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Metabolic syndrome – Removing roadblocks to
therapy: Antigenic immunotherapies%
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ABSTRACT
Up to 25 per cent of the world's adult population may have the metabolic syndrome, a condition closely associated with central obesity. The
metabolic syndrome is a major risk factor for cardiovascular disease and type 2 diabetes and therefore represents an important worldwide health
problem. In addition to metabolic abnormalities such as raised fasting plasma glucose, high cholesterol and high blood pressure, there is consensus
that obese subjects develop a state of low-grade chronic immune activation. This sustained pro-inflammatory response in fat tissue is thought to
worsen insulin resistance and dyslipidemia. Likewise, the immune system contributes to the detrimental cascade of events leading to plaque
formation in atherosclerosis. It has long been assumed that the innate arm of the immune system was the only key player, but emerging evidence
suggests that there is in fact a sizeable adaptive immune component to obesity and cardiovascular disease. From a therapeutic perspective, it could
be envisioned that immune modulation drugs such as cytokine inhibitors, co-stimulation blockers or anti-T cell agents could offer benefit. It is
questionable, however, whether chronic treatment with for instance biologicals will have a favorable risk/benefit profile in a silent condition such as
the metabolic syndrome. An attractive alternative could be the development of antigen-specific T cell therapies, not unlike those currently in various
phases of development for type 1 diabetes. In this article, we will give an overview of antigen-specific treatment modalities in type 1 diabetes,
followed by a review of the evidence for T cell involvement in obesity and atherosclerosis.
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1. INTRODUCTION – THE AUTO-INFLAMMATORY
COMPONENT IN OBESITY AND ATHEROSCLEROSIS

The adaptive immune system protects us on a daily basis from cancer cells,
fungi, viruses and bacteria. Its primary cellular components, B and T
lymphocytes, carry a repertoire of highly diverse antigen receptors that
allow for the efficient discrimination between self and foreign substances.
In order to ensure that no self-reactive T cells are released into the
periphery, a stringent selection process exists in the thymus. Even when
thymic selection fails and a potentially destructive, tissue-specific T cell
clone enters the circulation, powerful backup mechanisms come into play
such as those mediated by natural regulatory T cells (nTreg). In healthy
individuals, these complex control mechanisms collectively ensure that
immune homeostasis is permanently maintained.
Similarly sophisticated control mechanisms are in place to avoid survival
and proliferation of cells with a faulty cell cycle. Yet we know that in
subjects with a specific genetic background, escape of a single cancer
cell from surveillance can have dramatic consequences. Likewise,
escape of a single T cell from thymic selection in genetically susceptible
individuals can lead to recognition and destruction of its tissue target,
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eventually culminating in autoimmune disease [1]. Depending on the
reactivity of the autoreactive T cell subset, a wide spectrum of condi-
tions arises, including common diseases such as rheumatoid arthritis,
Crohn's disease or type 1 diabetes. Apart from a few exceptions such as
pemphigus vulgaris, myasthenia gravis and autoimmune gastritis, we
still do not know what the inciting autoantigen is in most autoimmune
diseases.
In the last decades, remarkable progress was made in the treatment of many
of these conditions. We may not always know precisely what causes
autoimmunity, but our understanding of the effector mechanisms has greatly
improved. Taking rheumatoid arthritis as an example, this once debilitating
disease is now managed extraordinarily well in most patients owing to the
availability of a host of biologicals. These drugs often tackle distinct
components of the innate (anti-TNF, IL-1, IL6) or adaptive (anti-CD20 therapy,
CTLA-4Ig) immune system. An essential drawback of virtually all of these
immune modulators is that they do not act specifically enough to fully
preserve critical host defense mechanisms. For instance, anti-TNF class
agents carry a black box warning for potential malignancy risk and are
associated with increased susceptibility to bacterial infections. This side effect
profile may be acceptable in treatment of severe inflammatory diseases
ibution-NonCommercial-No Derivative Works License, which permits non-commercial use,
ited.

Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, USA

gy, 9420 Athena Circle, La Jolla, CA, USA. Tel.: þ1 858 752 6817; fax: þ1 858 752 6993.

