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Abstract

Vaccinia virus (VACV), a member of the chordopox subfamily of the Poxviridae, abortively infects insect cells. We have
investigated VACV infection of Drosophila S2 cells, which are useful for protein expression and genome-wide RNAi
screening. Biochemical and electron microscopic analyses indicated that VACV entry into Drosophila S2 cells depended on
the VACV multiprotein entry-fusion complex but appeared to occur exclusively by a low pH-dependent endocytic
mechanism, in contrast to both neutral and low pH entry pathways used in mammalian cells. Deep RNA sequencing
revealed that the entire VACV early transcriptome, comprising 118 open reading frames, was robustly expressed but neither
intermediate nor late mRNAs were made. Nor was viral late protein synthesis or inhibition of host protein synthesis detected
by pulse-labeling with radioactive amino acids. Some reduction in viral early proteins was noted by Western blotting.
Nevertheless, synthesis of the multitude of early proteins needed for intermediate gene expression was demonstrated by
transfection of a plasmid containing a reporter gene regulated by an intermediate promoter. In addition, expression of a
reporter gene with a late promoter was achieved by cotransfection of intermediate genes encoding the late transcription
factors. The requirement for transfection of DNA templates for intermediate and late gene expression indicated a defect in
viral genome replication in VACV-infected S2 cells, which was confirmed by direct analysis. Furthermore, VACV-infected S2
cells did not support the replication of a transfected plasmid, which occurs in mammalian cells and is dependent on all
known viral replication proteins, indicating a primary restriction of DNA synthesis.
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Introduction

The Poxviridae, a family of large enveloped double-stranded DNA

viruses that replicate exclusively in the cytoplasm, are divided into

chordopox and entomopox subfamilies, which infect vertebrate and

invertebrates respectively [1]. Approximately 100 genes are

conserved in all chordopoxviruses and about half of these can be

identified in entomopoxviruses [2]. Although host restrictions

prevent the complete replication of chordopoxviruses in insect cells

and entomopoxviruses in mammalian cells, viral protein synthesis

has been detected under non-permissive conditions [3]. Amsacta

moorei, the prototypic entomopoxvirus, expresses only early genes in

vertebrate cells [4]. Some viral early and late gene expression as well

as DNA replication occur in gypsy moth cells infected with vaccinia

virus (VACV), the prototypic chordopoxvirus that was used for

smallpox eradication, but assembly of virus particles fails to occur

[5]. In VACV-infected Drosophila S2 cells, only expression of the

beta-galactosidase reporter gene regulated by an early promoter was

detected [6], suggesting variations in the extent to which insect cells

can support chordopoxvirus replication.

The nearly 200-kbp double-stranded genome of VACV codes

for approximately 200 proteins with roles in entry, RNA and DNA

synthesis, morphogenesis, and host interactions [1]. The VACV

replication cycle begins with the attachment of virions to

glycosaminoglycans or laminin on the cell surface [7,8,9,10] and

entry proceeds concurrently by fusion of the viral membrane with

the plasma membrane and with low-pH vesicle membranes

following endocytosis, with the extent that each pathway is used

depending on the virus strain and cell type [11,12,13]. The entry-

fusion complex (EFC), comprised of more than 10 viral membrane

proteins, is required for infection [14,15,16,17,18,19,20,21,22,

23,24,25]. Entry of the core, containing a complete transcription

system, into the cytoplasm results in the production of more than

100 early mRNA species [26]. The early mRNAs encode proteins

required for replication of the genome and transcription of

intermediate stage mRNAs. Following DNA replication, interme-

diate mRNAs encoding late transcription factors and late mRNAs

encoding virion components are synthesized and translated within

cytoplasmic factories, where virions are then assembled [27]. The

infectious mature virion (MV) consists of a nucleoprotein core

surrounded by a single membrane bilayer containing about 20

viral proteins [28]. Most of the MVs remain in the cell until lysis;

however, a subset are wrapped with modified Golgi or endosomal

membranes, transported to the periphery and released from the
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interior of the cell by exocytosis for efficient cell-to-cell spread

[29].

Poxviruses are generally considered to be more self-sufficient

than many other viruses owing to their large genomes and

cytoplasmic site of replication. In this context, we were motivated

to further investigate the inability of VACV to complete its

replication cycle in insect cells. Our interest was further stimulated

by the availability of powerful tools for genetic analysis,

particularly the robust RNAi system for Drosophila [30]. An RNAi

kinome (,440 genes encoding protein kinases, phosphatases and

regulatory factors) screen of VACV infection of Drosophila cells

identified AMP-activated kinase as an essential entry factor that is

conserved in mammals [6]. In order to more fully exploit the

Drosophila system for genome-wide screens, it is important to

further characterize the replication block for VACV. Here we

showed that VACV entry into a Drosophila S2 cell depended on the

EFC but appeared to occur exclusively by a low pH-dependent

endocytic mechanism, in contrast to the dual entry pathways used

in mammalian cells. Deep RNA sequencing revealed that the

entire VACV early transcriptome was expressed. Nevertheless,

replication of the viral genome and late stage mRNA and proteins

were not detected. Replication of a transfected plasmid also failed

to occur, indicating a block beyond uncoating of the virus core. In

addition, the synthesis of post-replicative stage proteins could be

overcome by transfecting plasmids with intermediate and late

promoters, consistent with a primary block in DNA replication.

