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Abstract: Background: The aim of this study was to assess the technical feasibility and the impact on
image quality and acquisition time of a deep learning-accelerated fat-saturated T2-weighted turbo
spin echo sequence in musculoskeletal imaging of the extremities. Methods: Twenty-three patients
who underwent MRI of the extremities were prospectively included. Standard T2w turbo inversion
recovery magnitude (TIRMStd) imaging was compared to a deep learning-accelerated T2w TSE
(TSEDL) sequence. Image analysis of 23 patients with a mean age of 60 years (range 30–86) was
performed regarding image quality, noise, sharpness, contrast, artifacts, lesion detectability and
diagnostic confidence. Pathological findings were documented measuring the maximum diameter.
Results: The analysis showed a significant improvement for the T2 TSEDL with regard to image
quality, noise, contrast, sharpness, lesion detectability, and diagnostic confidence, as compared to T2
TIRMStd (each p < 0.001). There were no differences in the number of detected lesions. The time of
acquisition (TA) could be reduced by 52–59%. Interrater agreement was almost perfect (κ = 0.886).
Conclusion: Accelerated T2 TSEDL was technically feasible and superior to conventionally applied
T2 TIRMStd. Concurrently, TA could be reduced by 52–59%. Therefore, deep learning-accelerated
MR imaging is a promising and applicable method in musculoskeletal imaging.

Keywords: deep learning; accelerated turbo spin echo MRI; musculoskeletal imaging; musculoskeletal
tumors; artificial intelligence

1. Introduction

Tumors of the extremities comprise a wide range of pathologies. Musculoskeletal
tumors, including rare clear cell sarcoma, alveolar sarcoma, and epithelioid sarcoma,
and more common tumor entities such as Ewing sarcoma and osteosarcoma account for
approximately 8% of all malignancies in young adults [1]. There is a wide variety of
histological subtypes in soft tissue tumors [2], which makes a purely image-based diagnosis
almost impossible in many cases. Magnetic resonance imaging (MRI) and computed
tomography (CT) are the state-of-the-art imaging modalities to be used to evaluate tumor
composition and T-staging regarding the possible involvement of adjacent anatomical
structures [3]. As MRI provides a better soft tissue contrast, and therefore, allows a more
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thorough differentiation of the intrinsic tumor characteristics and the local extent, it is the
imaging of choice in musculoskeletal tumors.

In recent years, new methods have been developed to reduce MRI acquisition time as
well as the extent of artifacts and to achieve more precise imaging [4–6]. Recently, machine
learning and artificial intelligence-based algorithms have found their way into clinical
radiological imaging [7,8]. These deep learning algorithms (DL) are based on convolutional
neural networks (CNN) that were developed on the basis of the function of animal neurobi-
ology, resembling the human neural network [9]. Deep learning is focused on automatized
feature learning [10]. The process is based on automated learning processes and stated
hyperparameters [11]. CNN kernels are used in convolutional networks to extract impor-
tant image features and create algorithms throughout the image. In a pooling process,
unnecessary data are discarded without any negative impact on the final result [11,12].

In radiology, trained algorithms based on larger datasets have primarily been intro-
duced in, e.g., classification, segmentation, pattern recognition, and artificial intelligence-
based diagnosis [13,14]. In the meantime, the inclusion of these components into the recon-
struction process has enabled great improvements in image quality, sharpness, and signal-
to-noise ratio (SNR) in MRI and has consequently also accelerated acquisitions [15–19].

Malignancies of extremities are often located within direct proximity to small and
vulnerable structures such as nerves, blood vessels, or tendons, which are essential for the
function of the human locomotive system. Furthermore, high morphological resolution
allows better lesion assessment as well as evaluation of tissue characteristics regarding
benign and malignant criteria. Therefore, the purpose of this study is to investigate the
technical applicability, image quality, and lesion detectability of deep learning-reconstructed
MRI as compared to standard MRI in patients with tumors of the extremities.

2. Materials and Methods
2.1. Study Design

This monocentric, prospective, single institutional study was approved by the local
institutional review board. Written informed consent was obtained from all study partici-
pants. The study was conducted in accordance with the ethical standards of the Declaration
of Helsinki from 1964 and its latest revision in 2013. N = 23 patients who received an MRI
examination of the extremities with a 1.5 T or 3 T scanner in our radiology department
were included in the study.