13 � Available online 21 January 2014

rights reserved. www.molecularmetabolism.com 275

dx.doi.org/10.1016/j.molmet.2013.12.005
dx.doi.org/10.1016/j.molmet.2013.12.005
dx.doi.org/10.1016/j.molmet.2013.12.005
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.molmet.2013.12.005&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.molmet.2013.12.005&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.molmet.2013.12.005&domain=pdf
mailto:matthias@liai.org


Review
such as rheumatois arthritis and Crohn's disease that occur primarily
in adults. It is, however, unlikely to become standard practice in conditions
such as type 1 diabetes, with a considerable pediatric population and an
excellent prognosis with optimized exogenous insulin therapy.
It is thought that the cause of autoimmune disease is that the immune
system at some point encounters self-antigen in the wrong microenvir-
onment [2]. A hypothetical example is that of an autoreactive T cell
entering a tissue that is affected by viral infection. Here, the T cell will
recognize its tissue antigen in the presence of danger signals originating
from the ongoing viral infection. The result will be activation followed by
autoimmune tissue destruction. In the face of that scenario, it was
postulated that the reverse mechanism could be the path to restoring
balance, i.e. by presenting the antigen in such a way that T cells are ‘re-
educated’ and start ‘seeing’ the tissue antigen as self again [3]. One
such pathway is through administration of antigen via the oral route, a
mechanism termed oral tolerance [4]. The concept entails that the
default immune response toward food antigens is tolerogenic, and it is a
remarkably well documented phenomenon in animal models for
autoimmune disease. The potential benefits over non-antigen specific
immune modulators are significant in the sense that one targets only the
disease-relevant immune cells, thereby avoiding the deleterious con-
sequences of immune suppression.
Antigen-specific therapy may also hold promise in the treatment of the
metabolic syndrome and its cardiovascular consequences. It is now
widely accepted that low-grade chronic inflammation at least contri-
butes, if not drives, insulin resistance and dyslipidemia in obesity [5] and
plaque formation in atherosclerosis [6]. More recently, it was shown that
adaptive immunity plays an essential part in this process. Whether
obesity and atherosclerosis are true autoimmune diseases in origin is
still questionable, but they definitely appear to contain an auto-
inflammatory element. While the nature of the relevant antigen(s) is
still entirely unknown in obesity, some proof-of-concept studies show
that oral tolerance induction against disease relevant antigens works
against atherosclerosis. The safety profile and simplicity of antigen-
specific therapy seem tailored to treatment at onset of the metabolic
syndrome, a disease stage during which chronic treatment with
expensive immune modulators is not advisable. The ambition should
be to design a safe antigenic immunotherapy that can be administered
from diagnosis of the metabolic syndrome in order to neutralize the
obesity-related immune component and/or prevent cardiovascular
disease.
Figure 1: The autoimmune process in T1D. The figure outlines some key steps in the developm
triggers the activation of certain autoreactive T cells that have escaped thymic selection. Whether the
cells, primarily CD8 T cells (CTL) in T1D, extravasate and accumulate around the pancreatic islets.
APC’s such as macrophages, resulting in proliferation and cytokine release. Cytokines and cell-m
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2. ANTIGEN-SPECIFIC THERAPIES IN TYPE 1 DIABETES