Results

Entry of VACV into S2 cells requires components of the
EFC

We used a recombinant VACV strain WR containing the firefly

Luc gene regulated by the synthetic early/late promoter to

determine entry unless otherwise stated. Drosophila S2 and African

green monkey BS-C-1 cells were infected with various amounts of

virus and Luc activity was measured after 1 h (Fig. 1A). Activity

was proportional to the multiplicity of infection but was about 2-

logs higher in BS-C-1 than S2 cells. Since BS-C-1 and S2 cells are

grown and maintained at 37uC and 25uC, respectively, we tested

the effects of temperature. Whereas Luc activity increased from 25

to 31 to 37uC in BS-C-1 cells, the S2 cells had maximal Luc

activity at 31uC (Fig. 1B). In subsequent experiments, both BS-C-1

and S2 cells were incubated at the compromise temperature of

31uC following virus attachment.

To determine whether the relatively low Luc expression in S2

cells was due to slower kinetics, activity was measured over a 48 h

period in the presence or absence of AraC, an inhibitor of DNA

replication. Under the former condition, only early gene

expression could occur. In S2 cells, expression reached a plateau

at 6 h in the presence or absence of inhibitor (Fig. 1C), suggesting

that only early gene expression occurred under both conditions. In

contrast, Luc expression continued for more than 24 h in BS-C-1

cells in the absence of AraC but plateaued earlier in the presence

of the inhibitor (Fig. 1C), consistent with early and late gene

expression under the former conditions. Taken together, the data

indicated that either entry or subsequent gene expression of

VACV was lower in S2 cells than in mammalian cells and

suggested that only early gene expression occurred in S2 cells.

To investigate whether entry of VACV into S2 cells occurs by

mechanisms used in mammalian cells, we determined the effects of

the neutralizing MAb 7D11 targeted to the L1 entry protein. As

shown in Fig. 2A, VACV WR entry was inhibited by MAb 7D11

in both BS-C-1 and S2 cells. To more directly assess the role of the

EFC, a recombinant VACV with the gene encoding the A28 EFC

protein regulated by the Escherichia coli lac repressor and expressing

Luc was constructed. Infectious and non-infectious virions were

prepared by infecting BS-C-1 cells in the presence and absence of

the inducer IPTG as previously described [14]. The virions made

in the presence of IPTG contained A28 whereas those made in the

absence of IPTG lacked A28. Entry of virions lacking A28 was

severely inhibited in both cell types (Fig. 2B). We concluded that

components of the VACV entry fusion complex are required for

entry in S2 cells.

Entry of VACV into S2 cells occurs by low pH-dependent
endocytosis

Entry of VACV strain WR into mammalian cells occurs by two

routes simultaneously: direct fusion with the plasma membrane

and low pH-dependent endocytosis. The latter pathway was

established by showing that brief low pH treatment accelerated

entry through the plasma membrane by mimicking the pH of

endosomes and by preventing endosomal acidification with

inhibitors [11]. In the present study, we found that VACV entry

into S2 cells, measured by Luc activity, was enhanced less than 2-

Figure 1. Entry of VACV in Drosophila S2 cells. A) BS-C-1 and S2 cells were incubated with purified WRvFire virions at 4uC at neutral pH for 1 h at
the indicated MOI to allow attachment, washed, and then incubated for 1 h at 37uC for BS-C-1 cells and 25uC for S2 cells. Cells were lysed and Luc
activity measured and plotted as relative light units (RLU). B) Cells were infected as in panel A with a MOI of 2 PFU per cell and after virus attachment
the plates were incubated at the indicated temperatures for 2 h and then assayed for Luc. C) Cells were infected with an MOI of 1 PFU per cell as in
panel A. After attachment, plates were incubated at 31uC and Luc assays were made over a 48 h period. Note that the solid and dashed lines
representing Luc activity from S2 cells in the presence and absence of AraC are practically superimposed. Standard error bars were plotted in all three
panels but are too close to discern in some places.
doi:10.1371/journal.pone.0017248.g001

Vaccinia Virus Infection of Drosophila Cells
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fold by brief exposure of attached virions to pH 5 buffer compared

to 8-fold enhancement of entry into HeLa S3 cells (Fig. 3A).

Bafilomycin A1 inhibited VACV entry into BS-C-1 cells by about

50% and exposure of bound virions to pH 5 buffer in the presence

of inhibitor allowed entry to recover to 70% of control (Fig. 3C).

Remarkably, bafilomycin A1 inhibited entry of VACV in S2 cells

by 99% and was still 95% below the control after exposure to

pH 5 buffer (Fig. 3C), suggesting that entry occurred predomi-

nantly or exclusively through a low pH endosomal route.

We previously showed strain differences in the mode of entry of

VACV into mammalian cells. Entry as measured by Luc activity

was higher for IHD-J than WR at neutral pH; however, entry of

IHD-J was neither accelerated by brief low pH treatment nor

inhibited by bafilomycin A1 [12]. In S2 cells, however, the

situation was reversed: WR entry was higher than IHD-J (Fig. 3B).