2.2. MRI Examination Protocols

All MRI examinations were performed in clinical routine using 1.5 and 3 T scanners
(MAGNETOM Vida, Prismafit, Aera, and Avanto, Siemens Healthcare, Erlangen, Germany).
Patients were examined in a supine position using a 32-channel spine coil and an 18-channel
body coil array. The study protocol consisted of the following sequences: 1. Standard
coronal T2w T2 Turbo inversion recovery magnitude (TIRMStd) with fat suppression.
2. Deep learning-accelerated T2w TSE (TSEDL) with spectral fat suppression based on
a prototype. Detailed imaging parameters are displayed in Tables 1 and 2. All MRI
examinations were performed using a body-weight-adapted intravenous contrast agent
injection (0.1 mmol/kg gadobutrol) (Gadovist, Bayer Healthcare, Berlin, Germany) with a
flow rate of 1.5 mL/s followed by a saline flush of 20 mL.

Table 1. Acquisition parameters for lower extremities at 1.5 T and 3 T.

Sequence T2 TIRMStd
Coronal

T2 TSEDL
Coronal Sequence T2 TIRMStd

Coronal
T2 TSEDL
Coronal

TE [ms] 71 71 TE [ms] 74 74

TR [ms] 5440 5880 TR [ms] 6030 6200
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Table 1. Cont.

Sequence T2 TIRMStd
Coronal

T2 TSEDL
Coronal Sequence T2 TIRMStd

Coronal
T2 TSEDL
Coronal

FA [◦] 150 140 FA [◦] 150 140

TA [min:s] 2:34 min 1:06 min TA [min:s] 2:50 min 1:10 min

Slice
thickness

[mm]
5.0 5.0

Slice
thickness

[mm]
5.0 5.0

FOV (mm2) 460 x 460 460 x 460 FOV (mm2) 460 x 460 460 x 460
T2w: T2-weighted; TE: time of echo; TR: time of repetition; FA: field angle; TA: time of acquisition; FOV: field
of view.

Table 2. Acquisition parameters for upper extremities at 1.5 T and 3 T.

Sequence T2 TIRMStd
Coronal

T2 TSEDL
Coronal Sequence T2 TIRMStd

Coronal
T2 TSEDL
Coronal

TE [ms] 71 71 TE [ms] 74 74

TR [ms] 5440 6060 TR [ms] 6030 6200

FA [◦] 150 140 FA [◦] 150 140

TA [min:s] 2:34 min 1:14 min TA [min:s] 2:50 min 1:10 min

Slice
thickness

[mm]
5.0 5.0

Slice
thickness

[mm]
5.0 5.0

FOV (mm2) 500 x 500 500 x 500 FOV (mm2) 500 x 500 500
T2w: T2-weighted; TE: time of echo; TR: time of repetition; FA: field angle; TA: time of acquisition; FOV: field
of view.

2.3. Image Analysis

In a blinded random order reading, image analysis was performed independently by
two radiologists, with 5 and 3 years of experience in MR imaging. The sequences were
blinded for evaluation so that the readers did not know whether they were evaluating the
T2w TIRMStd or the T2w TSEDL. Due to the random order, a direct comparison, which might
simplify the recognition of patterns in the sequence, should be avoided. For evaluation,
a dedicated workstation (Centricity PACS RA1000; GE Healthcare, Milwaukee, WI, USA)
was used. T2w TIRMStd and T2w TSEDL coronal were available for evaluation. Rating was
performed using a Likert scale from 1 to 5, wherein 5 was the best and reading scores ≥3
were considered as sufficient for clinical use.

All images were rated for overall image quality (1, nondiagnostic; 2, highly reduced
image quality; 3, moderate image quality 4, good image quality; 5, excellent image quality),
noise levels (1, nondiagnostic; 2, high noise; 3, moderate noise; 4, little noise; 5, almost no
noise), sharpness (1, nondiagnostic; 2, highly reduced sharpness; 3, moderate sharpness;
4, high sharpness; 5, excellent sharpness), contrast (1, nondiagnostic; 2, almost no contrast;
3, moderate contrast; 4, high contrast; 5, excellent contrast) and artifacts (1, nondiagnostic;
2, high level of artifacts; 3, moderate level of artifacts; 4, low level of artifacts; 5, almost no
artifacts). Due to different fat saturation techniques, artifacts regarding fat saturation were
not considered.