Type 1 diabetes (T1D) is a prototypical autoimmune disease that is
characterized by the specific destruction of insulin-secreting beta cells
in the pancreas by the immune system [7]. Like virtually all other
autoimmune diseases, T1D is thought to be the consequence of a
complex interplay between genes and environment. The specificity of
the T cell repertoire against pancreatic islet antigens is fairly well-
described in T1D, which makes that antigen-specific treatments are
regarded as an attractive approach. In mice, insulin is a primary
autoantigen [8], although other non-beta cell restricted molecules
including GAD, IGRP and chromogranin are also targeted [9]. Human
histopathology studies indicate that CD8 T cells are the predominant
subset within islet lesions, react against various islet antigens and can
be reliably identified in the periphery [10,11] (Fig. 1).
T1D is in essence a curable autoimmune disease, as evidenced by
immunosuppression trials decades ago [12] and more recently by non-
myeloablative stem cell transfers [13]. Two substantial limitations,
however, impede broad application of these therapies. First and
foremost, the side effect profile associated with these therapies is
generally unacceptable given the current high standard of care with
exogenous insulin therapy [14,15]. Second, the effect of C-peptide
preservation is not lasting, meaning that treatment should be adminis-
tered chronically which, in view of the aforementioned side effects, is
not an option. The same objections largely apply to the use of islet
transplantation, where islet grafts are eventually lost due to recurring
autoimmunity in the absence of adequate immune modulation [16].
Antigen-specific therapies offer a potential solution to these challenges
[17]. The concept entails presentation of key autoantigens to the
immune system in such a way that they are viewed as ‘tolerogenic’ and,
as a consequence, immune ignorance or regulation is restored. One of
the most attractive features of antigenic therapies is that only the
disease-relevant part of the immune system is silenced, while protective
immunity is left intact. This attribute could allow for safe chronic
treatment regimens, even in a secondary prevention setting in autoanti-
body-positive, at-risk non-diabetics.
In animal models, antigenic treatment has shown great promise in
preventing disease but has never been reliably capable of disease
reversal, something that immune modulators such as anti-CD3 were
able to achieve [18]. Therefore, antigenic treatments could be
envisioned as a suitable follow-up therapy after a short-course
ent of T1D, from left to right. It is assumed that an environmental trigger, for instance a virus,
infection needs to target the target organ for disease induction is unknown. Next, the activated T
There, they recognize their cognate autoantigen presented by MHC class I on beta cells and by
ediated killing eventually result in profound inflammation and beta cell death.

& 2014 The Authors. Published by Elsevier GmbH. All rights reserved. www.molecularmetabolism.com



Figure 2: The adaptive immune system in obesity. In adipose tissue, CD4 T cells are activated by either macrophages or directly by adipocytes, which present an unknown antigen in the context of
MHC class II. It is possible that NKT cells, an innate-like T cell subset, may be of particular importance since these cells specifically recognize lipids. This activation will trigger cytokine release,
primarily IFN-γ, which in turn promotes conversion of M2 macrophages to a pro-inflammatory M1 phenotype. These M1 macrophages produce copious amounts of innate cytokines such as TNF-α
and IL-1β, which are known to promote insulin resistance and enhance tissue inflammation. Regulatory T cells, which under steady state conditions secure immune homeostasis, are affected by the
proinflammatory milieu and fail to regulate the autoreactive process. CD8 T cells also appear to be involved and enhance the recruitment of macrophages, resulting in a vicious cycle of inflammation.
treatment with an immune modulator such as anti-CD3. Data in mouse
models confirm that this indeed may be a viable option in order to avoid
the long-term side effect profile associated with chronic immune
modulation [19].
Despite encouraging evidence in animal models, the translational record
of antigenic therapies remains checkered. As a monotherapy, these
approaches may lack the therapeutic potency required to reverse what
is essentially an end-stage disease phase at diagnosis. Whereas
combination therapies sound like an attractive alternative, there are
significant regulatory and commercial impediments that currently restrict
their clinical translation [20]. We will outline below a selection of
successes and failures with antigenic therapies in T1D, which could
conceivably also be tested in the metabolic syndrome. Importantly,
emerging evidence suggest that antigenic treatments for T1D could also
potentially be applied in subsets of T2D patients, as overlapping beta
cell-specific CD4 T cell reactivity profiles are observed in both conditions [21].