The defect was not due to poor binding of the IHD-J strain to S2

cells as determined by flow cytometry using recombinant viruses

with GFP fused to a core protein (data not shown). The results

with IHD-J were consistent with an inability of S2 cells to support

neutral pH entry of VACV.

Viruses enter cells by a variety of endocytic mechanisms [31].

Studies of VACV entry in mammalian cells indicated a

requirement for cell signaling and actin dynamics, consistent with

macropinocytosis [32] or dynamin 2-dependent fluid phase uptake

pathways [33]. VACV infection of S2 cells is reduced to varying

degrees by latrunculin A, wortmannin, rottlerin, 5-(N-ethyl-N-

isopropyl)amirolide, known inhibitors of actin dynamics or

macropinocytosis [6]. We found that genistein, a broad-spectrum

tyrosine kinase inhibitor (Fig. 3D), dynasore, a dynamin GTPase

inhibitor (Fig. 3E) and blebbistatin (Fig. 3G), a myosin II inhibitor

reduced VACV WR entry into both BS-C-1 and S2 cells to similar

extents. Cytochalasin D (Fig. 3F), an inhibitor of actin polymer-

ization, reduced entry into BS-C-1 cells by greater than 95%, but

inhibited entry into S2 cells by ,50%. Except for the latter

quantitative difference, the entry requirements for VACV WR in

S2 and mammalian cells appeared to be similar, with the major

difference being the apparent inability to enter S2 cells by an

alternative neutral pH route.

Visualization of VACV infection of S2 cells
Since the reporter gene assay measures a post-entry event,

transmission electron microscopy was employed to visualize

VACV infection of S2 cells. After 1 h of incubation at 31uC,

numerous virions were at the cell surface particularly near

protrusions but none were seen fusing with the plasma membrane

(Fig. 4A), in contrast to the situation with BS-C-1 cells [11]. The

S2 cells contained large numbers of virions in vesicles whereas

cores, with a distinctive oval shape and brush-like surface, were

detected in the nearby cytoplasm (Fig. 4B–D). The number of

virions in endosomes increased from 0.5 to 1 h whereas the

number of cores in the cytoplasm continued to increase for the 2 h

period analyzed (Fig. 5A,B). At the latter time, the number of cores

was about one-fourth the number of endosomal virions, indicating

relatively efficient entry into the cytoplasm.

Transcriptome analysis of VACV infected S2 cells
The efficient entry of cores into the cytoplasm of S2 cells

contrasted with the low Luc activity, suggesting that transcription

or translation was limiting. Recently, we showed that the entire

VACV transcriptome could be analyzed by deep sequencing of

total polyadenylated RNA from HeLa cells [26]. The same

technique was applied to infected S2 cells. Total polyadenylated

RNA was isolated at 0, 2, 6 and 12 h post infection and cDNAs

were prepared and sequenced with an Applied Biosystems SOLiD

analyzer. Approximately 7 million to 20 million mappable reads

were obtained for each time point and were divided into those that

contained cellular or viral sequences. Viral sequence reads

represented about 5% of the total at 6 h (Fig. 6), which is in the

range (4 to 11%) occurring in HeLa cells prior to DNA replication

[26].

Individual reads were aligned to the VACV genome to

construct single-base-resolution maps of the VACV transcriptome

in S2 cells. The reads per nucleotide were plotted along the

annotated genome, which was color coded for open reading

frames (ORFs) expressed before (green) and after (red) DNA

replication (Fig. 7A). Reads above the line represent cDNAs

prepared from mRNAs transcribed from the upper DNA strand in

the rightward direction of the genome, and reads below the line

represent mRNAs transcribed from the bottom DNA strand in the

leftward direction of the genome. Most of the VACV transcripts

detected at 2 h after infection were increased at 6 and 12 h, with

Figure 2. VACV entry into S2 cells is dependent on components
of the EFC. A) Purified WRvFire virions (WR) (MOI of 10 PFU per cell)
were incubated with or without the L1 MAb 7D11 (20 mg/ml) for 30 min
at room temperature and then added to BS-C-1 or S2 cells. After
attachment, the cells were incubated at 31uC for 1 h and assayed for
Luc. B) BS-C-1 and S2 cells were incubated with purified WRvFire virions
(WR) or A28ivFire virions (MOI of 10 PFU per cell) containing (+) or
lacking (-) the A28 protein. After attachment, the cells were incubated
for 1 h and assayed for Luc. Standard error bars were plotted in both
panels but are too close to discern in some places.
doi:10.1371/journal.pone.0017248.g002
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the majority mapping to the plus strand at the right end of the

genome and the minus strand at the left end of the genome,

corresponding to the positions of the majority of early genes. This

pattern was very similar to the VACV early transcriptome maps at

0.5 to 2 h in human cells and in the presence of DNA and protein

synthesis inhibitors [26]. At 4 h in human cells, however, the

transcription pattern changes drastically correlating with the onset

of DNA replication followed by late mRNA synthesis [26],

whereas this late pattern was not observed even 12 h after

infection of S2 cells.