2.4. Lesion Assessment

A lesion was defined as a pathological finding of the extremities within the image,
including the bones, soft tissues, and lymph nodes. Images were rated independently by
the same two radiologists. The documentation of the lesion included the localization and
the maximum diameter in millimeters. In addition, each lesion was evaluated regarding
diagnostic confidence (1, nondiagnostic; 2, highly reduced diagnostic confidence; 3, moder-
ate diagnostic confidence; 4, high diagnostic confidence; 5, excellent diagnostic confidence)



Tomography 2022, 8 1762

and lesion detectability (1, nondiagnostic; 2, lesion barely detectable; 3, lesion moderately
detectable; 4, lesion easily detectable; 5, lesion perfectly detectable), using a Likert scale
from 1 to 5, wherein 5 was the best reading and scores ≥ 3 were considered as sufficient for
clinical use.

2.5. Statistical Evaluation

Statistical analysis was performed using MedCalc Statistical Software version 18.10
(MedCalc Software bvba, Ostend, Belgium; http://www.medcalc.org (accessed on 1 July 2022);
2018) and jmp (MP®, Version 15 SAS Institute Inc., Cary, NC, USA, 1989–2019.). Data
were tested for normal distribution using the Kolmogorov–Smirnov test. Parametric and
non-parametric variables were recorded using median and interquartile range (IQR). We
used the Wilcoxon signed-rank test for paired data of ordinal structure and non-normally
distributed parametric variables. Numeric continuous, non-normally distributed data
were tested using the Mann–Whitney U test. Inter- and intra-reader agreement was as-
sessed by using Cohen’s kappa (0–0.20 = poor agreement, 0.21–0.40 = fair agreement,
0.41–0.60 = moderate agreement, 0.61–0.80 = substantial agreement, 0.81–1 = almost perfect
agreement). p-values less than 0.05 were considered to indicate a significant difference.
A Bland–Altman plot was used to illustrate the differences between the sequences in
both readers. In a subgroup analysis, we compared the results of the patients who were
examined with 3 T scanners and those who were examined with 1.5 T scanners.

2.6. Deep Learning Reconstruction

The deep learning reconstruction comprised an unrolled variational network, as used
and detailed in Ref. [17]. The network architecture resembles an iterative parallel imaging
reconstruction that is interleaved with regularization steps for intermediate images. As
a key ingredient, these regularization steps are realized by CNNs whose parameteriza-
tion was previously determined offline in a supervised training process using more than
10,000 representative images obtained from volunteers. The obtained parameterization was
converted for use in a prototypical, scanner-integrated inference framework that was in-
stalled on the employed scanners. Inference time for a single slice in the actual deployment
was about 3 s for CPU on average and 0.5 s for GPU.

3. Results
3.1. Patient Cohort

Twenty-three patients with a mean age of 60 ± 16 years and a range from 30 to 86 years
were prospectively included in the study. Five patients underwent the MRI examination
because of unclear findings in conventional X-ray-examinations (n = 3) or because of
a newly diagnosed tumor of the extremities (n = 2) based on an X-ray or ultrasound
examination. Eighteen patients received the examination as a follow-up of a known tumor
of the extremities or after therapy of a local malignancy. A detailed listing of patients’
characteristics and diagnoses can be seen in Table 3.

Table 3. Patient cohort.

Patients (Male/Female), n 23 (16/7)

Age, mean ± SD (range), y total: 60 ± 16 (30–86)
male: 55 ± 15 (30–81)

female: 70 ± 12 (50–86)

Diagnosis, n Liposarcoma, 5
Neurinoma, 2

Leiomyosarcoma, 2

http://www.medcalc.org
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Table 3. Cont.

Patients (Male/Female), n 23 (16/7)

Lipoma, 2
Enchondroma, 2
Unclear mass, 2

Unclear symptoms needing further specification, 2
Myxofibrosarcoma, 2

Pleomorphic sarcoma, 1
Not otherwise specified sarcoma, 1

Spindle cell sarcoma, 1
Ewing sarcoma, 1

3.2. Image Analysis

The test for interrater reliability showed an almost perfect agreement (κ = 0.886), so we
decided to discuss only the results of the first reader. The detailed results of both readers
are listed in Tables 4 and 5.

Table 4. Detailed results of the image analysis.