2.1. Mucosal antigen delivery
Perhaps the most straightforward antigen delivery method is via the oral
route. This approach exploits the notion that the default immune
response to food antigens is of tolerogenic nature. This idea dates
back to 1911 and originated from experiments where hen's egg protein
was fed to guinea pigs, rendering them refractive to injections with the
antigenic protein [22]. Recent clinical studies in the area of food
allergies to eggs [23] and peanuts [24] have suggested that high-dose
oral feeding regimens can induce a certain degree of desensitization.
Whether this amounts to the establishment of lasting tolerance is still
unclear, although the most recent egg allergy trial showed prolonged
desensitization in about a quarter of patients [23].
In the field of autoimmunity, the concept was rediscovered by Weiner
and colleagues and has shown remarkably consistent efficacy in a
variety of animal models for T1D [25], multiple sclerosis [26], arthritis
[27] and others. The protective effect is typically achieved in mice by
repeated oral feeding of low milligram doses of soluble protein prior to
disease onset. In the spontaneous NOD model, treatment with oral
insulin has to be initiated early at 5 weeks of age and weekly feeding
is maintained throughout the course of observation. In this model,
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both the source of insulin and dose appear to significantly influence the
outcome [28]. An encouraging finding is that insulin feeding not only
established tolerance against insulin, but also other islet-specific antigens
by virtue of a mechanism coined ‘bystander suppression’. This is important
because the ambition in T1D is to prevent the destructive activity of all
autoreactive T cell species, not just those specific for insulin [29].
The approach has been tested in the clinic in a series of autoimmune
conditions, so far with disappointing outcomes [3,30]. Of note, most
trials, including some in T1D, have treated diagnosed individuals. This
setting contrasts with the findings in animal models, where solid effects
are only observed in a prophylactic treatment course. The DPT-1 trial in
at-risk, non-diabetic relatives from T1D patients raised high hopes but
unfortunately failed to meet its primary endpoint [31]. Subgroup analysis
identified an effect in insulin autoantibody positive individuals, which
serves as an inclusion criterion in an ongoing prevention trial.
Nasal administration of autoantigens is an alternative route of mucosal
delivery. It has been argued that this pathway is preferable because of
the lack of gastrointestinal antigen degradation and, in the NOD mouse,
this approach indeed conferred protection [32]. Given that mucosal
antigen delivery by itself may not be sufficient to cure established
disease, combinatorial methods could be an option. Combination of an
anti-T cell agent, anti-CD3, with oral [33] or nasal [19] (pro-)insulin has
shown great promise in various animal models. This type of treatment
course reduces the risks associated with long term immune suppres-
sion, increases efficacy by means of synergy and could be an excellent
pathway to explore in the metabolic syndrome.

2.2. Parenteral ‘vaccination’ in suitable ‘adjuvant’
The concept of therapeutic vaccination with autoantigens in autoimmune
disease may sound paradoxical at first. A relevant example of how
injected antigens can tolerize against the effects of later exposure is
found in bee keepers. A recent publication showed that these individuals
react normally against the first bee stings of the season but are soon
tolerized and show desensitization throughout the rest of the season [34].
Mechanistically, this reduced response is associated with a functional T
cell switch away from Th2 immunity toward a Tr1-mediated regulatory
response. An intriguing finding is that desensitization only lasts as long as
rights reserved. www.molecularmetabolism.com 277
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the antigen exposures, i.e. by the start of the next season all bee keepers
are again sensitized and T cell functionality returns back to baseline. This
observation could indicate that antigenic injections can only prevent
autoimmunity through sustained treatment.
The most advanced agent within this category is DiaPep277s, a
modified peptide derived from HSP60, formulated in vegetable oil and
administered subcutaneously. This drug induces immunological toler-
ance through antigen-specific and non-specific (TLR-2) signaling, which
recently resulted in promising Phase III outcomes in recently diagnosed
T1D patients [35]. Another example is Diamyds, GAD65 formulated
in alum adjuvant, a classic T1D-associated autoantigen. Whereas
Phase 2 trials suggested that the drug had regulatory capacities and
could preserve C-peptide, two recent Phase 3 trials failed to achieve
their endpoints [36,37]. Finally, the parenteral arm of the DPT-1 trial,
referenced above, treated at-risk subjects with insulin injections with the
aim of correcting metabolic and immunological imbalances prior to
diagnosis [38]. Unfortunately, this trial failed to prevent diabetes
development.
Thus, despite promising pre-clinical data and some evidence of efficacy
in Phase 2 trials, it appears that our incomplete understanding of
variables such as dose, formulation and regimen may hinder optimal
clinical translation of antigenic therapies. Conceivably, similar challenges
may need to be overcome in developing antigen-specific therapies for
the metabolic syndrome.