An enlarged view of the HindIII D segment of the VACV

genome, indicating the ORFs expressed at early and late times in

mammalian cells, is shown in Fig. 7B. The transcripts from

VACV-infected S2 cells aligned with the early ORFs but not the

late ones (Fig. 7B), precisely as had been found by deep RNA

sequencing of RNA from infected HeLa cells [26] and determined

Figure 3. Effects of pH and chemical inhibitors on VACV entry. A) HeLa and S2 cells were incubated with purified WRvFire virions at 4uC for
1 h at a MOI of 2 PFU per cell. After attachment, cells were washed and incubated with pH 5 or pH 7.4 buffer for 3 min at 37uC. Cells were then
washed and incubated at 31uC at neutral pH for 2 h and Luc assayed. B) BS-C-1 and S2 cells were infected with WRvFire or IHD-JvFire virions at
neutral pH and Luc assayed as in panel A. C) BS-C-1 and S2 cells were infected as above except cells were pre-treated with bafilomycin A1 for 1 h at
31uC and then pre-chilled to 4uC prior to virion attachment, followed by wash and pH treatment. Inhibitor was maintained in the media throughout
the infection. BS-C-1 and S2 cells were pretreated with: D) genistein; E) dynasore; F) cytochalasin; G) blebbistatin followed by wash and incubation at
31uC for 2 h. Standard error bars were plotted in all panels but are too close to discern in some places.
doi:10.1371/journal.pone.0017248.g003

Figure 4. Transmission electron microscopy of VACV infected S2 cells. Purified VACV virions were spinoculated onto cells for 1 h at 4uC at a
MOI of 150 PFU per cell. The cells were then incubated at 31uC. A) Low magnification of virions associated with cells and in endosomes at 1 h after
infection. B–D) Higher magnifications showing virions in vesicles and cores in the cytoplasm at 1 h after infection. V, virions; Endo, endosome. A size
marker is present at the lower right corner of each panel.
doi:10.1371/journal.pone.0017248.g004

Vaccinia Virus Infection of Drosophila Cells
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by conventional methods [34]. As in HeLa cells, the 39 ends of

some early transcripts overlapped the start of adjacent late

transcripts. There was also a general correspondence between

the relative numbers of reads for individual ORFs, e.g. the reads

for D7 were lowest in both S2 and HeLa cells. The read counts of

the VACV ORFs at each time point are listed in Table S1 and

illustrate the early expression pattern for the entire genome.

Protein synthesis in VACV-infected S2 cells
BS-C-1 and S2 cells were infected with recombinant VACVs

containing the Luc gene regulated by a synthetic early/late

promoter or the p11 late promoter and incubated at 4uC, 25uC,

31uC and 37uC for 16 h. In BS-C-1 cells, the highest level of

expression from the early/late and late promoters were at 37uC and

31uC, respectively (Fig. 8A). In S2 cells (Fig. 8B), Luc expression

under the early/late promoter was higher at 31uC and 25uC
compared to 37uC and the activity was barely above background

with the late promoter (note the log scale). These results suggested

that VACV is unable to mediate late gene expression in S2 cells.

Pulse-labeling experiments were carried out to confirm the

above interpretation and to assess the effects of VACV on

expression of cellular proteins. In mammalian cells, host protein

synthesis is drastically reduced at 6 h after infection, allowing

detection of abundant late protein bands as shown in Fig. 8C. In

contrast, VACV had no discernable effect on synthesis of

Drosophila proteins and intense viral protein bands were not

detected at the multiplicity of 20 PFU per cell used (Fig. 8D).

The defect in viral late protein synthesis was confirmed by

Western blotting using antibody to A3 core protein (not shown)

and by the absence of immature virus particles in thin sections of

cells viewed by transmission electron microscopy (not shown). The

only sign of de novo gene expression was the clearing of areas of

the cytoplasm suggesting pre-factories.

Expression of intermediate and late proteins from a
transfected DNA template

Based on the results so far, the abortive VACV replication in S2

cells could be due to a primary block at the stage of viral DNA

replication or intermediate and late transcription. Except for the

ancillary use of cellular DNA ligase 1 [35], no mammalian host

factors have yet been found for VACV DNA replication, whereas

in vitro studies have demonstrated specific host factor require-

ments for both intermediate and late transcription [36,37]. The

DNA replication requirement for intermediate gene expression in

mammalian cells can be overcome by DNA transfection [38],

since the viral transcription factors needed are early gene products

[39]. We found that Luc expression occurred in VACV-infected

S2 cells when a plasmid containing the Luc gene under an

intermediate promoter was transfected (Fig. 9A), indicating the

synthesis of functional viral RNA polymerase and intermediate

transcription factors. Control experiments indicated no expression

when either the virus or expression plasmid was omitted (Fig. 9A).