Reader 1 Reader 2

T2 TIRMStd
Median
(IQR)

T2 TSEDL
Median
(IQR)

p-Value
T2 TIRMStd

Median
(IQR)

T2 TSEDL
Median
(IQR)

p-Value

Overall
Image

Quality

IQ 4 (3–4) 5 (5–5) <0.001 4 (4–4) 5 (5–5) <0.001

Noise 4 (3–4) 5 (5–5) <0.001 4 (3–4) 5 (4–5) <0.001

Contrast 4 (3–4) 5 (5–5) <0.001 4 (4–4) 5 (4–5) <0.001

Sharpness 4 (3–4) 5 (5–5) <0.001 4 (3–4) 5 (5–5) <0.001

Artifacts 4 (4–4) 5 (4–5) 0.013 4 (4–4) 4 (4–5) 0.542
IQ = image quality; DC = diagnostic confidence; IQR = interquartile range. Detailed results of the image analysis
of both readers for T2w sequences.

Table 5. Lesion assessment.

Reader 1 Reader 2

T2 TIRMStd
Median
(IQR)

T2 TSEDL
Median
(IQR)

p-Value
T2 TIRMStd

Median
(IQR)

T2 TSEDL
Median
(IQR)

p-Value

Lesion
Assessment

Lesion size 22 (13–29) 22 (12–29) 0.982 22 (13–29) 22 (12–29) 0.797

Lesion
detectability 4 (4–5) 5 (5–5) <0.001 4 (4–5) 5 (5–5) 0.003

Diagnostic
confidence 4 (4–4) 5 (5–5) <0.001 4 (4–4) 5 (5–5) 0.003

IQR, interquartile range. Lesion assessment of the T2-weighted sequences.

3.3. Lesion Assessment

In 12 of 23 MRI scans, a lesion could be detected. The analysis showed no differences
between the number of detected lesions in both readers. The evaluation showed no
statistically significant differences between T2 TIRMStd (22 (13–29)) and T2 TSEDL (22
(13–29)) for reader 1 (p = 0.982) and between T2 TIRMStd (22 (13–29)) and T2 TSEDL (22
(13–29)) for reader 2 (p = 0.895). Discrepancies regarding the lesion diameter between T2
TIRMStd and T2 TSEDL are illustrated in Figure 1. The results are illustrated in Table 5.
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Using Cohen’s kappa, interrater reliability was 0.945 for the T2 TIRMStd and 1.0 for the T2
TSEDL.
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between the T2-weighted TIRMStd and the TSEDL in reader 1 (left) and reader 2 (right).

3.4. Qualitative Image Analysis

The results of the qualitative image analysis showed a significant improvement in
the overall image quality, noise, sharpness, lesion detectability, and diagnostic confidence
(each p < 0.001) for the T2 TSEDL images, as compared to T2 TIRMStd. Concerning the level
of artifacts, T2 TSEDL was rated as slightly superior (p = 0.013). Imaging examples are
displayed in Figures 2–5.
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Figure 4. Follow-up MRI examination of an 81-year-old patient with Merkel cell carcinoma. As an
incidental finding, the coronal TIRMStd sequence shows a lipoma of the medial vastus muscle. The
T2w TSEDL shows a better image quality, noise, and sharpness than the TIRMStd.
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Figure 5. Follow-up MR examination of a 56-year-old male patient with histopathologically proven
myxofibrosarcoma. T2w TSEDL allows a better delineation of the conglomerate tumor of the left thigh
due to better image quality, noise, sharpness, and contrast.

3.5. Subgroup Analysis

In 6 patients, the examination was performed using a 3 T scanner while 17 patients
were examined using a 1.5 T scanner. The subgroup analysis showed no significant differ-
ences for the qualitative results concerning the parameters image quality (p = 0.148–0.602),
noise (p = 0.087–0.544), contrast (p = 0.2023–1.00), sharpness (p = 0.250–0.699), artifacts
(p = 0.223–0.497), and diagnostic confidence (p = 0.243–0.424). Therefore, the field strength
had no relevant impact on the reading results.

3.6. Acquisition Time
3.6.1. 1.5 Tesla Scanners

For the 1.5 T scanners, the average TA reduction for MRI of the upper extremities was
57% for the T2 TSEDL. For the lower extremities, time reduction was 59% for the T2 TSEDL.

3.6.2. 3 Tesla Scanners

For the 3 T scanners, TA reduction for MRI of the upper extremities was 52% for the
T2 TSEDL and 59% for the T2 TSEDL for MRI of the lower extremities.