2.3. DNA-encoded delivery
An alternative antigen delivery method stems from the observation that
injected DNA sequences in the form of plasmids can induce protein
expression in mouse muscle cells in vivo [39]. After injection, the
plasmids are rapidly taken up by the local muscle cells which produce
the proteins encoded by the plasmid. Whereas most applications of
this concept have been directed at immunization against infectious
diseases, this type of antigen delivery has also shown promise in a T1D
setting [40]. The advantages over protein-based antigen delivery are the
low cost in combination with prolonged and targeted antigen delivery.
Phase 2 trials were completed in MS [41] and T1D [42] and collectively
show that DNA vaccination is a safe approach with some evidence of
efficacy. In the T1D trial it was shown that certain disease-relevant CD8
T cell species can be specifically eliminated, a mechanism that could
possibly translate into a highly targeted treatment in the metabolic
syndrome as soon as the driving antigens are discovered.

2.4. Nanoparticle-coupled delivery
An emerging new avenue that holds potential to improve the efficacy of
antigenic treatments involves coupling of autoantigens to nanoparticles.
A substantial body of pre-clinical data suggests that peptide-coupling to
apoptotic splenocytes can safely induce antigen-specific tolerance
[43,44]. However, this approach is difficult in terms of adherence to
good manufacturing practice standards. Nanoparticles, used as inert
surrogate cells, could be implemented as drug delivery vehicles in order
to deliver antigenic peptides. The recent work shows that such antigen-
loaded nanoparticles can indeed induce durable immune tolerance in
animals with autoimmune disease [45].
3. THE IMMUNE SYSTEM IN OBESITY

Antigen-specific therapy in T1D clearly holds promise, mainly owing to
its low risk for side effects in a vulnerable patient population with
excellent treatment alternatives. In order to treat obese patients early in
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order to avoid later inflammation-associated complications, diagnosis of
the metabolic syndrome could be a viable initiation stage for antigen-
specific intervention. An excellent safety profile is a prerequisite. In view
of efficacy, an antigen-specific inflammatory component to the disease
needs to be established. Although the metabolic syndrome is often
associated with an increased inflammatory immune status, this has
generally been considered a secondary rather than causative phenom-
enon. Recent data, however, indicate that inflammation might in fact
come first and may be a process that drives or at least contributes to
insulin resistance.

3.1. Innate adipose tissue immunity
It is now widely acknowledged that the immune system in obese
individuals adopts a state of chronic, multi-organ low grade inflamma-
tion. It is also believed that these inflammatory imbalances, character-
ized for instance by circulating cytokines, are related to metabolic
dysfunction [5]. Macrophages are part of the innate immune system and
are normally involved in homeostatic phagocytosis, serving as scaven-
gers for cellular debris. During host defense against infectious disease,
macrophages are instrumental in the first line defense by means of non-
antigen specific engulfment of pathogens. Finally, macrophages are
professional antigen-presenting cells and are able to initiate and direct
adaptive T cell responses. Macrophages can be found throughout the
body under physiological conditions, including in adipose tissue. In lean
individuals, their functional phenotype in adipose tissue is described as
‘M2’, or alternatively activated macrophages. This subtype generally
suppresses inflammatory responses. In obese subjects, however, the
predominant macrophage subtype is of the ‘M1’, classically activated
type, which is associated with proinflammatory stimuli. The precise
signaling cascade involved in M2-to-M1 transition has not been
elucidated, but some key pathways have been identified. Eosinophils
appear to play an essential role in the maintenance of macrophages' M2
phenotype in lean adipose tissue [46].
An important notion is that some of the pattern receptors used in
pathogen sensing also recognize certain endogenous molecules that are
enriched within fat tissue. Examples include Toll-like receptors (TLR)
[47] and NOD-like receptors (NLR) [48]. Interestingly, these pivotal
pattern receptors are also known to interact with the gut microbiota, and
disturbances within this cross-talk can promote the metabolic syndrome
[49]. The action of macrophages affects many other tissues in obese
subjects such as muscles, blood vessels and notably, as in type
1 diabetes (T1D), causes beta cell destruction in the pancreas. Whereas
in T1D-associated islet lesions T cells dominate, T2D-associated islet
infiltrates consist predominantly of macrophages [50]. Finally, the
involvement of innate immune mechanisms in T2D is suggested by
clinical trials blocking activity of typical macrophage-associated cyto-
kines such as IL-1β. The beneficial effects in terms of improved
glycemia, beta-cell function and downregulated systemic inflammation
markers indicate that macrophage-driven inflammation may be a potent
disease driver in T2D [51].