The DNA replication requirement for late gene expression in

mammalian cells can be bypassed by transfecting plasmids

containing the three late transcription factor genes, which have

intermediate promoters, allowing detection of a reporter gene with

a late promoter in VACV-infected cells [40]. This was

accomplished in VACV-infected S2 cells by measuring expression

of Luc regulated by the late p11 promoter (Fig. 9B). Note that Luc

expression depended on VACV infection and co-transfection of

Figure 5. Quantification of virions in endosomes and cores in
cytoplasm. Data are from the same experiment used to obtain images
in Fig. 4. The numbers of virus particles were counted in single sections
of 90 different cells and the totals plotted: A) MVs in vesicles; B) cores in
cytoplasm.
doi:10.1371/journal.pone.0017248.g005

Figure 6. Relative amount of VACV mRNA in infected S2 cells.
Total polyadenylated RNA was extracted at various times after infection
and subjected to deep RNA sequencing. The sequences were divided
into those that mapped to the Drosophila and VACV genomes. The
percentage of the sequence hits to VACV genome relative to the total
mapped reads at progressive time after infection is shown.
doi:10.1371/journal.pone.0017248.g006

Vaccinia Virus Infection of Drosophila Cells
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the intermediate transcription factor plasmid. These results

indicated that both intermediate and late transcription and

translation could occur in S2 cells provided DNA templates are

transfected.

DNA replication
The results obtained so far suggested a block in VACV DNA

replication in S2 cells. This defect was verified by Southern

blotting: viral DNA was detected in BS-C-1 cells but not in S2 cells

(Fig. 10A). The absence of viral DNA synthesis could be due to

inaccessibility of the packaged viral genome, a failure of protein

uncoating or to a specific replication defect. To assess the latter, a

naked plasmid was transfected into BS-C-1 and S2 cells, since

circular DNAs without specific viral sequences replicate efficiently

in mammalian cells infected with VACV [41,42]. Moreover,

plasmid replication is dependent on expression of each of the viral

genes known to be required for genome replication [43]. Plasmid

replication, determined by real time PCR, increased over time in

VACV infected BS-C-1 cells but not in infected S2 cells or the

mock infected or transfected controls (Fig 10B). The inability of

the plasmid to replicate in infected S2 cells indicated a specific

block in DNA synthesis.

The defect in plasmid replication could be due to a host

restriction or insufficient amounts of viral replication proteins. We

Figure 7. VACV genome-wide transcriptome maps of S2 cells. A) The number of viral sequence reads per nucleotide was determined as
indicated in the legend to Fig. 6 and displayed over the entire VACV genome with early and post-transcriptional ORFs in green and red, respectively.
The counts above the line map to the upper (rightward) strand and counts below the line map to the lower (leftward) strand of the VACV genome.
The highest read counts are off-scale in the 2- to 12-h samples for display purposes. The counts were normalized by the total reads of the samples
and those duplicated because of their location within the inverted terminal repetition were divided by 2. The HindIII restriction map of the VACV
genome is shown at the bottom for reference purposes. B) The HindIII D region from the 6 h time point in panel A has been enlarged.
doi:10.1371/journal.pone.0017248.g007

Vaccinia Virus Infection of Drosophila Cells
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evaluated the latter by Western blotting with available antibodies

to viral replication proteins. The proteins I3 and A20 were

detected in BS-C-1 and in lesser amounts in S2 cells, though equal

amounts of protein lysates were loaded in the gels (Fig. 10C). D5

and E9 proteins from BS-C-1 cells were detected as faint bands but

were below the level of detection in S2 cells (Fig. 10C). Since the

mRNA levels for all four proteins were comparable in S2 and BS-

C-1 cells (Table S1, ref. 58), inefficient translation could contribute

to the defect in DNA replication. The relatively weak staining of

bands even in BS-C-1 cells, however, made it difficult to interpret

the significance of the lower staining in S2 cells.

Discussion

Drosophila S2 cells are used for high-level heterologous protein

synthesis employing DNA or baculovirus expression systems [44]

and for genome-wide siRNA knockdown [30]. Insect-specific

RNA viruses as well as several human RNA viruses, including

vesicular stomatitis virus, Sindbis virus, Rift Valley fever virus,

Dengue virus, and West Nile virus can productively infect S2 cells

[cited in [30]. During a recent RNAi kinome screen, Moser and

co-workers [6] found that VACV abortively infected S2 cells and

cited unpublished data that DNA replication was blocked. We

confirmed the abortive replication of VACV in Drosophila S2 cells

and analyzed each step in the replication cycle to better

understand the host restriction and provide the basis for

comprehensive genome-wide siRNA screens.

As S2 cells are derived from phagocytic haemocytes, it was

important to establish that entry occurred via the VACV fusion

machinery and not by another mechanism. We demonstrated that

entry was inhibited by a MAb to L1 and was dependent on the

presence of A28, two of the proteins known to be essential for

VACV entry in mammalian cells. VACV entry into mammalian

cells occurs at the plasma membrane and via low pH-dependent

Figure 8. Late gene expression. BS-C-1 (A) and S2 (B) cells were infected at an MOI of 1 PFU per cell with a recombinant VACV with Luc regulated
under the VACV early/late synthetic promoter (WRvFire) or the p11 late promoter (WRvp11Fire) at indicated temperatures. Luc activity was measured
at 16 h after infection. Standard error bars were plotted in both panels but are too close to discern in some places. BS-C-1 (C) and S2 (D) cells were
infected with VACV at an MOI of 20 PFU per cell and pulse-labeled with 35S-labeled amino acids for 30 min intervals at the times indicated and
analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The masses of marker proteins in kDA are indicated on
the left. M denotes mock-infected cells.
doi:10.1371/journal.pone.0017248.g008