4. Discussion

In this study, we investigated the technical feasibility of deep learning-accelerated
sequences in MRI examinations of the extremities. We were able to show that the implemen-
tation of a deep learning-accelerated sequence leads to shorter acquisition times and better
image quality, as compared to the conventionally used MRI sequence. Therefore, deep
learning-accelerated T2-weighted fat-saturated imaging proved to be technically feasible
while significantly improving TA, noise, contrast, sharpness, lesion detectability, diagnostic
confidence, and image quality.

In some soft tissue tumors, imaging and clinical features allow a diagnosis without
a biopsy, including myxoid liposarcoma, Baker’s cysts, neurofibroma, localized nodular
synovitis, and cavernous hemangiomas. These lesions are characterized as determinate
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lesions that can be diagnosed with high specificity due to specific imaging features [20].
Due to its excellent soft tissue contrast, MRI is the best available option to characterize soft
tissue lesions. Other imaging modalities, such as ultrasound with elastography, can help
support the diagnosis [21]. Unfortunately, many malignant soft tissue lesions, especially
those with low prevalence, are, due to their morphological resemblance, still frequently
misdiagnosed as allegedly benign [21]. This often leads to a delay in therapy, which in turn
may affect the final outcome for the patient. An improvement in image quality with a higher
image resolution could lead to a higher specificity, and therefore, an earlier diagnosis.

In bone malignancies, early detection and treatment can significantly improve the
prognosis [22]. In the most common primary bone malignancies, osteosarcoma, and
Ewing sarcoma, differentiation might be challenging due to a similar signal behavior and
appearance [23]. Furthermore, there is a huge variety of benignant bone lesions that might
be difficult to distinguish from malignancies [24]. Hence, a good image quality to precisely
evaluate the tumor structure is essential.

Regarding the results of our study, the T2 TSEDL showed an excellent image quality,
superior to conventionally used MRI sequences, while improving TA. In a rather small
study population, no differences were found in the number of detected pathologies. Lesion
detectability and diagnostic confidence proved to be better in the novel deep learning-
accelerated sequence; thus, a high detection rate may be assumed, with concomitantly
improved image quality, possibly even better than in currently used sequences. Neverthe-
less, further investigation will be necessary to determine the diagnostic accuracy of deep
learning-accelerated sequences in daily clinical practice.

One of the most important advantages of deep learning-based algorithms in image
reconstruction is the possible shortening of the TA [25–27]. One concern associated with a
shortened acquisition time is that it might lead to an increased occurrence of artifacts. How-
ever, extremities are less susceptible to motion artifacts than other anatomical structures
such as the abdominal and thoracic organs, as imaging is not dependent on breath-hold
acquisitions. Our study could prove that T2 TSEDL does not lead to a more frequent
emergence of artifacts. The improvement in TA could also imply a better tolerance of
MRI examinations in children and young adolescents, who are more likely to develop soft
tissue malignancies of the extremities [28]. Better image quality and higher SNR could
help to improve the sensitivity and specificity of MRI in extremity tumors. Additionally, a
shortened TA would improve the total time required for MRI examinations and, thereby,
increase the availability of MRI examinations in the healthcare sector and improve the
economic efficiency of MR imaging.

The novelty of our study is that the technical feasibility and the clinical applicability
of deep learning-accelerated imaging were tested for the first time in extremity tumors.
Although deep learning MRI still has an exploratory aspect, the results indicate numerous
advantages that will allegedly make integration into clinical practice inevitable.

There are some limitations to be considered. Firstly, only one sequence, namely
the T2w TSEDL, was compared to the conventionally used T2w TIRMStd. No further
characterization of lesions was assessed; thus, the final impact on the specificity remains
unclear. In addition, only a small cohort of 23 patients was included. In conclusion, our
study shows the technical feasibility of deep learning-based T2w TSEDL, which proved
to be superior to conventional T2w TIRM with regard to all examined image parameters.
Additionally, novel deep learning-based sequences allow a significant time reduction of
more than a factor of two.
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Abbreviations

CT Computed tomography
CNN Convolutional neural network
DL Deep Learning
FA Flip Angle
pc post-contrast
SNR Signal-to-Noise Ratio
Std Standard
T2 TSEDL T2-weighted turbo deep learning accelerated spin echo sequence
TA Time of Acquisition
T2w T2-weighted
tra transversal
TSE Turbo spin echo
TSEStd standard Turbo spin echo sequence
TIRM Turbo inversion recovery magnitude
TIRMStd standard Turbo inversion recovery magnitude sequence
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