3.2. Adaptive immunity and Tregs in adipose tissue
T cells have only recently been discovered to play a role in adipose
tissue inflammation. T cells are more abundant in adipose tissue from
obese mice as compared to their lean counterparts and actually arrive
before macrophages start accumulating [52]. Given that the cytokines
that dictate the balance between M1 and M2 macrophage phenotypes
are typical T cell-derived cytokines, their simultaneous influx would
seem logical. The T cell profile in adipose tissue indeed undergoes
several important changes, one of which is an increase in the CD8/CD4
& 2014 The Authors. Published by Elsevier GmbH. All rights reserved. www.molecularmetabolism.com



T cells ratio long before adipose tissue macrophage influx [53].
Furthermore, absence of CD8 T cells abrogates macrophage infiltration,
while enrichment has the opposite effect. An obvious candidate T cell
subset that could account for local suppression of adipose tissue T cells
are natural regulatory T cells (Treg). It was indeed shown that with
proceeding obesity, adipose tissue Treg numbers progressively [54,55]
(Figure 2).
Do these observations suggest that antigenic therapies may bear future
potential in treating or preventing adipose tissue inflammation in
obesity? While no antigens have been identified that can directly
activate T cells in adipose tissue, there are encouraging signs that
cognate adipose tissue antigens exist and are locally presented. First,
the T cell repertoire in obese adipose tissue is remarkably restricted,
hinting towards the possibility of antigenic selection in response to
certain adipose tissue-derived autoantigens [54,55]. Second, evidence
exists that the essential event leading up to T cell activation, antigen
presentation within a MHC context, actively occurs within obese adipose
tissue. Whether it is primarily macrophages [56], B cells [57] or
adipocytes [58] that perform the bulk of the local antigen presentation is
still under debate. Third, immunotherapy with anti-CD3 antibodies,
arguable the most successful treatment in mouse models for T1D,
improves Treg control and insulin resistance [55]. This suggests that
immunotherapy in obesity can have meaningful benefits that could may
be optimized by means of combination therapy with antigen, a strategy
that also shows potential in T1D [19]. Finally, although data are currently
scarce, it may be that tolerance mechanisms are inherently affected by
the obese state, as some oral tolerization studies suggest [59]. A recent
animal study suggests that high-fat diets promote intestinal absorption
of gut antigens, which in turn leads to delivery of the antigens to adipose
tissues via chylomicrons [60]. The possibility therefore exists that the
adipose tissue T cells in obese subjects recognize an exogenous rather
than an endogenous molecule. This would obviously constitute a major
impediment to antigen-specific tolerance induction, as each patient
would harbor an unpredictable adipose tissue T cell repertoire.
How do we proceed with defining the specificity of adipose tissue-
associated T cells? The area of epitope discovery is well-developed in
T1D research, with several major autoantigens being characterized and
inventoried in the Immune Epitope Database (IEDB) [61]. The conven-
tional approach to identify the specificity of T cells involves reducing the
complexity of the T cell population being screened (e.g. by T cell
cloning), or selecting a limited set of candidate antigens for testing
against a complex T cell mixture. Since this is a low-throughput
procedure, future technological advances should provide discovery
platforms aimed at more rapidly screening complex peptide mixtures
against mixed T cell populations [62]. For protein antigens these high-
throughput approaches should be guided by our detailed understanding
of the adipocyte proteome [63]. The complexity of the peptide mixture to
be tested can be substantially reduced by applying computer algorithms
to predict epitope binding to the relevant MHC class II molecule [64]. In a
recent atherosclerosis study by Tse et al., the ‘candidate antigen’
approach in combination with in silico prediction of MHC Class II peptide
binding motifs was pursued. Here, two antigenic murine ApoB-100
peptide fragments were identified, and their binding to I-Ab determined
by affinity assay. Utilizing a vaccination scheme in Apoe� /� mice,
these antigens were shown to ameliorate plaque formation in vivo [65].
A similar stepwise approach could be envisioned in obesity models.
Searching for the antigenic trigger for adipose tissue T cells, one
naturally arrives at an innate-like lymphocyte subset that is known to
react to glycolipid antigens, the natural killer T (NKT) cell. Indeed, recent
data show that adipocytes can modulate iNKT cell function. In an analog
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fashion as with MHC class II, adipocytes serve as lipid antigen-
presenting cells in a CD1d-mediated fashion [66]. Under obese
conditions, however, NKT cells leave the scene before macrophage
accumulation start [67,68]. Taken together, these findings suggest that
under lean conditions, adipose tissue-resident iNKT cells maintain local
immune homeostasis through direct engagement of lipid antigens,
presented by adipocytes. Antigen-specific treatment could thus consist
of specific NKT cell lipid antigens, be it natural or artificial. In support of
this hypothesis, in vivo activation of iNKT cells via an exogenous super
ligand, alpha-galactosylceramide, decreased obesity-related metabolic
parameters and inflammation [67].
In conclusion, adaptive immunity and T cell infiltration in particular
appear to be early events in the development of adipose tissue
inflammation in obesity. Whereas the field has not yet advanced to
the identification of specific lipid autoantigens, there are strong
indications that there is an autoinflammatory component to the
condition. Identification of these antigens may initiate the application
of antigenic therapies in a similar fashion as outlined within the context
of T1D.
4. THE IMMUNE SYSTEM IN ATHEROSCLEROSIS