Vaccinia Virus Infection of Drosophila Cells
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endocytosis simultaneously. It was surprising, therefore, to find

that entry of VACV strain WR into S2 cells was inhibited 99% by

bafilomycin A1, an inhibitor of endosomal acidification, and could

not be enhanced by acidification of the medium, suggesting that

neutral pH fusion with the plasma membrane did not occur to a

significant extent. Indeed, numerous intact virus particles in

vesicles and free cores in the cytoplasm were seen by transmission

electron microscopy, but there were no images of plasma

membrane fusion events, which are readily detected with

mammalian cells. Consistent with these results, we found that S2

cells were less permissive for the IHD-J strain of VACV, which

enters mammalian cells primarily through a neutral pH mecha-

nism [12,45], than the WR strain. Specific entry receptors have

not been defined for VACV although the presence of glycosami-

noglycans and cholesterol on the cell surface are important for

entry of VACV into mammalian cells [46,47]. S2 cells contain cell

surface heparan sulfate proteoglycans [48] but are auxotrophic for

cholesterol. However, S2 cells were grown with cholesterol

containing serum and cholesterol supplementation did not

enhance entry as measured by Luc expression (ZB, unpublished).

Nevertheless, other differences in the distribution of lipids in

mammalian and insect cells could be responsible for the inability

of VACV to fuse with the plasma membrane. The apparent use of

a single entry pathway in S2 cells could simplify the identification

of host factors required for this step by RNAi methods.

The presence of RNA polymerase and transcription factors in

the core of infectious VACV virions allows transcription of early

genes to occur in the cytoplasm soon after entry. Deep RNA

sequencing of HeLa cells infected with VACV defined 118 early

ORFs that were expressed between 30 and 120 min and 93

additional ORFs that were expressed at 4 h, after viral DNA

replication [26]. Using a similar approach, we demonstrated

expression of the same set of early genes but no post-replication

genes even when analyzed 12 h after infection. Moreover, the

VACV early transcripts comprised a similar percentage of the total

polyadenylated RNA in S2 and HeLa cells, indicating efficient

entry and early transcription. The inability to detect late protein

synthesis by pulse-labeling infected cells was consistent with the

absence of late mRNAs.

Transcription of intermediate and late genes occurs in

cytoplasmic viral factories and depends on de novo synthesis of

a large number of early proteins including a multi-subunit DNA-

dependent RNA polymerase and stage-specific transcription

factors in addition to a DNA template. Evidence for additional

host factors has been obtained by in vitro complementation

studies. Therefore, the failure to transcribe intermediate and late

genes could have multiple causes. However, by transfecting

plasmid templates, we bypassed the requirement for replicated

viral genomic DNA and succeeded in demonstrating intermediate

and late gene expression. Thus, the early proteins needed for

intermediate gene expression were synthesized and the data

strongly suggested a block in viral genome replication in S2 cells.

Indeed, we could not detect replication of the viral genome. This

defect could be due to a failure to completely uncoat the packaged

DNA, failure to synthesize adequate amounts of viral replication

proteins, absence of a required mammalian host factor, or

presence of an inhibitory host factor. Attempts to determine the

presence of an uncoating defect as a decrease in viral cores by

confocal microscopy or an increase in naked DNA by real time

PCR were not sufficiently quantitative in S2 cells (ZB, unpub-

lished). However, the capability of VACV-infected S2 cells to

replicate exogenous DNA, which is dependent on all known viral

replication proteins [43], can be tested by transfection of plasmids.

Our inability to detect plasmid synthesis indicated that there was a

primary block in DNA replication, though it did not eliminate an

additional block in genome uncoating. One possibility, consistent

with Western blotting, is that the lower amounts of early proteins

were not sufficient to catalyze DNA replication, an explanation

provided for results obtained in mammalian cells with a

conditional lethal mutant in the VACV capping enzyme [49].

Figure 9. Expression of reporter genes regulated by intermediate and late promoters in transfected plasmids. A) Intermediate
expression. S2 cells were mock infected or infected with VACV strain WR at a MOI of 1 PFU per cell and mock transfected or transfected with a
plasmid containing the Luc ORF regulated by the G8R intermediate promoter. Luc activity was measured at 16 h. B) S2 cells were infected with VACV
strain WR and transfected with a plasmid containing the Luc ORF regulated by the late p11 promoter and cotransfected or not with a second plasmid
containing the three late transcription factor genes (G8R, A1L, A2L) regulated by intermediate promoters. Luc activity was measured at 16 h. Standard
error bars were plotted in both panels but are too close to discern in some places.
doi:10.1371/journal.pone.0017248.g009
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However, an even larger number of early proteins are needed for

intermediate transcription than for DNA replication and interme-

diate expression could be readily demonstrated by transfection of a

DNA template. An interesting possibility is that cytoplasmic DNA

replication is blocked as a host defense mechanism in S2 cells. The

ability of the DNA binding protein Barrier to Autointegration

Factor (BAF) to inhibit replication of VACV B1 kinase mutants

provides a model for such an activity [50]. The question of

whether a host inhibitory factor is present or a host stimulatory

factor is missing might be answered by carrying out a

comprehensive siRNA screen to test the former and a forward

genetic approach by transfecting a human cDNA library into S2

cells to test the latter, in each case using plasmid replication or

intermediate gene expression as the read out.

