111, 116, 142–144) and localizes with slp-76 and
fyn in lipid rafts (145–147), even though evidence of physical

interactions of these three molecules in iNKT cells is missing.
As the strength of the TCR signals influences the polarization of
iNKT cell subsets (39), the role of adaptor proteins in fine-tuning
intracellular signal transduction is to characterize. In addition,
as SLAM receptors are pivotal for the induction of the iNKT
cell lineage transcription factor PLZF (33) and PLZF expression
negatively correlates with the glycolytic potential of iNKT cells
(148) potential connections between adaptor proteins and iNKT
cell metabolism need to be identified.
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