4.1. Innate endothelial immunity
Much like obesity, atherosclerotic disease was long seen as a lipid
storage disease. Both diseases are now recognized to share another
common pathophysiological property, which is inflammation [6]. Ele-
vated levels of the inflammatory marker high-sensitivity C-reactive
protein (hs-CRP) are associated with increased risk for both CVD and
diabetes [69]. Whereas in obesity, free fatty acids can trigger
inflammation, oxidized LDL has a similar pro-inflammatory effect in
atherosclerosis. The molecular underpinning of atherosclerosis involves
circulating LDL particles that penetrate the arterial wall, where they
undergo oxidation. Oxidized LDL subsequently initiates endothelial cell
activation which leads to expression of adhesion molecules and
chemokines and eventually recruitment of macrophages. The functional
macrophage phenotype cannot be clearly categorized as either M1 or
M2, as is the case in adipose tissue inflammation [70]. These
macrophages take up oxidized LDL particles via their scavenger
receptors and may turn into so-called foam cells. The continuous influx
of macrophages – and T cells, see below – followed by inefficient
clearance of dead cells eventually culminates into the formation of
atherosclerotic plaques. Evidence of innate immunity is further inferred
from plasma markers such as TNF and IL-6, innate-like cytokines which
are known to be important mediators of atherogenesis. Finally,
macrophages may play a crucial role during the advanced stages of
atherosclerosis leading up to acute vascular events. The unstable
lesions that are ultimately responsible for releasing the thrombogenic
material into the lumen, typically harbor a substantial amount of
macrophages [70]. It is however still unknown how precisely macro-
phages contribute to the development of these culprit lesions.