Materials and Methods

Cells and viruses
Mammalian BS-C-1 (CCL-26) and HeLa S1 (CCL-2.2) cells

were obtained from the American Type Culture Collection

(Manassas, VA) and maintained in Earle’s minimum essential

medium (EMEM) supplemented with 10% fetal bovine serum,

100 units/ml of penicillin, 100 mg of streptomycin per ml (Quality

Biologicals, Gaithersburg, MD) and 2 mM L-glutamine. S2 cells

were obtained from the Drosophila Genomics Resource Center and

maintained in Schneider Medium (Invitrogen, Carlsbad, CA)

supplemented with 10% heat inactivated fetal bovine serum. The

Western Reserve (WR) strain of VACV (ATTC VR-1354;

GenBank accession number NC_006998), WRvFire [11] and

IHD-JvFire [12] were propagated and the MV purified by sucrose

gradient sedimentation as previously described [12,51]. Recom-

binant WR virus with the firefly luciferase (Luc) open reading

frame attached to the P11 late promoter and inserted between the

F12 and F13 open reading frames was generated as previously

described [12] and named WRvp11Fire. The inserted DNA of the

purified recombinant virus was verified by sequencing. Similarly,

vA28-HAi-Fire was created by inserting the firefly Luc open

reading frame with the synthetic early/late promoter between the

F12 and F13 open reading frames of vA28-HAi [52], a WR strain

virus with an IPTG-regulated HA-tagged A28 protein.

Luc assay
Cells were seeded onto 24-well plates and incubated overnight

at 37uC for mammalian cells and 25uC for S2 cells. Cells were

chilled for 10 min at 4uC and infected with purified MVs at a

multiplicity of infection (MOI) of 1–2 plaque forming units (PFU)

per cell. The virions were allowed to adsorb to cells for 1 h at 4uC
in EMEM-2.5 (EMEM supplemented with 2.5% fetal bovine

serum, 2 mM L-glutamine, 100 units/ml penicillin and 100 mg/

ml streptomycin). Unattached virus was removed by washing and

the infection was allowed to proceed at 31uC unless indicated

otherwise in the Results section. Cells were harvested by

incubation with 200 ml of Cell Culture Lysis Reagent (Promega,

Madison, WI) for 30 min at room temperature on an orbital

shaker. The Luc assay was performed by adding 20 ml of cell lysate

to 100 ml of Luc activity assay substrate (Promega), mixed, and

chemiluminescence measured using a luminometer (Berthold

Sirius, Bad Wilbad, Germany).

Electron microscopy
Purified MVs (150 PFU/cell) were suspended in 0.75 ml

EMEM-2.5 and added to S2 cells that were plated on 6-well

dishes and pre-chilled to 4uC. Plates were wrapped in poly-

vinylidene chloride (Saran Wrap) and placed in a 75006449 C

Figure 10. DNA replication. A) VACV genome replication. BS-C-1
and S2 cells were infected with VACV strain WR (MOI of 5 PFU/cell) in
the presence or absence of AraC. At 0 and 24 h, the amount of VACV
DNA was determined in triplicate by slot blot hybridization using
digoxigenin-dUTP labeled F17R probe. B) Plasmid replication. BS-C-1
and S2 cells were infected with VACV strain WR (MOI of 3 PFU/cell) and
then transfected with a plasmid. At 0, 7 and 24 h, plasmid sequences
were quantified by real-time PCR. Mock infected cells and incubations
without plasmids were used as controls. Standard error bars were
plotted but are too close to discern in some places. C) Western blotting
of VACV DNA replication proteins. BS-C-1 and S2 cells were infected
with VACV (MOI of 20 PFU/cell), incubated after overnight at 31uC in the
presence (+) and absence (-) of AraC analyzed by SDS-polyacrylamide
gel electrophoresis and Western blotting with antibody to the I3, A20,
D5 and E9 proteins. Uninfected cells (U) and cells harvested after
inoculation (I) were used as controls.
doi:10.1371/journal.pone.0017248.g010
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bucket in a Heraeus rotor for a Legend RT Sorvall centrifuge.

Virus was spinoculated [53] onto cells at 6506g for 1 h at 4uC.

The cells were gently washed and incubated at 31uC for 30, 60 or

120 min, fixed in 2% glutaraldehyde/0.1 M sodium cacodylate

buffer, washed in 0.1 M sodium cacodylate buffer, post-fixed with

reduced osmium tetroxide, and washed in buffer. Cells were

dehydrated successively in 50%, 70%, and 100% ethanol and then

propylene oxide. The samples were embedded in EMbed 812

(Electron Microscopy Sciences, Hatfield, PA) and sections were cut

on a Leica EM UC7 ultramicrotome (Leica Microsystems,

Wetzlar, Germany). Thin sections were stained with 7% uranyl

acetate in 50% ethanol and then 0.01% lead citrate. Sections were

reviewed and photographed on the FEI Tecnai G2 Spirit

transmission electron microscope fitted with a Gatan CCD

camera (FEI Company, Hillsboro, OR). Chemicals were pur-

chased from Electron Microscopy Sciences.

Deep sequencing of RNA from VACV- infected S2 cells
S2 cells were infected with purified VACV at a MOI of 20 PFU

per cell. Preparation and sequencing was carried out as described

[26] with minor modifications. Briefly, polyadenylated RNA was

isolated from VACV-infected S2 cells by two rounds of selection

using the Dynabeads mRNA Direct Kit (Invitrogen). The strand-

specific cDNA library was prepared with the Whole Transcrip-

tome Analysis Kit (Ambion, Austin, TX) using adaptor A and

sequenced with the Applied Biosystems SOLiD 3 system. Multiple

samples were sequenced together using barcodes. The raw reads

were processed with the Applied Biosystems Whole Transcriptome

Analysis (WTA) Pipeline and split-read mapper tool and mapped

to VACV genome (NC_006998) with 2 mismatches allowed.

VACV transcriptome maps were displayed and visualized with

Mochiview [54]. The cDNA sequences were deposited in the

Sequence Read Archive of the National Library of Medicine

under submission access numbers SRA27288 and SRP004868.

DNA replication
BS-C-1 and S2 cells were infected with VACV in 24-well dishes

at 31uC for 24 h. Cells were lysed in 10 X SSC (1.5 M NaCl and

0.15 M sodium citrate pH 7.0) containing 1 M ammonium

acetate by three freeze-thaw cycles. Lysates were cleared by

incubation with Proteinase K (Sigma Aldrich, St. Louis, MO)

followed by sonication. DNA was denatured with 0.4 M NaOH

and 10 mM EDTA for 10 min at 100uC and spotted on Hybond-

N+ (Amersham, Piscataway, NJ) nylon membrane under vacuum.

The blot was washed with 10 X SSC, denatured with 0.5 M

NaOH, 1.5 M NaCl and neutralized with 1.5 M NaCl, 1 M Tris

base before hybridization using QuiK-Hyb solution (Stratagene,

Santa Clara, CA). VACV DNA was detected using digoxigenin-

dUTP labelled F17R gene probe (DIG High Prime DNA labeling

and detection kit, Roche, Indianapolis, IN). Analysis of plasmid

replication was carried out by real-time PCR as previously

described [35,43]. Briefly, 0.1 mg of p716 plasmid [55] and 3.9 mg

of salmon sperm carrier DNA were mixed with 10 mg of

lipofectamine 2000 (Invitrogen) and uninfected cells were

transfected according to the manufacturer’s instructions. After

24 h, the cells were infected with VACV strain WR at a

multiplicity of 3 PFU per cell. Cells were then washed twice with

Opti-MEM (Invitrogen) and incubated for various times, harvest-

ed and the DNA isolated using the QIAamp DNA Blood Kit

(Qiagen) according to the manufacturer’s instructions. DNA was

digested with restriction enzyme DpnI (New England Biolabs,

Ipswich, MA). Oligonucleotides P1 (59CAACTAAATGTGCA-

AGCAATGTAATTC39) and P2 (59CATCCTGCCCCTTGCT-

GT39) were designed with Primer Express software supplied by

Applied Biosystems. Reactions were carried out using SYBR

Green PCR master mix (Applied Biosystems), 10 mM of each

primer, and 1 ng of DNA in a total volume of 50 ml in an RealPlex

sequence detection system and software (Eppendorf, Westbury,

NY). DNA was amplified with 40 cycles at 95uC for 15 sec and

60uC for 60 sec.

Western blotting
Protein concentrations of cell-lysates were determined using the

micro bicinchonic acid kit (Pierce, Rockford, IL). Equal amounts

of cell-lysates (100 mg) were resolved by sodium dodecyl sulfate

polyacrylamide gel electrophoresis on 4%–12% Novex NuPAGE

acrylamide gels with 2-(N-morpholino)ethansulfonic-sodium dode-

cyl sulfate running buffer and transferred to nitrocellulose

membranes using mini iBlot gel transfer stacks (Invitrogen). After

transfer, the membranes were blocked with 5% nonfat milk in

phosphate buffered saline (PBS) containing 0.05% Tween-20

(PBS-T). Membranes were then incubated with a monoclonal

antibody (MAb) against the I3 protein [56] or polyclonal sera

against VACV DNA polymerase E9 [57], A20 protein [58], or D5

protein [59] overnight at 4uC and washed with PBS-T and PBS.

The membrane was then incubated with donkey anti-mouse

IRDye 680/800 or donkey anti-rabbit IRDye 680/800 for 2 h at

room temperature, washed with PBS-T and PBS and developed

using a LI-COR Odyssey infrared imager (LI-COR Biosciences,

Lincoln, NE).

Supporting Information

Table S1 Normalized read counts of VACV ORFs in
infected Drosophila S2 cells.
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