4.2. Adaptive immunity and Tregs in the atherosclerotic plaque
It is generally assumed that T cells arrive in atherosclerotic plaques later
than macrophages, probably as a result of antigen drainage to the lymph
nodes [71]. As with macrophages, chemoattractants play a major role in
the gradual accumulation of T cells in the lesions. It is clear that T cells
in atherosclerotic plaques exhibit a more activated phenotype as
compared to their counterparts in the periphery [72]. As in obese fat
tissue, infiltrating T cells predominantly display a proinflammatory Th1
rights reserved. www.molecularmetabolism.com 279
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phenotype, characterized by IFN-γ secretion, which is a potent
proatherogenic mediator. The precise roles of Th2 and Th17 subsets
are still under debate [71] as is that of NKT cells [73]. Treg cell
deficiencies are clearly involved in the pathogenesis, as Treg are
detected in much lower amounts in atherosclerotic plaques than in other
chronically inflamed tissues [74]. Moreover, adoptive transfer studies in
animal models show that natural Treg are potent inhibitors of
atherosclerosis [75].
Given that the presence of T cells in atherosclerotic lesions is firmly
established, the question arises which antigens these T cells react to.
Unlike for adipose tissue T cells, a number of T cell antigens have been
defined in atherosclerosis. T cells isolated from atherosclerotic plaques
reveal specificity for oxidized LDL [76] and may possibly recognize heat
shock protein (HsP) 60 [77,78]. As a result of these findings, antigen-
specific, tolerogenic vaccination against atherosclerosis is regarded as a
promising treatment modality [79]. We will not cover strategies aimed at
inducing active vaccination to neutralize key pathogenic proteins but
rather focus on a few promising approaches that elicit active T cell
tolerance.
There is firm evidence that tolerance induction against oxidized LDL is a
feasible and effective approach in animal models. Atherosclerosis-prone
mice given oral doses of oxLDL develop less atherosclerotic lesions, an
effect that is accompanied by an increase in Treg and regulatory
cytokines [80]. Related work focused on ApoB100, the core protein of
LDL, which is a driver T cell target in mice [81]. Tolerogenic DCs pulsed
with ApoB100 reduced the autoimmune response against low-density
lipoprotein, and consequently inhibited atherosclerotic lesions in the
aorta [82]. Subcutaneous infusion of ApoB100 peptides also reduces
atherosclerosis in ApoE knockout mice through Treg stimulation [83].
Analogous data were acquired using oral or nasal administration of
HSP65, with significant amelioration of macrophage and T cell
infiltration and reduced plaque size [84,85].
Thus, in contract to the obesity-related inflammatory state, T cell
antigens have been identified in atherosclerosis and pre-clinical studies
suggest that T cell tolerization strategies hold promise.
5. CONCLUSIONS: TOWARD ANTIGEN-SPECIFIC THERAPY IN
THE METABOLIC SYNDROME

Progress in identification of T cell antigens in T1D has enabled the
design of antigen-specific therapies, aimed at reinstating immune
tolerance. Pre-clinical data overwhelmingly demonstrate that these
antigenic treatments are safe and effective, yet clinical translation has
been problematic so far. We reviewed here a few notable examples of
antigenic therapies that are in various stages of development, in order to
point out some of the mechanisms, benefits and pitfalls associated with
the concept.
The metabolic syndrome is primarily caused by central obesity and
comprises a range of abnormalities including insulin resistance,
dyslipidaemia, and hypertension, which are key risk factors for type 2
diabetes and cardiovascular disease [86]. Whereas the optimal solution
remains weight reduction, safe therapeutic interventions may aid in
avoiding some of these severe outcomes. While obesity and athero-
sclerosis were previously seen as lipid storage disease, it is now well
established that both conditions share the involvement of adaptive
immune mechanisms. Especially in atherosclerosis, antigen-specific T
cell responses have been identified, enabling pre-clinical proof-of-
concept studies using antigen-specific approaches.
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We argue that diagnosis of the metabolic syndrome may be the ideal
initiation stage for antigenic treatment, once well-characterized antigens
have been defined in human disease. One could envision a safe chronic
treatment with obesity- and/or atherosclerosis-associated antigens to
break the vicious cycle of inflammation in adipose tissue and/or
atherosclerotic lesions. The health benefits of abolishing the inflamma-
tory component could obviously be substantial. Lessons from oral
tolerance experiences in T1D teach us that antigenic treatment needs to
be initiated as early as possible, preferably before overt disease, and
thus diagnosis of the metabolic syndrome may be a suitable phase.
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